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ABSTRACT Low vision is a visual impairment that cannot be improved by standard vision aids such as
glasses. Therefore, to improve their visual skills, people affected by low vision usually follow a visual
training program planned and supervised by an expert in this field. Visual training is especially suitable
for children because of their plasticity for learning. However, due to a lack of specialists, training sessions
are usually less frequent than optimal. Thus, home-based visual training has emerged as a solution to
this problem because it can be undertaken by experts and families together. We implemented the Visual
Stimulation on the Internet (EVIN) application, which provides comprehensive visual training tasks through
games. It also provides reports on children’s performance in these visual training tasks. Although EVIN
has shown its usefulness in previous works, two main solutions are needed: (i) a support setup to help
experts and families work together to address, among other things, the large variety of exercises and different
configurations that can be prescribed and (ii) a rigorous experimental design to compare children trained with
EVIN and those trained with traditional materials. To face these challenges, we present an adaptive version
of EVIN that provides a new design tool that allows experts to plan visual training tasks through templates
in advance. In addition, we developed new metrics and reports to achieve a more accurate assessment of
a child’s improvement. Among other results, it allowed us to develop an reliable experiment to evaluate
significant improvements in children trained with EVIN.

INDEX TERMS Educational technology, computer applications, adaptive systems, low vision.

I. INTRODUCTION
Visual development is a process that begins even before birth.
In fact, it is a continuum in which visual skills do not evolve
by themselves, but they are built through experience and prac-
tice [1]. Usually, this experience and practice naturally occur.
However, vision does not mature naturally in a significant
number of children, which is the case for children with low
vision1.
Low vision is a condition caused by an eye or brain dis-

ease in which the visual acuity is below a certain threshold
in the best eye and cannot be corrected or improved with
normal lenses [2]. To characterize binocular visual impair-
ment, visual acuity should be measured with both eyes open

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Angiulli .
1Although, of course, the cause cannot be only low vision; many (normal

vision) children have perceptive difficulties for different reasons.

and while wearing any corrective lenses. More concretely,
the International Classification of Diseases 11 (2018)2 clas-
sifies low vision as binocular visual acuity equal to or worse
than 6/18 (0.3) but greater than 3/60 (0.05). In addition to
aging or congenital causes, low vision can be provoked by
injuries (both to the eyes and to the brain) or eye diseases
(glaucoma, retinopathy ormacular degeneration). As a way to
mitigate and improve this condition, visual training emerged.

To a certain extent, vision is a function that can be learned,
and its quality can be improved with training [3]. Therefore,
children with low vision can develop visual functions through
a systematic program. If these children do not participate in a
visual training program, they will reinforce worse conditions
than they normally would due to their visual or perceptual
impairment. The evidence that extending visual experiences

2World Health Organization: https://www.who.int/news-room/fact-
sheets/detail/blindness-and-visual-impairment
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increases neuronal growth in the visual cortex [4] strongly
suggests that the best approach is to provide opportunities
for visual development when possible, supplying experiences
that require visual behaviors that gradually become more
complex [1]. The objective of visual training is to optimize
vision through eye exercises to retrain them to function as a
unit and to coordinate the processing of visual information
in the brain. These exercises favor visual learning or visual
perceptual development [3].

Some studies have questioned the effectiveness of visual
stimulation programs. López-Justicia and Martos [5] tested
the efficacy of two of the most common programs [3], [6],
concluding that they are not effective in children with mod-
erate visual impairment. However, the low visual capacity
in children with severe congenital visual impairment means
that they do not autonomously reach maximal visual devel-
opment, as they cannot access many of the visual stimuli
of their surrounding environment. Thus, they require visual
stimulation programs focused on implementing visual tasks
to develop their vision.

Among the main visual tasks in a visual training program,
the most common are visual attention, fixation, gaze changes,
exploration of objects in order, spacial perception and visual
memory.

This training is supervised by an expert in low vision. The
expert works with each child individually, assesses his or her
progress and plans the visual exercises for each session.

Specifically, a visual training program is composed of the
following phases:

• Initial evaluation: in this phase, an expert in low vision
evaluates the visual skills of each child and defines a
work plan for the visual training sessions.

• Intervention: in this phase, the child performs the visual
exercises included in the work plan. This phase involves
one or several training sessions. These sessions are
expected to be supervised by the expert.

• Progress assessment: once the intervention phase is
complete, the expert again evaluates the visual skills of
the child.

During the intervention phase, the expert should go to the
child’s school or home to perform the planned visual training
sessions. Nevertheless, because of the very low number of
experts per child, these sessions usually become much less
frequent than optimal. To overcome this limitation, training
must be accomplished at home and/or at school with the
help of family members and/or teachers3 Hence, we call this
whole process home-based visual training [7], [8]. To this
end, the expert must assess each child’s needs and plan the
required visual training sessions.

The organization of home-based visual training exercises
should be supported by applications that allow the expert to
be unencumbered by details and focus mainly on assessing

3Because family members at home and teachers at school play a similar
role of people who are very close to the child, for simplicity, we use the term
family to include both family members and teachers.

the child’s visual skills and planning the intervention phase.
In addition, both visual exercises and plans should be intuitive
for families and teachers so that they can help their child
correctly. Finally, these applications should provide feedback
mechanisms to keep the expert informed about the child’s
performance during the visual training sessions.

It is difficult to find a currently available application for
visual training that provides typical visual exercises for young
children and, at the same time, helps in the whole visual train-
ing process. This is why we implemented the Visual Stim-
ulation on the Internet (EVIN) application, which provides
games for exercising primary visual tasks [9]. In EVIN, each
game can be configured by the expert for different visual tasks
with different levels of difficulty. However, this high variety
of configurations makes EVIN difficult to use by inexperi-
enced people. To ease the collaboration with families and/or
teachers, we describe an adaptive version of EVIN with a
new design tool that allows the expert to plan visual tasks in
advance through a template; it allows the expert to organize an
adaptive sequence of visual exercises. In addition, we devel-
oped new metrics and reports for a more accurate assessment
of improvement. Among other results, it allowed us to present
an accurate experiment on the significant improvement of
children trained with EVIN.

The rest of the paper is organized as follows. First,
we describe in depth the role of each participant in the
home-based visual training program.Next, we describe visual
training applications that are currently available. We also
describe EVIN [9], an application for visual training over the
Internet. In section III, we describe how we have improved
EVIN to be adaptive to better support home-based visual
training. In section IV, we describe the metrics defined and
the experiments performed. Finally, in section V, we describe
our conclusions and proposal for future work.

II. FAMILIES’ INVOLVEMENT IN HOME-BASED
VISUAL TRAINING
A. RELATED WORK
Families and experts play different roles in traditional
home-based visual training. Figure 1 shows the traditional
framework of the common visual training process, and the
different roles assumed by each of the participants involved
are marked. Therefore, the expert’s main role is to evaluate
a child’s visual skills and plan visual training sessions. The
family’s role is to supervise the child to help him or her per-
form these exercises. Once the sessions have ended, families
report back to the expert.

Traditionally, materials used for visual training fit this
framework. They have mainly been physical worksheets and
computer programs. For example, computer-generated visual
stimuli for visual training [10], such as stimuli created with
the MATLAB toolbox called Psychtoolbox [11], are avail-
able. Other examples of well-known video games used in
visual training are Ratchet & Clank and Lumies [12].

Specialists in low vision also create their own materi-
als using popular software tools such as word processors
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FIGURE 1. Traditional framework of a home-based visual training process.
1© The expert plans each session by organizing the exercises that should
be carried out at home. 2© The family helps the child during the visual
training sessions. 3© The family reports back to the supervising expert.

or presentation programs [9]. Additionally, more advanced
tools to support visual training are being developed. For
example, companies such as Vision Coach4 have developed
blackboards on which people can perform visual exercises
(such as games in which they hit bulbs as they flash on and
off). These blackboards are intended not only for visually
impaired people but also to promote, for example, visual
training as a way to sports vision. Although these resources
are extremely useful for visual training, (i) these blackboards
are not particularly suitable for visually impaired children,
and (ii) they must be used at an optometrist’s office.

This traditional framework poses three main challenges to
families. First, families should be aware of the exercises and
the instructions in order to help them. In addition, they must
adequately sequence the exercises in each session, taking into
account how the child is performing. Moreover, the assess-
ment compliance and the guarantee of focused attention are
also the responsibility of the supervising adult. Finally, fami-
lies and experts should share information about the results of
the visual training sessions so that they can work together.

To face these challenges, the role of technology is essential.
It is crucial to provide families with intuitive applications
that automatically monitor children’s performance and report
back to the expert. In addition, the expert should be able to
design the visual training sessions through the application.
After designing the plan, the application presents an adap-
tive sequence of exercises, taking into account each child’s
needs.

Figure 2 shows a new framework for adaptive home-based
visual training. First, the expert in low vision plans, with
the child in mind, each visual training session through an

4https://www.visioncoachtrainer.com/

FIGURE 2. New framework of an adaptive, home-based visual training
system with familial support. 1© First, the expert in low vision plans the
exercises for the visual training sessions. 2© Next, the exercise planner
runtime system (in the visual training system) presents the exercises to
the child and adapts them to his or her needs. 3© Next, the child performs
the exercises by interacting with the system with the help of his or her
family 4©, and 5© the visual training system registers the child’s
interactions. Once the visual training session has finished, 6© the system
generates reports about the child’s performance and allows the expert to
access them.

exercise planner design tool. Thus, the plan will take into
account the expert’s criteria and the child’s needs. Once the
plan is designed, the runtime application executes the planned
sequence of visual exercises. As a result, the child performs
exercises at home under the supervision of their family.
Upon completion, the expert obtains children’s performance
reports. Finally, from these reports, the expert can update the
plan or create another one, but this time, they can take into
account all the previous interactions.

There is an increasing number of applications that are
developed to be used for home-based visual training,
although they do not completely fit into this new framework.
For instance, Matrix Game5 consists of three applications
intended to stimulate visual perception, spatial orientation,
attention, concentration, classification and categorization
skills. InfinityMind6 developed EyeQ, a game-based visual
training software with the goal of improving the reading skills
of children and adults. These applications are intended for
home-based visual training but are not suitable for young
visually impaired children.

There are also visual training programs for the treatment of
specific pathologies, for example, a video game for the treat-
ment of amblyopia [8], although amblyopia is not considered
low vision. This video game is a reward-based game in which
the contrast of the visual rewards is changed adaptively.
In this way, users must practice with their amblyopic eye.
Data about users’ performance in the game are stored in a
database. This video game can improve the visual acuity of
the amblyopic eye [8], but it is not particularly suitable for
young children with severe visual impairments.

5https://www.myfirstapp.com/app-category/matrix-games/
6http://infinitemind.io/individual/
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Recently, RightEye7 launched EyeQ Trainer [13]. With
EyeQ Trainer, an optometrist can diagnose visual problems
and prescribe a personalized set of exercises from a full
library of visual exercises to be completed at home. Once
these exercises are completed, the optometrist can re-evaluate
the visual functions. However, EyeQ Trainer is not partic-
ularly suitable for visually impaired children, and to our
knowledge, it does not provide progress reports.

To address challenges with home-based visual training,
it is desirable to develop a computer-based visual training
application that (i) provides exercises for training basic visual
tasks suitable for visually impaired children; (ii) monitors the
child’s interactions with the system; (iii) adapts the sequence
of exercises as a function of the child’s needs and perfor-
mance; and (iv) provides suitable metrics for assessing the
results.

Currently, none of the applications mentioned above meet
these requirements. Therefore, we implemented EVIN [9].
In the next subsection, we present an overview of EVIN.

B. EVIN OVERVIEW
EVIN is an application created for children who have dif-
ficulties with either receiving or processing environmental
visual stimuli. It provides games to support the stimulation
of visual perceptual development. Children are trained with
stimulating games with differing visual tasks. Each game can
be adapted to the child’s needs by setting up different features
of the stimuli. These parameters introduce different levels of
difficulty. Examples of such parameters include the size of
the stimuli, the number and presentation time of the stimuli,
the possibility of rotation, and the speed of presentation.

One of the objectives of EVIN is to enhance the play-
ful nature of the material. Consequently, figures, drawings,
photographs and different feedback mechanisms have been
selected that are especially attractive for children between
3 and 7 years old, as this is the target age group for the games
included in the platform.

The main difference between EVIN and the other applica-
tions is that our application has been designed specifically for
children with low vision who have difficulty accessing most
games due to their poor visual input. For example, in EVIN,
we use dark backgrounds on which light-colored characters
of different sizes are presented. The reason why this option is
adopted is that it allows better contrast proportions [14] than
its opposite, produces less visual fatigue, reduces the glare
associated with many visual pathologies, and facilitates the
discrimination of colors presented in shapes, drawings and
photographs.

The five games currently offered in EVIN are exploration,
facial expression, spatial perception, puzzles and prominent
features. The main page that shows all the games available in
EVIN is shown in Figure 3.
In addition, some quantitative reports are presented with

the results of each session, and information about the

7https://righteye.com/

FIGURE 3. EVIN homepage: the list of the visual training games.

FIGURE 4. A screenshot with an example of a report for a particular child.

children’s session is stored in a database. An example of
a report is shown in Figure 4 and includes the following
information:
• Number of correct answers (a correct answer is when the
child clicks on the correct stimulus);

• Number of incorrect answers;
• Percentage of correct answers;
• Amount of time to complete the exercises.
Nevertheless, the large variety of games and configura-

tions in EVIN prevents its optimal use in home-based visual
training. Recall from section II-A that in traditional training,
the expert aims to choose the most suitable configuration
for each child and session, for instance, the number and
types of stimuli. However, because of the limitation of this
approach, the expert usually entrusts the family with this
step (see Figure 1). In this case, families are likely to make
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FIGURE 5. The exploration game in EVIN. Left: the game has been
configured with 24 stimuli and the task of searching for a shape. Right:
the game has been configured with 96 stimuli and the task of searching
for a number. The test stimulus is in the upper-left corner of the screen
and is framed in a square.

wrong decisions about the best configuration for their child.
To address this problem, we present an adaptive version of
EVIN that provides adaptive templates to support families.

As a starting point, adaptive templates in EVIN have
been designed and implemented for only the exploration
game. Among other reasons, this game was chosen because
it allows the expert to train ordered scanning skills. Fer-
rell [1] considers the ability to perform repeated scans and
fixations to observe a series of visual stimuli one of the seven
basic visual skills. This ability is essential for efficiently
performing many tasks, including reading. Research has
shown that the search/exploration process becomes more
efficient with experience because subjects require less time
to locate the target [15]–[17]. It has been shown that practice
improves feature search performance in subjects with severe
low vision [18].

In EVIN, exploration (see Figure 5) is a game of discrimi-
nating and matching in which the child must find and click on
all the elements that are identical to the test stimulus (among
many nonidentical elements) to make them disappear [9].
The test stimulus is framed in the upper-left corner of the
screen. Specifically, the objective of the exploration game is
to perform a visual search of duplicates of the test stimulus
using horizontal, vertical or horizontal+vertical saccades.
Finally, to understand how we defined the metrics used in
the experiment, it is important to note that in the exploration
game, each element on the screen is an opportunity for each
child to succeed or fail when he or she clicks on it. The higher
the number of successes the child achieves, the better the skill.
We detail this point in section IV.

In the next section, we describe the adaptive templates
implemented in the exploration game.

III. ADAPTIVE TEMPLATES IN EVIN
A. THE NEED FOR ADAPTATION
The exploration game in EVINmust be configured according
to the following variables:
• Number of stimuli: the number of elements to show
on the screen from which children must choose. This
parameter can take a value of 4, 6, 9, 12, 24, 48, or 96.

• Direction: the order in which the child must search for
the elements (and find them). This parameter can take a
value of none, horizontal or vertical.

• Type of task: the expert must choose what kinds of
figures the child must search for on the screen.

For example, two different configurations of the explo-
ration game are shown in Figure 5. Due to the large number
of combinations available, there are more than one hundred
ways of setting up this game. Finally, the choice of a particular
configuration should also depend on the child’s progress
during the training session. As a result, families are not able
to decide which configuration is best for each moment.

Therefore, to support home-based visual training in EVIN,
experts in low vision can define templates for the game. Each
template sets up the exercises and configurations that each
child must perform during one or several sessions. However,
the templates and their exercises should be sequenced taking
into account the children’s needs, among them, their behavior
during previous training sessions. Additionally, this sequence
must incorporate the supervising expert’s criteria. For this
reason, EVIN is currently designed as a knowledge-based
system that adapts bymeans of several rules [19]. This knowl-
edge base is composed of three elements: (i) the template
model, (ii) the child’s characteristics or the child’s model
and (iii) the adaptation rules. The last element, the adaptation
rules, is directly encoded in EVIN. Particularly, they are
encoded in the exercise planner runtime engine of EVIN (see
Figure 2). This engine is fed with the first two elements:
the template model and the child’s model. In the following
section, we describe these two elements of the knowledge
base in detail.

B. KNOWLEDGE BASE IN EVIN
1) TEMPLATE MODEL
Each template is defined by the following attributes:
• Level of difficulty: three difficulty levels are defined
(easy, medium and advanced).

• Number of exercises: the number of exercises included
in the template.

• Number of repetitions: the number of times each exer-
cise is repeated in the template.

Each exercise in a template is defined by the following
attributes:
• Template: the template to which the exercise belongs.
• Number of stimuli (between 4 and 96).
• Direction (horizontal, vertical or free).
• Type of task (color, geometric shape, shape and color,
or drawing or number).

• Type of reinforcement: the type of feedback that the
child receives when he or she succeeds or fails. It can
take the following values: visual, audio or both.

• Level of difficulty: three difficulty levels are defined:
easy, medium and advanced. Although this attribute
is defined by the expert in low vision, it is usually
derived from the information included in the attributes
(i.e., the number of stimuli, the direction and the type
of task).
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2) THE CHILD’S MODEL
Information on each child is also stored in the knowledge
base similarly to other programs [20]. Thus, for each child,
the following information is stored:

• Personal information: age, pathology, visual acuity, and
visual field.

• Expert’s criteria: this section contains a multitude of
information, including the minimum number of sessions
the child must perform in a given configuration so that
the results are considered significant, and the number of
sessions to be carried out in the same configuration of a
game.

• Recommended initial configuration for the games: for
example, the initial difficulty level and the initial number
of stimuli. These parameters must be configured from
the experts’ experience with the child.

• Interaction data: the number of sessions, the number of
attempts, the number ofmistakes, the time taken to finish
each game, etc.

With the information stored in these models, EVIN
adapts the sequence of exercises. To reduce the complex-
ity, we implemented this sequence in EVIN by hiding the
links to those exercises that the child is not yet ready to
perform [21].

C. VISUAL TRAINING WITH ADAPTIVE TEMPLATES
Currently, EVIN uses three kinds of templates in the explo-
ration game: pretest, posttest and intervention. In particular,
EVIN contains three pretest templates, three posttest tem-
plates, and thirty intervention templates. All these templates
have been designed by an expert in low vision.

The pretest templates are intended to evaluate the visual
abilities of each child in the visual exploration task before the
visual training sessions. Each pretest template has a different
difficulty level and has four exercises with different settings,
for example, the number of stimuli varies for each exercise.

The posttest templates are intended to evaluate the visual
abilities of each child in the exploration game after the visual
training. In other words, these templates are for measuring
the child’s progress.

The intervention templates form the complete set of exer-
cises that a child must perform during different training
sessions. Currently, thirty intervention templates have been
defined (i.e., ten for each difficulty level). Each template is
one exercise under several configurations that are repeated
4 or 5 times.

It is important to keep in mind that these templates are
customizable so that experts in low vision can modify them
(see Figure 7). This adaptability is necessary because each
child is different, and each case requires a different inter-
vention. Moreover, experts can define new templates (see
Figures 6 and 7).

In addition, all these templates also allow the expert to
monitor and update the whole home-based visual training
process comprehensively. Therefore, the expert can plan

FIGURE 6. Exploration game design templates.

every phase in EVIN; the initial evaluation is performed with
the pretest templates, the intervention is performed with the
intervention templates and, finally, the child’s progress is
measured with the posttest templates.

In the next section, we show that the templates defined in
this section have a prominent place in our experiment. This
experiment was necessary to verify EVIN as an intervention
tool for children with low vision. In addition, we detail the
metrics we introduced for the accurate assessment of a child’s
progress.

IV. EVALUATION
In a previous work [9], we presented some early experiences
with EVIN for visual training. In short, tutors considered
EVIN a very useful, user-friendly and intuitive web platform
for visual training [9].

In this paper, we take advantage of adaptive templates
(see section III-C) as well. The pretest and posttest templates
were particularly helpful. With these tools, we carried out an
experiment to evaluate the importance of an intervention with
EVIN in children with low vision. In the following sections,
we describe the experimental parameters: (i) the population
and sample, (ii) the metrics to accurately assess the improve-
ment in children with low vision, (iii) the descriptive statistics
used to describe the results and (iv) the methods used to
evaluate the statistical significance of the results and make
conclusions.

A. POPULATION AND SAMPLE
In Europe, the proportion of people with low vision is
approximately 1.45% of the total population8, and obviously,
the percentage of children with low vision is even smaller.
In other words, we are treating a very small number of indi-
viduals as the total population.

From this small population, we selected our sample from
several schools in Spain where children with low vision are
enrolled9. In total, twenty-three children with low vision
participated in the experience. Of these twenty-three chil-
dren, half were randomly selected to undergo an EVIN inter-
vention, and the remaining children followed the standard
method.

For several reasons other than those related to EVIN, only
a fraction of the children finished all the tasks. Ultimately,

8https://uvadoc.uva.es/bitstream/10324/14293/1/TFM-M259.pdf
9We collaborated and signed two official ethics agreements with the

Spanish Organization for the Blind (ONCE) and the Sensory Integration
Center (CISEN) Foundation.
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FIGURE 7. Screenshot of the authoring tool for the templates.

we obtained an EVIN intervention group of seven children
and a control group of five children. The children in the
control group followed a visual training program designed by
the expert in low vision using traditional materials.

To check the balance of the groups, we show some baseline
characteristics of each group.

• EVIN group:

– Pathologies: aniridia, cerebral visual impairment
(2 children), coloboma of the iris, retinoblastoma,
and nystagmus (2 children);

– Mean visual acuity: 0.16;
– Mean duration of intervention: 2.9 months.

• Control group:

– Pathologies: cerebral visual impairment, congenital
cataracts, microphthalmia, nystagmus, and retinitis
pigmentosa;

– Mean visual acuity: 0.12;
– Mean duration of intervention: 4.3 months.

In summary, 12 children completed all the pretests and
posttests. In total, 7 children, the EVIN group, under-
went an intervention with EVIN between the pretest and
posttest phases. Each pretest and posttest consists of 4 exer-
cises with 3 levels of difficulty each (see section III-B).
In this paper, we consider the mean of the results of
all these 4 × 3 exercises for each child. The results
were evaluated by the metrics that will be detailed in
section IV-B.
Finally, four teachers/tutors specializing in low vision

helped conduct this experiment, and an additional expert in
low vision oversaw the entire process.

Next, to study the effects of the EVIN intervention on
children with low vision, in the next subsection, we describe
how we evaluated the results.

B. METRICS
To measure the level of improvement in children with low
vision, we used two main metrics based on those from
earlier EVIN reports (see section II-B): the speed (sp) and
the success rate (sr). sp measures the number of successes
achieved during the time spent playing the game. Formally,
we define sp as

sp =
successes
time

(1)

sr measures the number of successes achieved out of the total
number of actions the child made in the exploration game.
Formally, we define sr as

sr =
successes

successes+ failures
(2)

In addition, because the main task of this experiment was the
exploration game, we included a third to exploit the sparse
data available, as we show below.

Although each metric measures different aspects of each
child’s interactions, we order the metrics from general to
particular. For instance, although sp can be applied to almost
any task (because we can always measure the amount of
time and the number of successes), sr can only be applied
to exercises that have both successes and failures. Therefore,
sp is a more widely applicable metric than sr . Next, we focus
on a more specific metric that can be applied only for the
exploration game.

The exploration task can be considered a game of choosing
balls without replacement from an urn with two kinds of
balls: success balls and failure balls. If a child with low vision
chooses the balls without any criteria, he or she would choose
them with a probability that follows a hypergeometric dis-
tribution [22], [23] that assigns equal probability to success
and failure balls. However, we regard this task as following a
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TABLE 1. Mean of the differences between the posttest and pretest for
each metric and for each group. The EVIN group always has a larger
difference than the control group. This finding is clear in the right-most
column, which contains µY .diff (EVIN)− µY .diff (control ) for each metric.
The statistical significance of these differences is discussed.

TABLE 2. Standard deviations for the differences between the posttest
and the pretest or each metric and for each group. With such sparse data,
the standard deviations (or error ranges) are so large that we cannot see
significant differences at a glance.

biased hypergeometric distribution because the children will
pick up success balls at higher probability than the failure
ones. Therefore, this task follows a Wallenius noncentral
hypergeometric distribution [23], [24]. In this probability
distribution, the higher the probability assigned to the success
balls is, the more certain we are about the abilities of the child
with low vision. Importantly, we can infer, from the child’s
successes and failures in the exploration game, the different
probabilities of each kind of ball [25], [26]. Therefore, we use
the probability of choosing a success ball from the urn as a
metric for assessing the child’s ability. We call this metric p.

Additionally, let us define Y .pretest , Y .posttest and Y .diff ,
where Y can be sp, sr or p. The pretest , posttest suffixes are
clear. The diff suffix stands for the difference between the
posttest and the pretest: Y .diff = Y .posttest − Y .pretest .
We mainly focus on p.diff , sr .diff and sp.diff , which,
we establish as the dependent variable Y of the following
experiment. The independent variable X of the experiment
is the group: EVIN or control.

C. DATA DESCRIPTION
This section describes the experimental data. Descriptive
statistics on the three metrics introduced in the previous
section are shown in Table 1 and Table 2. Recall from
section IV-A that we first calculate the mean across the 4× 3
exercises per child for each metric. Then, we calculate the
mean for all the children in each group, that is, the sample
µY .diff shown in Table 1. A quick look at this table shows
that µY .diff for the EVIN group is always better than that for
the control group. Unfortunately, if we also look at Table 2,
we see that, with so few data, the standard deviations are so
large for all metrics that we cannot see significant differences
at a glance.

Next, we graphically display the behavior of the three
metrics. Box plots of the metrics are shown in Figure 8. In this
figure, the medians follow a similar pattern as the means
(with the exception of sp.diff , as we show). Similar to the
standard deviations, the interquartile ranges are so large that
we cannot see significant differences at a glance. However,

FIGURE 8. Metric boxplots. Note how the median of sp.diff is larger in the
control group than in the EVIN group. This phenomenon does not occur in
the next two more specific metrics sr .diff and p.diff . Nevertheless,
the large interquartile range masks any significance, if such exists.

the more specific the metric is, the more precise the results.
This pattern repeats in the paper, as we show.

Therefore, to evaluate the statistical significance of these
data, we have to apply stronger statistical methods, which are
described in the next section.

D. HYPOTHESIS TESTS
In the last subsection, the posttests may have shown an
improvement in the EVIN group relative to the pretests.
In this section, we show this conclusion more rigor-
ously in two ways: (i) we check whether the mean of
posttests is significantly higher than the mean of pretests
in each group, and (ii) we check whether the magni-
tude of each child’s improvement (also called Y .diff , see
section IV-B or below) depends on the group in an appre-
ciable way. To this end, we follow statistical analysis tech-
niques [22], [27], [28]. Therefore, let us first rigorously define
objectives (i) and (ii).

In section IV-B, we established the metrics as the depen-
dent variable Y and the group of children (control or
EVIN) as the independent variable X . Thus, let us spec-
ify Y .diff (X ) as the dependent variable that can be either
sp.diff (X ), sr .diff (X ) or p.diff (X ). Additionally, we specify
X as the group, so X = control, or X = EVIN . With all
these elements, we explore whether X significantly influ-
ences each metric Y .diff . We define objectives (i) and (ii)
as below:
(i) check whether µY .diff (X ) is significantly greater than 0,

which would imply that µY .posttest (X ) > µY .pretest (X ).
Thus, we define the null hypothesis H0(X ) as
µY .diff (X ) = 0 and the alternative hypothesis H1(X ) as
µY .diff (X ) > 0, where X = {control,EVIN }.

(ii) check whether µY .diff (EVIN ) − µY .diff (control) is sig-
nificantly greater than 0, which would imply that
µY .diff (EVIN ) > µY .diff (control).
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TABLE 3. The classic one-tailed t-test for H0(control ) (at the 90%
confidence level) for objective (i) and for each metric. The results show
the p-values and lower limits of the confidence intervals (the upper limits
are∞ because of the one-tailed test). The (*) indicates the metrics that
reject H0. � Additional comments: for the metrics sr .diff and p.diff ,
the large p-values (> 0.1) and lower confidence limits that are less than
0 do not allow us to reject H0(control ). However, for sp.diff , H0(control )
must be rejected, and thus, H1(control ) is accepted. Therefore,
we conclude that µsp.posttest (control ) > µsp.pretest (control ). Finally,
the third column shows Cohen’s d, indicating a small effect size (∼0.2 or
less) for sr .diff and p.diff and a large effect size (> 0.8) for sp.diff .

TABLE 4. The classic one-tailed t-test for H0(EVIN) (at the 90%
confidence level) for objective (i) and for each metric. The results show
the p-values and lower limits of the confidence intervals (the upper limits
are∞ because of the one-tailed test). The (*) indicates the metrics that
reject H0. � Additional comments: for the metric sr .diff , the large
p-value (> 0.1) and the lower confidence limit that is less than 0 do not
allow us to reject H0(EVIN). However, for sp.diff and p.diff , H0(EVIN)
must be rejected, and thus, H1(EVIN) is accepted. Recall that p.diff
H0(control ) could not be rejected. We can see, in light of this metric,
an indication about the difference between behaviors based on the
group. Finally, the third column shows Cohen’s d, indicating a medium
effect size (∼0.5) for sr .diff and p.diff and a large effect size
(> 0.8) for sp.diff .

Thus, we define the null hypothesis H0 as
µY .diff (EVIN )−µY .diff (control) = 0 and the alternative
hypothesis H1 as µY .diff (EVIN )− µY .diff (control) > 0

Because we have a greater than alternative hypothesis,
we must use one-tailed tests [28]. In addition, because of the
scarcity of the data, we set the confidence level to 90%.

1) TRADITIONAL APPROACH
For objective (i), we use a one-tailed t-test for the control and
EVIN groups. The results are shown and discussed in Table 3
and Table 4, respectively. The only metric for which we can
rejectH0 is p.diff , which is not surprising because this metric
is the most specific of the three metrics. However, even this
metric may be insufficient when we work with this classic
methodology.

Next, we focus on objective (ii). The results are shown
and discussed in Table 5. In this case, H0 cannot be rejected
regardless of the metric. In fact, trying to approximate this
probability distribution to Student’s t distribution is opti-
mistic. Therefore, we try another approach.

2) RESAMPLING APPROACH
In this section, we do not make any assumptions about
the probability distributions as we did with the parametric
approach. Because of the small samples sizes, we focus on
resampling-based methods [29]. These methods are not only
useful for departures from parametric assumptions and small

TABLE 5. The classic one-tailed t-test (at the 90% confidence level) for
objective (ii) and for each metric. The results show the p-value and the
lower limit of the confidence interval (the upper limit is∞ because of the
one-tailed test) of the t-test. Here, no metric can reject H0. � Additional
comments: given the large p-values (> 0.1) and lower confidence limits
that are always less than 0, the H0 hypothesis cannot be rejected for any
metric. Finally, the third column shows Cohen’s d, indicating a large effect
size (> 0.8) for p.diff , a medium effect size (∼0.5) for sr .diff and a
medium-to-low effect size (∼0.4) for sp.diff , which shows the much
better discrimination capacity of metric p than the other metrics.

FIGURE 9. Histogram of the three metrics (rows) and the two
groups (columns) of the 10,000 children resampled with replacement,
also called bootstrap sampling. In this case, sample µY .diff (X ) is
represented by a red vertical line for each metric Y (row) and group X
(column). Values of µY .diff (X ) are also shown in the first and second
columns of Table 1. In addition, the graph shows the corresponding
p-values that are also represented by the (pink or cyan) shadowed
regions. The 90% confidence level is represented by a blue vertical line.
Therefore, if the red line is above the blue line, we can reject H0.
Otherwise, we fail to reject H0.

sample sizes, but they are also more robust than their para-
metric counterparts [30].

We start by testing objective (i). We created 6 samples
of 10,000 children with replacement from the original sample
for each metric and group. The results are shown and dis-
cussed in Figure 9. In this figure, note that metrics p.diff and
sr .diff allow us to reject H0(EVIN ), while its counterpart,
H0(control), cannot be rejected. On the one hand, we can
infer at the 90% confidence level that µsr .posttest (EVIN ) >
µsr .pretest (EVIN ) and µp.posttest (EVIN ) > µp.pretest (EVIN ).
On the other hand, we cannot reject thatµsr .posttest (control) =
µsr .pretest (control) and µp.posttest (control) = µp.pretest
(control). Finally, it can be inferred that sp always increases
and is not dependent on the group.

Next, we focus on objective (ii). We resampled approx-
imately 10,000 permutations of the labels ‘‘control’’ and
‘‘EVIN’’ from the original data. Then, we calculated the dif-
ference in the means of the two groups for each permutation.
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FIGURE 10. Histogram of the three metrics after permutation resampling
based on the labels ‘‘control’’ and ‘‘EVIN’’. The difference in the means of
the sample, µY .diff (EVIN)− µY .diff (control ), is shown as a red vertical
line for each metric. The values of µY .diff (EVIN)− µY .diff (control ) are
also shown in the third column of Table 1. In addition, the graph shows
the corresponding p-value, represented by the pink shaded region. The
90% confidence level is shown as a blue vertical line. If the red line is
above the blue line, we can reject H0. Otherwise, we fail to reject H0.

The histograms of the distributions and more results are
shown and discussed in Figure 10. In this figure, only metric
p.diff allows us to reject H0 at a 90% confidence level.
In summary, we can say µp.diff (EVIN ) > µp.diff (control)
with 90% confidence, and we cannot reject H0 for the rest
of the metrics.

V. CONCLUSION AND FUTURE WORK
In this work, we presented the common, traditional frame-
work for training children with low vision and a new
framework to improve it. We also presented an application
–EVIN– that aims to implement the ideas that emanate from
this new framework. In this new framework, an expert can
plan the organization of the exercises in advance, prescribe
the exercises to be performed by the children and finally
assess the whole process from reports on the child’s perfor-
mance. This framework closes the loop that allows the expert
to oversee the entire process of home-based visual training.
To achieve this aim, we used adaptive templates.

We have shown how adaptive templates can support home-
based visual training with EVIN. They are adaptive because
the games can be sequenced according to the child’s charac-
teristics. This adaptation is performed through a knowledge
base composed mainly of two models: the template model
and the children’s model.

Finally, we carried out a preliminary experiment to verify
the significance of EVIN as an intervention tool for children
with low vision. Because the population of children with low
vision is very small, we had to exploit all the data we had.
We (i) developed new metrics to measure very accurately
the children’s performance and (ii) applied parametric and
nonparametric statistical methods to capture the most subtle

differences in a precise way. This procedure was necessary to
measure the visual efficiency improvement for each group.

In fact, the main goal of visual stimulation is to improve the
visual efficiency – the process of using vision effectively [31]
– but not the visual acuity or visual field in the case of children
with low vision. There are no updated and scaled tests to eval-
uate visual efficiency. The most commonly used tests are the
Diagnostic Assessment Procedure [32] and the Control List
of the Look and Think Method [33]. However, we consider
these tests outdated, as they have not been updated in the last
forty years, and currently, many stimuli and visual tasks are
not suitable for children. Therefore, our contribution is also
a way to measure visual efficiency with new metrics that are
possible due to real exercises on a real platform.

From the experiment, there were no significant improve-
ments in the control group, but there were significant
improvements in the EVIN group with 90% confidence.
Despite the small size of the sample, the results obtained are
promising and encourage us to follow this path.

Among other pending issues, we are currently working on a
way to allow experts to develop templates for the other games.
Having inmind that this new frameworkworks well for visual
games as important as the exploration game, we have many
expectations about the other games. In addition, the ability of
the experts to modify the templates has not been tested in the
current stage of the project. At this time, the experts partici-
pating in our experiments were able to use this functionality
without problems. However, we plan to evaluate this feature
in future works.
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