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Abstract

This paper presents decision analysis networks (DANs) as a new type of prob-

abilistic graphical model. Like influence diagrams (IDs), DANs are much more

compact and easier to build than decision trees and can represent conditional

independencies. In fact, for every ID there is an equivalent symmetric DAN,

but DANs can also represent asymmetric problems involving partial orderings of

the decisions (order asymmetry), restrictions between the values of the variables

(domain asymmetry), and conditional observability (information asymmetry).

Symmetric DANs can be evaluated with the same algorithms as IDs. Every

asymmetric DAN can be evaluated by converting it into an equivalent decision

tree or, much more efficiently, by decomposing it into a tree of symmetric DANs.

Given that DANs can solve symmetric problems as easily and as efficiently as

IDs, and are more appropriate for asymmetric problems—which include virtu-

ally all real-world problems—DANs might replace IDs as the standard type of

probabilistic graphical model for decision support and decision analysis. We also

argue that DANs compare favorably with other formalisms proposed for asym-

metric decision problems. In practice, DANs can be built and evaluated with

OpenMarkov, a Java open-source package for probabilistic graphical models.
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1. Introduction

The two formalisms most widely used for the representation and analysis

of decision problems are decision trees (DTs) [31] and influence diagrams (IDs)

[15]. DTs have the advantage of almost absolute flexibility, but also have three

drawbacks: their size grows exponentially with the number of variables, they

cannot represent conditional independencies, and they require in general a pre-

processing of the probabilities [15, 4]; for example, medical diagnosis problems

are usually stated in terms of direct probabilities, namely the prevalence of the

diseases and the sensitivity and specificity of the tests, while DTs are built with

inverse probabilities, i.e., the positive and negative predictive values of the tests.

Even in cases with only a few chance variables, this preprocessing of probabil-

ities is a difficult task.1 In contrast, IDs have the advantages of being very

compact, easily representing conditional independence, and using direct prob-

abilities; but they can only represent symmetric decision problems. Following

partially the definitions of Bielza et al. [4] and Jensen et al. [17], we say that

there is domain asymmetry when the value taken by a variable restricts the

values that other variables can take; there is information asymmetry when a

variable Y is observed for some values of a variable X but not for others; and

there is order asymmetry when the decisions can be made in different orders.

In practice, virtually all real-world problems are asymmetric, in particular

all those that involve the possibility of getting additional information at a cost;

for example, the variable that represents the result of a test can take some values

only when the decision is to do the test. Several formalisms have been proposed

for representing and solving asymmetric decision problems, but all of them have

drawbacks; for example, unconstrained IDs [18] cannot represent domain asym-

metry nor information asymmetry, and sequential IDs [17] may need redundant

links with complex labels, as we discuss in Section 3. In this paper we present

a new formalism, called decision analysis networks (DANs), which can repre-

sent all symmetric problems as easily as IDs and, as we argue below, can also

1When there are two or more chance variables between two decisions in a DT, their order
can be changed without altering the results of the evaluation, but when there is a decision
between two chance nodes, the order of the two cannot be changed. For this reason it is often
necessary to preprocess the probabilities.
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represent real-world asymmetric decision problems more naturally than other

existing formalisms. We developed it when trying to solve a complex medical

decision problem: the mediastinal staging of non-small cell lung cancer [26].

The DAN for that medical problem, together with other DANs for the most

famous asymmetric decision problems proposed in the literature, can be found

at www.ProbModelXML.org/networks; they are encoded in ProbModelXML, an

open format for probabilistic graphical models [3]. OpenMarkov, an open-source

tool for probabilistic graphical models, can be used to view, create, edit, and

evaluate DANs. It is available at www.openmarkov.org. Its tutorial explains

how to build and evaluate DANs and, when possible, compares them with equiv-

alent IDs.

The rest of the paper is structured as follows. First, we introduce the n-test

problem, which will serve to illustrate the properties of DANs and to discuss

different formalisms. Then the paper consists of two main parts. The first

deals with knowledge representation: Section 2 presents the definition of DANs

and Section 3 compares them with other formalisms. The second deals with

inference: Section 4 describes several algorithms for the evaluation of DANs

and Section 5 analyzes the efficiency of those algorithms. Finally, Section 6

contains the conclusions and some proposals for future work.

Example 1. The n-test problem consists in deciding how to treat a patient that
may suffer from a certain disease. After an initial examination of the symptoms,
the doctor may order one or more of n available tests, each one having a cost.
Every test can be performed once at most and its result is known immediately.
The doctor has to decide which tests to perform and in which order.

In the simplest version of the problem there is only one symptom and all
variables are dichotomous, i.e., the disease and the symptom are either present
or absent and the result of each test is either positive or negative. The diabetes
problem [10] is an instance of the two-test problem.

2. Definition of a DAN

In this section we define DANs by describing the elements that compose

them and the ways of indicating the availability of information; we also discuss

the meaning of the different types of links. We make several remarks about

causality and availability of information, which may be useful for those who

wish to apply DANs to real-world problems. However, a reader interested only
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in an axiomatic definition of DANs can skip those remarks without reducing the

logical consistency of the presentation.

2.1. Graph and variables of a DAN

In this paper we represent variables with capital letters (X) and their values

with lower-case letters (x). A bold upper-case letter (X) denotes a vector of

variables and a bold lower-case letter (x) represents a configuration of them, i.e.,

the assignment of a value to each variable in X. When Y ⊆ X, x↓Y denotes

the projection x onto Y, which is a configuration of Y.

The set of nodes of a DAN, V, can be partitioned into three disjoint sub-

sets: chance variables (C), decisions (D), and utilities (U). Chance variables

represent properties or events that are not under the direct control of the deci-

sion maker, decisions correspond to actions that are under their direct control,

and utilities represent payoffs (the decision maker’s values). A DAN also has

an acyclic directed graph such that each node represents a variable; hence we

speak indifferently of nodes and variables. When the graph has a link X → Y ,

we say that X is a parent of Y and Y is a child of X. The set of parents of

a node X is denoted by Pa(X), and pa(X) represents a configuration of them.

When there is a directed path from X to Y , we say that X is an ancestor of Y

and Y is a descendant of X. In this paper we assume that utility nodes do not

have children, but this requirement can easily be relaxed. We also assume that

all the decisions and chance variables are discrete.

The DAN in Figure 1 contains 3 decisions, drawn as rectangles, 4 chance

variables, drawn as rounded rectangles, and 3 utility nodes, drawn as hexagons.

2.2. Restrictions

A restriction associated to a link X → Y , such that X and Y are chance or

decision variables, is a pair (x, y), where x is a value of X and y is a value of Y .

It means that variable Y cannot take the value y when X takes the value x. In

OpenMarkov the restrictions between X and Y are represented by a table with

a column for each value of X and a row for each value of Y ; when the values x

and y are compatible, i.e., when there is no restriction (x, y), the corresponding

cell contains a 1 and is colored in green; otherwise it contains a 0 and is colored

in red—see Figure 2. When all the values of Y are incompatible with x, a
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Figure 1: A DAN for the diabetes problem [10]. The decision about a test may depend on
the presence of the symptom and on the result of the other test. There is no constraint on
the order of the tests.

particular value of X, as in this figure, we say that there is a total restriction

and denote it by (x, Y ). It implies that in some scenarios the variable Y does

not exist; we will see it more clearly when expanding the equivalent decision

tree. In Figures 1 and 3 links having total restrictions are marked with a short

perpendicular double line.

Figure 2: Compatibility table for the link Dec: Blood test → Blood test result in Figure 1.
It contains two restrictions, (no, positive) and (no, negative), which mean that when the test
is not performed, it gives neither a positive nor a negative result. There is a total restriction
because the value no is not compatible with any value of Blood test result .

When there is a restriction (x, y) but every value of X is compatible with

at least one value of Y , we say that there is a partial restriction. For example,

the DAN for the reactor problem (Fig. 3) contains a partial restriction because

a bad test result prevents the construction of an advanced reactor, but every

value of Result of test is compatible with at least one value of Build decision, as

shown in Figure 4. This partial restriction is denoted by a short perpendicular

line on the link Result of test −→ Build decision in Figure 3.

The meaning of a restriction (x, y) depends on whether Y is a chance vari-

able or a decision. If it is a chance variable, the restriction (x, y)—associated to
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Figure 3: A DAN for the reactor problem [8, 5]. The main decision is which type of reactor
to build, if any. There is a partial restriction associated to the link Result of test → Build
decision, as shown in Figure 4.

Figure 4: Compatibility table for the link Result of test → Build decision in Figure 3. The zero
in the red cell means that a bad test result prevents the construction of an advanced reactor.
It is a partial restriction because bad is compatible with other values of Build decision.

the link X → Y , which implies that X ∈ Pa(Y )—means that P (y | pa(Y )) = 0

for all the configurations of Pa(Y ) in which X = x; we explain this in further

detail in the next section. Therefore, when Y is a chance variable, there is not a

significant difference between attaching a partial restriction to a link and setting

to 0 the corresponding cells in the conditional probability table. However, from

the point of view of knowledge engineering, it may be useful to declare a partial

restriction when building the graph of the network—qualitative information—

instead of just setting the probability to 0—quantitative information—because

the more structural information we have about a model, the easier it will be to

maintain it, avoiding inconsistencies in its numerical parameters. Additionally,

restrictions can be useful when doing inference (as shown below), when per-

forming sensitivity analysis (in order to determine which parameters can vary

and which cannot), and when explaining the reasoning.

In contrast, if D is a decision, the restriction (x, d) means that when X = x
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the decision maker (and consequently the evaluation algorithm) cannot choose

the option d—see again the example in Figure 4. In summary, a partial restric-

tion associated to a link X → Y affects the edition of the network if Y is a

chance variable; if Y is a decision, the restriction affects inference.

2.3. Potentials

A potential ψ is a function that maps each configuration x of a set of variables

X onto R, i.e., ψ(x) is a real number. Each chance node Y has an associated

conditional probability potential, denoted by ψ(y | pa(Y )). When there is a

restriction (x, y) and X = x in the configuration pa(Y ), then ψ(y | pa(Y )) = 0,

because y is incompatible with x. If at least one value of Y is compatible with

all the values of its parents in the configuration pa(Y ), then ψ(y | pa(Y )) is a

conditional probability distribution for Y given that configuration, as shown in

Figure 5.

Figure 5: Probabilistic potential associated to the chance node Blood test result. The second
and third columns are 0 due to the restrictions in Figure 2. The fourth column defines a
conditional probability distribution for Blood test result ; 0.98 is the specificity of the test.
The last column defines another conditional probability distribution for the same variable;
0.96 is the sensitivity of the test.

Similarly, each utility node U has an associated potential, u(pa(U)).

2.4. Representing the availability of information

In DANs there are two ways to indicate when a variable becomes observed:

always-observed variables and revelation links. In both cases, DANs satisfy the

no-forgetting property [15, 27], which means that when the value of a variable

is known, then it is known for all subsequent decisions.

2.4.1. Always-observed variables

A chance variable declared as always observed means that its value is known

before making any decision. In Figure 1, the node Symptom is marked with a

thick red border to indicate that it is always observed.
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2.4.2. Revelation links

Given a link X → Y , such that Y is a chance variable, we can declare that

certain values of X reveal the value of Y ; we then say that X → Y is a revelation

link. In Figures 1 and 3 revelation links are colored in red. In general, X is a

decision node, but it might also be a chance node; in this case, it means that Y

is known only if a fortuitous event X = x occurs and the value of X is observed.

The revelation conditions are the values of X that reveal Y . We say that X

reveals Y unconditionally if all values of X reveal Y ; otherwise we say that X

reveals Y conditionally. We will see below that conditional revelations induce

asymmetry, while unconditional revelations do not.

When Y is an always-observed node, it does not make sense to declare a

revelation condition for any link X → Y . We also assume that a variable X

being a descendant of a decision D cannot be always-observed because it would

violate our notion of causality: if the outcome of X depends on the option chosen

for D, then X cannot be known before making D. It is also contradictory to

declare x as a revelation condition for Y when there is a total restriction (x, Y ).

In this paper we assume that all DANs satisfy these consistency properties.

2.5. Summary: The meaning of links

A link X → Y in a DAN may have five meanings:

1. Causal influence: For example, the links Diabetes → Symptom and Di-

abetes → Blood test result mean that the presence of the disease affects

the probability of having the symptom and the outcomes of this test,

respectively. Y must be a chance node.

2. Functional dependence: For example, the four links pointing at Cost of

blood test, Cost of urine test, and Quality of life denote which variables

directly affect the decision maker’s values. Y must be a utility node.

3. Temporal order: For example, the link Dec: Blood Test → Therapy indi-

cates which decision is made first. X and Y must be decisions.

4. Revelation: For example, the link Dec: Blood Test → Blood test result

has an associated revelation condition: the result is known when doing

the test. Y must be a chance node.
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5. Restriction: For example, Dec: Blood Test → Blood test result has an

associated restriction: when the test is not done, no result is possible. X

and Y must be decision or chance nodes.

The first three meanings are the same as in IDs. Revelation links in DANs

replace information links in IDs; the main difference is that in general a reve-

lation link goes from a decision to a chance variable while an information link

goes from a chance node to a posterior decision—see Sec. 3.1. Restrictions are

a novelty of DANs with respect to IDs.

3. Comparison of representation formalisms

In this section we examine seven types of probabilistic graphical models

(PGMs) for decision analysis, as well as another formalism recently proposed

for asymmetric decision problem. First we compare DANs with IDs, which are

the standard, and with the two latest types of PGMs for asymmetric decision

problems, namely unconstrained influence diagrams (UIDs) and sequential in-

fluence diagrams (SIDs), and then we offer an overall review of IDs and all

the formalisms for asymmetric decision problems. For a comparison of these

formalisms applied to different problems, see König’s master thesis [19].

3.1. Symmetric DANs vs. IDs
Definition 2. A DAN is symmetric if

1. it has no restrictions (domain symmetry),

2. all revelations are unconditional, i.e., if a value of X reveals Y , then all

the values of X reveal it (information symmetry), and

3. a directed path connects all the decisions (order symmetry).

We will introduce in Section 4.1 an algorithm that converts a DAN into an

equivalent DT. If the DAN is symmetric, so is the DT (Proposition 7).

In an ID or a symmetric DAN with n decisions {D1, . . . , Dn} the set of

chance variables C can be partitioned into n+1 disjoint subsets {C0, . . . ,Cn}.
In an ID a chance variable X belongs to Ci (with 0 ≤ i < n) if and only if there

is an information link X → Di+1 and there is no link from X to any previous

decision; X ∈ Cn if there is no information link X → Di for any decision. In

a symmetric DAN C0 contains the always-observed variables; a chance variable
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X belongs to Ci (with 1 ≤ i < n) if and only if the decision Di reveals X and

no previous decision Dj (j < i) reveals it; Cn is the set of the variables that are

not revealed by any decision.2 Both in the ID and in the DAN, C0 is the set

of variables observed before making the first decision, Ci is the set of variables

observed after decision Di and before Di+1, and Cn is the set of unobservable

variables.

Proposition 3. For every ID there is an equivalent symmetric DAN, and vice
versa.

Proof. The transformation of an ID into a symmetric DAN is straightforward:
for every chance variable X, if X ∈ C0 we declare it as always observed; if
X ∈ Ci, with 1 < i < n, and there is no directed path from X to Di, we
declare that all the values of Di reveal X. However, when the ID contains a
directed path from X to Di, it is not possible to add a revelation arc from Di

to X because it would create a cycle in the DAN. In this case we add a chance
variable X ′ having X and Di as its parents, with

P (x′|x, d) = δx,x′ , (1)

where δ is Kronecker delta. (Variable X ′ can be interpreted as a test that
indicates the value of X with 100% accuracy, but the result of this test is
available only after the decision Di has been made.) In the DAN, X ′ ∈ Ci and
X ∈ Cn. The combination of Equations 1 and 3 proves that the expected utility
and the optimal policies for the DAN are the same as for the ID.

The transformation of a symmetric DAN into an ID is analogous: for every
chance variable X in Ci, with i < n, we draw a link X → Di. In this case, it
is never necessary to add a dummy variable because, due to the non-forgetting
property, Di cannot be an ancestor of X.

Given that the equations for the expected utility and for the optimal policies

are identical for IDs and symmetric DANs, any algorithm for IDs can be used

to evaluate symmetric DANs. For example, the arc reversal algorithm [29, 32]

only differs in how to identify the nodes to be removed first: in an ID, Cn is the

set of nodes that have no outgoing information links, while in a DAN it is the

set of those that have no incoming revelation links. The variable elimination

algorithm [16, 25], which only works with the set of potentials and the partial

ordering of the variables, as we will see in Sec. 4.2, is identical in both cases.

2In a symmetric DAN it is irrelevant whether the last decision, Dn, reveals any variable
or not, because this information has no effect on any decision. Therefore, in order to sim-
plify the exposition in this section, we assume that in symmetric DANs only the decisions
{D1, . . . , Dn−1} can reveal any variables. Additionally, if an always-observed variable X re-
veals Y , then all the values of X reveal Y ; therefore we can declare Y as always-observed and
remove the revelation conditions from X to Y . Similarly, if a decision D reveals X, and X
reveals Y , we may declare that D reveals Y and remove the revelation conditions from X to
Y . We assume that these adjustments have been made before partitioning C.
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3.2. DANs vs. IDs for asymmetric problems

We have shown that symmetric DANs are equivalent to IDs and, therefore,

they are equally suited to represent symmetric problems. In this section we

argue that DANs are clearly superior to IDs for the representation of asymmetric

problems.

Problems having only domain or information asymmetry can be symmetrized

by using two modeling tricks [34]. First, a total restriction on a chance vari-

able X can be modeled by adding a dummy state. For example, the one-test

problem can be represented with an ID having three values for the result of

the test: positive, negative, and (the dummy state) not-performed. This way

we not only avoid domain asymmetry, but also information asymmetry: the

result of the test is always known, but sometimes the “result” is not-performed.

The drawback of this trick is that it complicates the edition of the probability

tables for the variables having dummy states. It also makes the evaluation less

efficient, due to the enlarged probability and utility tables, and complicates the

interpretation of the results, because some policies contain configurations that

can never occur, such as (do not test, positive), (do not test, negative), and (do

test, not-performed). Even for this small problem it is advantageous to use a

DAN, which does not need dummy states. The second trick, used for restric-

tions of the form (x, d) where D is a decision, consists of adding a dummy utility

node U , with parents X and D, such that u(x, d) = −∞ and u(x′, d′) = 0 for

the other configurations of {X,D}. In the case of a total restriction on D, it is

also necessary to add a dummy state for this decision. This trick complicates

the graph of the ID and makes inference less efficient than when using a DAN.

Order asymmetry poses a much more serious difficulty for IDs. For example,

if we try to model the n-test problem with an ID, we need n decision nodes for

the tests, {T1, . . . , Tn}, each having n + 1 options; the extra option is do no

test. We then need n(n−1)/2 dummy utility nodes to represent the restrictions

that tests cannot be repeated, and that if the i-th decision is not to test, then

all subsequent test decisions are not to test. We also need n chance variables,

{R1, . . . , Rn}, for the results of the tests. The meaning of Ri depends on which

test has been performed in the i-th place. Each Ri has m + 1 possible states,

where m is the maximum of the number of outcomes of the tests; the extra
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state is “not performed”. If a test has fewer than m outcomes, some states

of the R’s are meaningless. Specifying the conditional probability tables for

the R’s is cumbersome. Tests that return numeric results cannot coexist with

those having a finite set of outcomes. Additionally, the conditional probability

of Ri given the tests must be repeated for every Ri, which complicates the

maintenance of the model and makes sensitivity analysis virtually impossible.

If a new test is added to the model, the domains of all the T ’s and the R’s must

be revised, as well as the conditional probability tables of the R’s and the tables

of the dummy utility nodes; the effort is comparable to building the new model

from scratch.

In contrast, the DAN for the n-test problem does not need dummy states,

nor dummy utility nodes, nor links between the T ’s; each Ti is dichotomous and

represents the decision about a single test (do the i-th test or not); the states of

Ri correspond to the outcomes of the i-th test, thus enabling the combination

of numeric and discrete tests in the same model; each parameter is encoded only

once; the size of the model is proportional to n, and adding a new test to the

model is straightforward.

3.3. DANs vs. UIDs

Unconstrained influence diagrams (UIDs) were proposed as a representation

framework for problems with order asymmetry [18]. Both UIDs and DANs dif-

fer from IDs in that, instead of using information links, they can declare that

a variable becomes observed after making a decision. However, the represen-

tation of the flow of information is different. In a UID, a chance variable X

can be declared as observable, which means that it becomes observed when all

the decisions that are ancestors of X have been made, regardless of the op-

tion chosen for each decision. This prevents the representation of information

asymmetry. In a DAN a chance variable can be declared as always-observed,

but it is also possible to add one or several revelation conditions (x, Y ) to a

link X → Y indicating which values of X reveal Y ; please note that X may

be a chance variable, while in UIDs only decisions can reveal other variables.

Another difference is that UIDs do not have restrictions and therefore cannot

represent domain asymmetry.
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The next propositions describe more precisely the relation between IDs,

UIDs, and DANs.

Proposition 4. For each UID having order symmetry there is an equivalent
ID, and vice versa.

The proof is analogous to that of Proposition 3.

Proposition 5. For each DAN having domain symmetry and information sym-
metry there is an equivalent UID, and vice versa.

Proof. The transformation of the DAN into a UID is straightforward: all the
variables that are always-observed or revealed in the DAN are marked as ob-
servable in the UID. The reverse transformation is analogous: every observable
variable in the UID that is not an ancestor of any decision is declared as always-
observed in the DAN; if an observable variable X is a descendant of a decision
D, an unconditional revelation link D → X is drawn. In most cases the graph
of the DAN and that of the UID are identical.

Therefore, we can say that UIDs lie halfway between IDs and DANs, be-

cause they can represent order asymmetry, but not domain nor information

asymmetry. This explains why the king problem [18], used as a running ex-

ample to define UIDs and illustrate their power, was designed to have only

order asymmetry. Similarly, when Ahlmann-Ohlsen et al. [1] built a UID for

the used car buyer problem [14, 30], they failed to mention that in its original

formulation there was a constraint (restriction) on the second decision: testing

the differential subsystem is possible only if the first test performed is on the

transmission subsystem. Due to the inability of UIDs to represent these types

of asymmetry, the review of formalisms for asymmetric problems by Bielza et

al. [4, p. 233] concluded that UIDs “are not appropriate for the general class of

decision problems”.

3.4. DANs vs. SIDs

Sequential influence diagrams (SIDs) [17] were designed to represent the three

types of asymmetry. From this point of view they made a step forward with

respect to UIDs, but the reintroduction of information links complicated signif-

icantly the representation of order asymmetry. As their authors say, “an SID

can basically be seen as two diagrams superimposed onto each other. One dia-

gram encodes information precedence as well as structural and order asymmetry,

whereas the other encodes functional relations for the utility nodes and prob-

abilistic dependence relations for the chance nodes”. In the SID for the dating
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problem (Fig. 4a in [17]) the existence of two superimposed graphs is manifested

by the two links from the node Accept to the node ToDo: the probabilistic link

is drawn as a solid arrow and the structural link as a dashed arrow. Structural

links are annotated with logical expressions that encode the restrictions and

may involve several variables.

In principle the idea of representing restrictions as logical formulas, which

was first proposed by Covaliu and Oliver [8], increases the expressiveness of the

formalism. However, the complexity of the resulting graphs, with two types

of links, logical expressions, clusters, and links from nodes to clusters and from

clusters to nodes, makes it more difficult to implement a graphical user interface

for SIDs than for DANs. Additionally, logical expressions require a language for

encoding variables, their values, logical operators, nested parentheses. . . , as well

as an interpreter for evaluating them at run time. Furthermore, it is difficult

to check the consistency of the graph when building the model, because of the

need to ensure, among other conditions, that all the cycles in the graph will dis-

appear when evaluating it. Consistency should be re-checked when a variable

is removed or when its domain changes. Omitting this build-time checks would

simplify the implementation of a software package for SIDs, but would trans-

fer the responsibility to the modeler and might cause run-time errors. These

difficulties might explain why SIDs—to our knowledge—have never been imple-

mented.

Moreover, even if there existed a software package with a graphical user

interface and a consistency checking facility for SIDs, building a model for

a real-world problem, explaining it to experts, and maintaining it would be

significantly more difficult than with a DAN because of the above-mentioned

complexity of SID graphs; see also [19].

In summary, the main advantage of DANs with respect to SIDs is that they

achieve a similar expressive power—we have found no problem that be can

be represented with one formalism but not with the other—much more easily.

DANs have no clusters, no cycles, only node-to-node links, and at most one link

between each pair of nodes. Every restriction might be encoded as a logical

expression, but given that it involves only two variables, it is easier and more

intuitive to represent the restriction as a table. Additionally, the only global

14



Table 1: Main features of several methods for representing decision problems.
dummy states total order inform. links

IDs [15] yes yes yes
IDPTs [34] no yes yes
AIDs [28] no yes yes
SVNs [33] no yes yes
UIDs [18] yes no no
SIDs [17] no no yes
DANs no no no

constraints, namely that that the graph does not contain cycles and that no

always-observed variable is a descendant of a decision, can be checked during

the edition of the network at no significant cost. These properties facilitate the

development of software tools for DANs and the construction of models.

3.5. Overview of formalisms for asymmetric decision problems

Table 1 summarizes the main features of seven formalisms for decision anal-

ysis: influence diagrams [15], influence diagrams with probability trees (IDPTs)

[34], asymmetric influence diagrams (AIDs) [28], sequential valuation networks

(SVNs) [10, 33], UIDs, SIDs, and decision analysis networks (DANs)—see also

the comparisons in [5, 4].

The first column indicates whether a formalism needs dummy states to “sym-

metrize” problems containing domain asymmetries, as explained in Section 3.2.

IDs and UIDs suffer from this drawback.

The second column indicates which models require a total ordering of the

decisions. Obviously, these formalisms are inadequate for problems involving

order asymmetry.

Finally, the third column shows which frameworks need information links.

These links are problematic when there are several possible orderings of the

decisions because a variable may be known for a decision in one scenario and not

in others. König [19] has built different models for several decision problems and

explained why the complexity of the graphs that use information links increases

significantly with n for the n-test problem.

In summary, IDPTs, AIDs, and SVNs were designed to represent domain

asymmetries, while UIDs were designed only for order asymmetry. SIDs and

DANs were designed for the three types of asymmetry but, as we have argued,
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DANs are easier to build and interpret.

Very recently Thwaites and Smith [35] have proposed chain event graphs

(CEGs) as a tool for modeling asymmetric decision problems. Given that CEGs

are highly-coalesced decision trees, they differ from the models analyzed in this

section in that a CEG often contains several nodes for each variable; for ex-

ample, Figures 6 and 8 in their paper contain 6 and 4 nodes respectively for

variable C3, while DANs, for instance, would contain only one. For this rea-

son DANs are more compact than CEGs and much easier to build for large

problems. Furthermore, CEGs are not suitable for representing problems with

several unordered decisions because the CEG must contain a path from the root

to a utility node for each possible total ordering. This may be the reason why

none of the examples in their paper has order asymmetry and the comparison

with other formalisms does not include UIDs, which were especially designed

for this type of problems. Additionally, there is, to our knowledge, no software

tool for building and evaluating CEGs.

4. Evaluation of DANs

In the first part of this paper we have described the properties of DANs as

a formalism for knowledge representation. In the second part we explain how

to evaluate them, i.e., how to compute the expected utility and the optimal

strategy, which consists in selecting the best option for each decision in each

scenario; when there are several decisions to make in a scenario, the optimal

strategy also determines which one must be made first. This section presents

one algorithm for symmetric DANs and two for general DANs.

4.1. Equivalent decision tree

The first method for general DANs consists in evaluating an equivalent DT.

Due to its time complexity, this algorithm is feasible only for small to medium

DANs, but serves two purposes. First, it provides a formal semantics for DANs;

the other algorithms, which are much more efficient, must return the same re-

sults as this one. Second, even though this algorithm does not need to explicitly

build a decision tree, doing so may be helpful for decision analysts, who are

all familiar with DTs. In fact, the conversion of IDs into DTs was a useful ex-
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planation facility for teaching purposes and for interacting with experts when

building decision support systems [21].

Algorithm 1 shows the pseudo-code for this method. The symbol “◦” denotes

the combination of a configuration of values with the value of another variable:

if e = (e1, . . . , en), then e ◦ x = (e1, . . . , en, x).

The algorithm proceeds by conditioning the DAN on each variable, i.e., by re-

moving the decisions and treating every chance variable as if it were observed—

the argument e (evidence) is a configuration of E, the variables “observed” when

evaluating a DAN. This is similar to the evaluation of Bayesian networks by re-

cursive conditioning [9]. In our case, the main purpose of conditioning is to

eliminate the asymmetries; for example, when a value of a decision D reveals Y

but other values do not, this asymmetry disappears by conditioning on D. The

evaluation of a DAN is performed by calling evaluateDT(DAN,�), where � is

the only configuration of the empty set; i.e., initially there are no condition-

ing variables. (In the recursive call to evaluateDT in line 14 of the algorithm,

(x,�) = (x).) The probability returned, P (�), is always 1 and U(�) is the

expected utility of the DAN.

The method instantiate() (lines 13 and 21), which takes as arguments a

DAN, a variable X, and a value x, generates a new network, DANx, as follows:

1. create DANx as a copy of the DAN;

2. if x reveals a variable Y that is not a descendant of any decision (other

than X), then declare Y as observed in DANx; if Y is a descendant of

some decisions (other than X), {D′
1, . . . , D

′
n}, draw a link D′

i → Y for

i ∈ {1, . . . , n}—if it did not exist—and declare that D′
i reveals Y uncon-

ditionally;

3. if there is a total restriction (x, Y ), remove Y ; then remove recursively all

the chance and utility nodes that are children of Y ;

4. if there is a restriction (x, y), remove y from the domain of Y ;

5. if a chance node Y is a child of X, project the table P (y|pa(Y )) or

uY (pa(Y )) by making X = x;

6. remove all the links outgoing from X; and

7. if X is a decision, remove node X.
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Algorithm 1: Evaluation of an equivalent decision tree (DT).
1 Function evaluateDT(DAN, e):

Result: {P (e), U(e)}
2 if DAN has decision nodes then
3 O ← always-observed variables in DAN, except those in E;
4 else
5 O ← all the chance variables in DAN, except those in E;
6 end
7 if O = ∅ and DAN has no decisions then
8 P (e) ← product of the projected probability potentials;
9 U(e) ← sum of the projected utility potentials;

10 else if O 	= ∅ then
11 select X ∈ O such that X has no ancestor in O;
12 foreach x of X do
13 DANx ← instantiate (DAN, X, x);
14 {P (e ◦ x), U(e ◦ x)} ← evaluateDT(DANx, e ◦ x);
15 end
16 P (e) ← ∑

x
P (e ◦ x);

17 P (x | e) ← P (e ◦ x)/P (e);
18 U(e) ← ∑

x
P (x | e) U(e ◦ x);

19 else if exactly one decision D can be made first then
20 foreach d of D do
21 DANd ← instantiate (DAN, D, d);
22 {Pd(e), Ud(e)} ← evaluateDT(DANd, e);
23 end
24 P (e) ← Pd(e) for an arbitrary value d;
25 U(e) ← max

d∈D
Ud(e);

26 else
27 DI ← decisions that can be made first ;
28 foreach D in DI do
29 DAND ← prioritize (DAN, D);
30 {PD(e), UD(e)} ← evaluateDT(DAND, e);
31 end
32 P (e) ← PD(e) for an arbitrary decision D;
33 U(e) ← max

D∈DI

UD(e);

34 end
35 return {P (e), U(e)}
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Please note that step 2 in this method preserves the property, mentioned in

Section 2.4.2, that a descendant of a decision cannot be always-observed. Also

note that if X is a decision, it is removed. If X is a chance node, it still appears

in DANx but has no children. The reason for keeping X and the links pointing

at it is that we need the potential P (x|pa(X)) to compute the probability of

the evidence.

The prioritization of decision D in a DAN (cf. line 29) is implemented by

drawing links from D to all the other decisions.

Algorithm 1 conditions first on the observed-variables (line 3), then on the

decisions (line 19), which may make other variables observed, and finally on the

unobserved variables (line 5). When this algorithm is applied to a symmetric

DAN, it conditions first on the variables in C0, then on D0, then on C1, etc.,

and finally on Cn. It is the same order as when expanding a decision tree, and

the reverse order of the evaluation of an influence diagram—we will come back

to this point in the next section.

The algorithm always terminates because the recursive call that follows the

instantiation of a chance variable X adds that variable to the evidence (line 14),

and the call that follows the instantiation of a decision (line 21) removes that

decision; when there are several decisions that can be made first (line 27), the

number of DANs to be evaluated is finite. Therefore, the algorithm always

arrives at the termination condition (line 7) in a finite number of steps.

We can illustrate Algorithm 1 with the diabetes DAN (Fig. 1). In this

section D stands for Diabetes, S for Symptom, DB for the decision about the

blood test, RB for its result, UB for its cost, etc. First the algorithm is in-

voked with two arguments: the DAN and e = � (no evidence). In this case,

O ← {S} (line 3). The instantiation of this DAN for S does not modify it

because S has no descendants. Then the algorithm is recursively invoked twice:

evaluateDT(DAN, (+s)) and evaluateDT(DAN, (¬s)), as shown in Figure 6.

In both cases E = {S} and O ← ∅; there are two decisions that can be made

first, BT and UT, and therefore evaluateDT must be invoked twice for each

value of S: once for the DAN in which BT is made first and once for that in

which UT precedes BT—see again Figure 6. The instantiation of the former for

BT = +bt (i.e., for the decision of doing the blood test) creates a new DAN in
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which BT has been removed and BR, the result of the blood test, is an observed

variable; the instantiation for BT = ¬bt removes both BT and BR, as shown

in Figure 6.
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Figure 6: Evaluation of the diabetes DAN with Algorithm 1. Nodes having associated evidence
are colored in gray.

This process of recursively instantiating all the decision and chance variables

in the DAN is equivalent to evaluating the decision tree shown in Figure 7: there

is a one-to-one correspondence between the nodes in that DT and the recursive

calls to evaluateDT; the argument e in each call is the configuration of all

the chance variables in the path from the root of the DT to the corresponding

node. Thus, the node D in Figure 7 corresponds to a DAN in which the three

decisions have been removed and e = (+ur, +br, +s). The instantiation of

this network for D = +d generates a new DAN having four chance nodes, three

utility nodes, and no links. The potentials of this network have resulted from
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Figure 7: Decision tree for the diabetes DAN. The “meta-decision” node OD (order of the
decisions) determines which decision to make first.

projecting the potentials of the original network: P (d), P (s|+d), P (br |+d,+bt),

P (ur |+d,+bt), UB(+bt), UU (+ut), and UQoL(+d,+th). Then evaluateDT is

invoked with this DAN and the configuration e = (+d, +ur, +br, +s). Now

O ← ∅ and the network has no decisions; therefore in lines 8 and 9 we obtain,

respectively,

P (e) = P (+d) · P (+s | +d) · P (+br | +d,+bt) · P (+ur | +d,+bt)

and

U(e) = UB(+bt) + UU (+ut) + UQoL(+d,+th) .

Similarly, we obtain P (¬d,+ur,+br,+s) and U(¬d,+ur,+br,+s). Therefore,

we can compute

P (+ur,+br,+s) = P (+d,+ur,+br,+s) + P (¬d,+ur,+br,+s)

and the conditional probabilities P (+d | +ur,+br,+s) and P (¬d | +ur,+br,+s).

These are the probabilities of the two branches outgoing from the node D in

Figure 7. The utility for this node is computed as indicated in line 18 of the

algorithm.

The utility for the node Th in that figure is computed at line 25; in this case,

e = (+ur,+br,+s). Its probability is computed at line 22. Please note that

in this line we have written P (e) instead of Pd(e) because the variables in E

are not descendants of the decision D (in this example, the decision is Th) and

therefore the probability Pd(e) does not depend on d—see also Equation A.4 in

the appendix. For the same reason we have written P (e) instead of PD(e) in

line 30. When building explicitly the DT, as in Figure 7, it is not necessary to

write these probabilities on the branches outgoing from decision nodes.
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This way we can compute the utility of every node in the DT and the proba-

bility of each branch outgoing from a chance node. The utility of the root node

is the expected utility of the DAN.

We insist, however, that Algorithm 1 does not explicitly build the DT. As

shown in this example, when all the decision nodes have been removed and all

the chance nodes have been instantiated (line 7), the DAN has no links and

consequently its size is very small. During the evaluation there are at most

n DANs in the working memory, where n is the number of variables in the

original DAN. Therefore, the space complexity of this algorithm is negligible.

The downside is that the time complexity grows exponentially with the number

of variables in the network.

It is worth noting that a decision that can reveal a variable should be made

earlier than the decisions that cannot—the mathematical justification is the

same as for unconstrained IDs [18]. For example, in the diabetes DAN, the

decision Therapy does not reveal any variable. Therefore, even if the links

Dec: Blood Test →Therapy and Dec: Urine Test→Therapy were not present,

the node OD in Figure 7 (and the corresponding node in Fig. 6) should have

only two outgoing branches, bt and ut, because Therapy should always be made

after Dec: Blood Test and Dec: Urine Test. It is then possible to fine-tune the

algorithm as follows: in lines 19 and 27, if the variables revealed by Di are a

proper subset of those revealed by Dj , then Di must not be the first decision.

Finally, we point out that this algorithm may generate different DTs for one

DAN depending on the variable X selected in line 11, but these trees only differ

in the order of the chance variables placed between two consecutive decisions.

Therefore, they are equivalent in the sense that there is a one-to-one correspon-

dence between the decision nodes (for each pair of equivalent trees), and the

optimal policies and the maximum expected utility are the same for all these

trees.

4.2. Evaluation of symmetric DANs

We prove now that, as we anticipated in Section 3.1, symmetric DANs can

be evaluated with the same algorithms as IDs. First we prove that the expansion

of a symmetric DAN—like that of an ID—produces a symmetric DT.

Definition 6. A DT is symmetric if
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1. every path from the root to a leaf has the same variables and in the same

order, and

2. every node representing the variable X has an outgoing branch for each

value x.

We mentioned above that Algorithm 1 does not need to explicitly build the DT,

but it can do so. The following proposition refers to this possibility.

Proposition 7. When a DAN is symmetric, Algorithm 1 generates a symmetric
DT (provided that when there are several choices for X at line 11 it always
chooses the same node).

Proof. Order symmetry and information symmetry in the DAN guarantee that
every path from the root to a leaf in the DT contains the same variables and
in the same order. Domain symmetry guarantees that every node X in the tree
has an outgoing branch for each value x.

Proposition 8. When a DAN is symmetric, the utility returned by Algorithm 1
is

U =
∑
c0

max
d1

∑
c1

. . .max
dn

∑
cn

P (c | d) · U(c,d) (2)

=
∑
c0

max
d1

∑
c1

. . .max
dn

∑
cn

∏
X∈C

P (x | pa(X)) ·
∑
j

uj(pa(Uj)) , (3)

where the Ci sets are those defined in Section 3.1. (Obviously, in this equation
the configurations in the potentials must be coherent with those in the sum and
max operators; for example, pa(X) = (c0, d1, . . . , dn, cn)

↓Pa(X).)

Proof. As mentioned above, this algorithm conditions first on the variables in
C0, then on D1, etc. For each scenario (c0, d1, . . . , dn, cn), the probability and
the utility are the same as those computed by Algorithm 1 (lines 8 and 9). Each
return from a recursive call is equivalent to the elimination of a variable, from
right to left, in Equation 2 (cf. lines 16, 18, and 25).

This proposition is relevant because the right-hand side of Equation 2 is

the same as for influence diagrams and, consequently, symmetric DANs can be

evaluated with the same algorithms as IDs. In particular, variable elimination

with division of potentials [16, 25] is similar to Algorithm 1 but much more

efficient (in time, not in space) because when eliminating a variable it only

operates with the potentials that depend on that variable, while Algorithm 1

needs to compute the full joint probability of each scenario.

In the appendix we introduce a modified version of the variable elimination

algorithm that we will use to evaluate general DANs by decomposing them into

symmetric DANs.
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4.3. Decomposition into symmetric DANs

The algorithm in Section 4.1 evaluates a DAN by recursively decomposing it

into a set of DANs that have no decisions and no links. One way of optimizing

this algorithm is to stop the decomposition when the DAN to be evaluated is

symmetric. For example, during the evaluation of the diabetes DAN, recursive

conditioning might have stopped at the node UR depicted in Figure 7 (properly

speaking, at the corresponding node in Figure 6) because the DAN at that

node was symmetric. Another way of benefiting from symmetry in this example

is to observe that the node S does not induce asymmetry; in fact, the two

sub-trees at the branches +s and ¬s in Figure 6 contain the same DANs, and

the corresponding sub-trees in Figure 7 only differ in their numerical values.

Therefore, it is not necessary to have two instantiations of the original DAN,

one for +s and another one for ¬s; it suffices that the algorithm returns the

probability and the utility of the DANs conditioned on S.

These considerations lead to Algorithm 2, which has several similarities with

the evaluation of SIDs [17]. The method instantiate() is the same as in Al-

gorithm 1—see Sec. 4.1. The first difference with respect to Algorithm 1 is

that when the DAN is symmetric (line 5) recursion stops and the DAN is eval-

uated with the algorithm conditionalSymmetricEvaluation described in the

appendix. Another difference is that the algorithm only instantiates the chance

variables that induce asymmetry (lines 3 and 8 to 11). For this reason Algo-

rithm 2 takes one extra argument, V, containing some observable variables that

have not been instantiated because they do not induce any asymmetry. Finally,

Algorithm 1 returns P (e) and U(e), which are real numbers (scalars) because e

is a single configuration, while Algorithm 2 returns P (v, e) and U(v, e), which

are potentials that depend on V.

In the evaluation of the diabetes DAN, the algorithm is first invoked with this

network, V = ∅, and e = �. The observed variables are O ← {S}; as S does not

induce asymmetry, Os ← {S} and Oa ← ∅. The algorithm arrives at line 32

and makes DI ← {BT,UT}. Line 35 invokes evaluateDSD(DANBT ,{S},�),
where DANBT contains a link from BT to UT that prioritizes BT. Given that

D induces asymmetry, the DAN must be instantiated for +bt and ¬bt (line 21).

The decomposition continues until all the DANs to be evaluated are symmetric,
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Algorithm 2: Decomposition into symmetric DANs (DSD).
1 Function evaluateDSD(DAN, V, e):

Result: {P (v, e), U(v, e)}
2 O ← always-observed variables in DAN, except those in E ∪V;
3 Oa ← variables in O that induce asymmetry;
4 Os ← variables in O that do not induce asymmetry (i.e., Os = O \Oa);
5 if DAN is symmetric then
6 {P (v ◦ os, e), U(v ◦ os, e)} ←
7 conditionalSymmetricEvaluation (DAN, V ∪Os, e);
8 else if Oa 	= ∅ then
9 select X ∈ Oa such that X has no ancestor in Oa;

10 foreach x of X do
11 DANx ← instantiate (DAN, X, x);
12 {P (v ◦ os, e ◦ x), U(v ◦ os, e ◦ x)} ←
13 evaluateDSD(DANx, V ∪Os, e ◦ x);
14 end
15 P (v ◦ os, e) ←

∑
x
P (v ◦ os, e ◦ x);

16 P (x | v ◦ os, e) ← P (v ◦ os, e ◦ x)/P (v ◦ os, e);
17 U(v ◦ os, e) ←

∑
x
P (x | v ◦ os, e) U(v ◦ os, e ◦ x);

18 else if exactly one decision D can be made first then
19 if D induces asymmetry then
20 foreach d in D do
21 DANd ← instantiate (DAN, D, d);
22 {P (v ◦ os ◦ d, e), U(v ◦ os ◦ d, e)} ←
23 evaluateDSD(DANd, V ∪Os, e);
24 end
25 else
26 {Pd(v ◦ os ◦ d, e), Ud(v ◦ os ◦ d, e)} ←
27 evaluateDSD(DAN, V ∪Os ∪ {D}, e)
28 end
29 P (v ◦ os, e) ← P (v ◦ os ◦ d, e) for an arbitrary value d;
30 U(v ◦ os, e) ← max

d∈D
U(v ◦ os ◦ d, e);

31 else
32 DI ← decisions that can be made first ;
33 foreach D in DI do
34 DAND ← prioritize (DAN, D);
35 {PD(v ◦ os, e), UD(v ◦ os, e)} ← evaluateDSD(DAND, v ◦ os, e);
36 end
37 P (v ◦ os, e) ← PD(v ◦ os, e) for an arbitrary decision D;
38 U(v ◦ os, e) ← max

D∈DI

UD(v ◦ os, e);

39 end
40 P (v, e) ← ∑

os

P (v ◦ os, e));

41 P (os | v, e) ← P (v ◦ os, e)/P (v, e);
42 U(v, e) ← ∑

os

P (os | v, e) U(os, e);

43 return {P (v, e), U(v, e)}

25



OD

UT

. . .

+ut

. . .
+ut

ut

BT

UT

¬ut

+ut

¬bt

UT

¬ut

+ut

+bt

bt

D

Th

UB UU

QoL

S

BR UR

D

Th

UB UU

QoL

S

BR

D

Th

UB UU

QoL

S

UR

D

Th

UB UU

QoL

S

Figure 8: Decomposition of the diabetes DAN into symmetric DANs (Algorithm 2).

as shown in Figure 8, where each node represents a call to evaluateDSD. For

example, the upper-left DAN in that figure represents a call in which V =

{S,BR,UR} and e = �, which is evaluated with the method conditional-

SymmetricEvaluation (line 7).

This algorithm yields the same result as Algorithm 1 but is much faster

because it avoids many redundant computations.

5. Efficiency of the algorithms

In the case of symmetric DANs, the time complexity of Algorithm 1 grows

exponentially with the number of variables in the DAN, but its space complexity

is negligible. The worst-case time and space complexity of Algorithm 2, which

reduces to conditionalSymmetricEvaluation in the case of symmetric DANs,

also grows exponentially; but in practice the complexity is usually much lower,
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just as in the case of IDs—remember that conditionalSymmetricEvaluation

is a variant of variable elimination [16, 25].

In the case of asymmetric DANs, restrictions reduce the time complexity of

Algorithm 1 and the time and space complexity of Algorithm 2, whereas partial

orderings increase their complexity: when there are n decisions and no relation

of precedence among them, it is necessary to evaluate n! possible orderings

instead of only one. Stirling’s approximation, which says that n! ≈ √
2πn(n/e)n,

explains the rapid growth of the computation time for the n-test problem.

The next subsection describes some experiments aimed at measuring the

efficiency of these algorithms for different DANs.

5.1. Experiments

The main difficulty for evaluating these algorithms is the scarcity of DANs

(unlike the case of Bayesian networks and IDs, for which there are excellent

repositories). We have tested them on the five DANs we have built for several

toy problems proposed in the literature: the used car buyer problem [14], the

reactor problem [8], the dating problem [28], the king problem [18], and the

diabetes problem [10]. We have also tried them on the n-test problem for several

values of n, as well as on Mediastinet, a DAN for the mediastinal staging of non-

small cell lung cancer, which is an adaptation of an ID for the same problem

[26]. The main difference is that in this DAN there is not a total ordering

of the 5 possible tests; there remains, however, a partial ordering for medical

reasons. Another difference is that all the dummy states in the ID have been

removed when building the DAN, except for the result of a test that affects

the sensitivity and specificity of three subsequent tests. All these networks are

available at www.ProbModelXML.org/networks.

The algorithms were implemented in OpenMarkov and ran on a PC with an

Intel Core i7-2670QM CPU @ 2.20 GHz.

5.2. Results

Table 5.2 shows that the time necessary to evaluate small DANs—including

the five toy examples and the 2- and 3-test problems—is negligible. For net-

works that have 5 or more tests, including Mediastinet, the decomposition into

symmetric DANs (Algorithm 2, DSD) is significantly faster than the evaluation
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Table 2: Time complexity of DT (evaluation of an equivalent decision tree—Algorithm 1) and
DSD (decomposition into symmetric DANS—Algorithm 2), and the ratio between them.

DT (ms) DSD (ms) DT/DSD
Reactor [8] 84 158 0.53
Used car buyer[14] 141 173 0.82
Dating[28] 154 150 1.03
King [18] 8,547 523 16.34
Diabetes (2 tests) [10] 214 171 2.37
3 tests 595 398 1.25
4 tests 3,205 1,399 2.29
5 tests 22,425 6,033 3.72
6 tests 377,025 43,242 8.72
7 tests 8,577,422 529,329 16.20
Mediastinet [26] 35,623 2,596 13.72

of an equivalent decision tree (Algorithm 1, DT). In particular, the former eval-

uated the 7-test DAN in less than 9 minutes, while the latter needed 2 hours

and 23 minutes.

6. Conclusion

In this paper we have introduced DANs as a new formalism for decision

analysis. We have compared DANs with other types of probabilistic graphical

models, especially with IDs (the standard) and UIDs, SIDs and CEGs (the most

recent proposals). We showed that for each ID there is an equivalent DAN,

which can be evaluated with the same algorithms, but the converse is not true:

for some problems that can be easily represented with DANs it is unfeasible to

build an ID. For this reason DANs might favorably replace IDs as the standard

type of probabilistic graphical model for decision support and decision analysis.

DANs having only order asymmetry are equivalent to UIDs, but they can

also represent domain and information asymmetry. In principle the expressive

power of DANs is lower than that of decision trees, SIDs or CEGs; additionally,

IDs can be augmented with almost arbitrary constraints (restrictions) [13, 12],

while every restriction in a DAN is associated with a link, i.e., with only two

variables. However after examining 25 books that describe DTs, most of them

about medical decision making, and all the literature on asymmetric decision

problems, we have not found any problem that cannot be modeled with a DAN.

Except in the case of extremely small problems, which can be represented with
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DTs, building a DAN is never more complex than building a model of a different

type; on the contrary, it is usually easier or much easier.

Another limitation of DANs is the no-forgetting property (cf. Sec. 2.4), also

present in all the models analyzed in this paper, including DTs. In the rare

cases in which this property does not hold it would be more appropriate to use

limited-memory IDs (LIMIDs) [23].

OpenMarkov is an open-source software tool for editing DANs; several ex-

amples built with it are available at www.ProbModelXML.org/networks. It can

transform every DAN into an equivalent DT (with Algorithm 1) or evaluate it

much more efficiently (with Algorithm 2) and then show the optimal strategy in

the form of a strategy tree, just as in the case of IDs [24]. (In fact, we developed

the idea of strategy trees for DANs and then realized that it could also be very

useful for IDs.) In the near future OpenMarkov will support cost-effectiveness

analysis with DANs (based on [2]) and the same types of sensitivity analyses and

the same explanation facilities that are already available as for IDs [20, 22, 21]—

see OpenMarkov’s tutorial. We will also implement Markov DANs, in analogy

with Markov IDs [11].

An open line for future research is to develop approximate and stochastic

algorithms for DANs with continuous variables and for those that cannot be

evaluated with exact algorithms. A point of departure might be the algorithms

in [4, 6, 7].
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AppendixA. Conditional evaluation of symmetric DANs

In Section 4.2 we have explained how to compute the expected utility of a

symmetric DAN using the algorithm called variable elimination with division

of potentials [16, 25]. In this appendix we present a variant of this algorithm

that, given a DAN and some evidence x, returns the probability P (x) and the

conditional expected utility U(x), which we define here.

In a symmetric DAN, the joint probability of the chance variables condi-

tioned on the decisions is

P (c | d) =
∏
C∈C

P (c | pa(C)) . (A.1)

Let C be a subset of the always-observed variables in a symmetric DAN, X ⊆
C0, and x a configuration of X. We denote by C

\X
the other chance variables

(C
\X

= C \X) and by c
\X

a configuration of them. We then have

P (x | d) =
∑
c\X

P (c\X,x |d) . (A.2)

We may also define

P (x) =
∑
a

∏
C∈X∪A

P (c | pa(C)) , (A.3)

where A is the set of ancestors of X in the DAN. P (x) does not depend on

D because the always-observed variables are not descendants of any decision;

therefore, in this expression Pa(C) does not contain a decision for any C. It is

possible to prove, by eliminating first the barren nodes in Equation A.2, that

∀d, P (x) = P (x | d) . (A.4)

Lemma 9. In the above context,

P (x) = 0 ⇔ ∀c\X, ∀d, P (c\X,x | d) = 0 . (A.5)

Proof. If follows from Equations A.2 and A.4.

By analogy with Equation 2, we introduce the following definition:
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Definition 10. The conditional expected utility of a symmetric DAN given x
is

U(x) =

{
0 if P (x) = 0∑

c
\X
0

maxd1

∑
c1

. . .maxdn

∑
cn

P (c\X | x,d) · U(c,d) otherwise .
(A.6)

When P (x) 	= 0,

U(x) =
1

P (x)

∑
c
\X
0

max
d1

∑
c1

. . .max
dn

∑
cn

P (x, c\X | d) · U(c,d) (A.7)

=
1

P (x)

∑
c
\X
0

max
d1

∑
c1

. . .max
dn

∑
cn

∏
C∈C

P (c | pa(C)) ·
∑
j

uj(pa(Uj)) . (A.8)

Proposition 11. For every symmetric DAN and every subset X of its always-
observed variables, the expected utility is

U =
∑
x

P (x) · U(x) . (A.9)

Proof. By comparison with Equation 2, it suffices to prove that for every x

P (x) · U(x) =
∑
c
\X
0

max
d1

∑
c1

. . .max
dn

∑
cn

∏
C∈C

P (x, c\X | d) · U(c,d) .

When P (x) = 0, this equality follows from Lemma 9. When P (x) > 0, it follows
from Equation A.7.

A special case that deserves a comment is when X = ∅. This set has only

one configuration, x = �, whose probability is P (�) = 1. In this case c
\X
0 = c0

and, because of Equation A.6, U(x) = U(�) = U .

The marginalizations and maximizations in Equation A.8 can be performed

with the variable elimination algorithm [16, 25], and P (x) can be computed

on a Bayesian network having only the variables in X and its ancestors (cf.

Eq. A.3). A more efficient approach, which computes P (x) and U(x) at the same

time, is to apply variable elimination with division of potentials [16, 25]. This

algorithm maintains two separate lists, one of probability potentials and another

one of utility potentials. After eliminating the variables in C
\X
0 ∪ C1 ∪ . . . ∪

Cn ∪ {D1, . . . , Dn}—i.e., all except those in X—the product of the remaining

probability potentials is P (x). If this probability is zero, we make U(x) = 0,

in accordance with Definition 10; otherwise, U(x) is the sum of the remaining

utility potentials.
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Finally, we can split X into two sets, V and E, and then compute P (v, e)

and U(v, e) for a particular configuration of E (the evidence e) and all the con-

figurations of V (the conditioning variables). This way the variable elimination

algorithm can implement the method conditionalSymmetricEvaluation used

in Algorithm 2, line 5, by projecting each probability and utility potential in

accordance with e and then eliminating all the variables except those in V.
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