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Abstract 

In this work we propose a general top-down feedback scheme between adjacent 
description levels to interpret video sequences. This scheme distinguishes two types of 
feedback: repair-oriented feedback and focus-oriented feedback. With the first it is 
possible to improve the system’s performance and produce more reliable and consistent 
information, and with the second it is possible to adjust the computational load to match 
the aims. Finally, the general feedback scheme is used in different examples for a visual 
surveillance application which improved the final result of each description level by 
using the information in the higher adjacent level. 

Key words: Visual Surveillance Systems, Video Sequence Interpretation, 
High Level Vision, Predictive Diagnosis Task, Feedback between 
Description Levels. 

1. Introduction: surveillance based on High Level Vision

High Level Vision (HLV) is defined as scene interpretation rather than just mere
object recognition and tracking [7]. This implies the need to recognise situations, 
activities and interactions among the different agents participating in a scene. It is a 
question of linking the physical signals that reach a camera’s sensors with the 
interpretation of their meaning. When a human observer interprets the meaning of a 
scene, obviously, he uses his knowledge of the world, the behaviour of the things that he 
knows, the laws of physics and the set of intentions governing the agents’ activities. All 
this additional knowledge that does not appear explicitly in the video camera signals 
enables the observer to model the scene and use this model to predict, at least partially, 
what may happen. In other words, to cast hypotheses about the temporal evolution of 
the events and activities detected. It therefore seems logical that we also have to use an 
explicit and declarative representation of this additional knowledge not included in the 
signals to design an HLV system. In particular, the dynamic models of objects of 
interest and different behaviour patterns constitute the events and activities of interest 
for the task into which the process for understanding images is going to be integrated. 
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To represent this knowledge, the set of techniques available in Artificial Intelligence 
(AI) are used: logic, rules, graphs, finite automata, frames, agents, Bayesian networks, 
neural networks, task structural models, task breakdown methods and a set of static and 
dynamic roles with which it is possible to complete the generic model with specific 
knowledge of each application domain [6][9][13][21][23]. 

 
The visual surveillance task affects an increasing number of scenarios, services and 

clients. It implies observing areas considered at risk or vulnerable, where thefts, 
vandalism, bomb attacks, or any other dangerous event may occur. The spectrum of 
situations and needs is very wide: from the mere detection of movement in a controlled 
space to an integral control system of the scene from multisensory signals, which would 
include: (1) diagnosis of the situation displayed and control on actuators searching for 
new data and findings, and (2) dynamic planning (according to new diagnoses resulting 
from partial actions) of the actions consistent with the resources available [11]. When an 
HLV system is integrated into a surveillance task, information of different 
representation levels travel bottom up (from the pixels to the activities) and top down 
(from the activities to the blobs). This top-down feedback is used to improve the lower-
level tasks, such as segmentation, the identification of objects of interest and the 
tracking of their trajectories. In this paper, we will focus on this feedback. 

 
The following works refer to using representation spaces in bottom-up organisation, 

equivalent to passing from the retinal photoreceptors to retinotopic projection in the 
primary cortex. Thus, Neumann [16][18] described a system for generating a natural 
language description of the activities observed in a traffic video sequence, using frames 
of examples based on locomotion verbs organised hierarchically for the representation. 
Buxton and Gong [2] address the need to deal with uncertainty and use contextual 
information to improve the detection and tracking of vehicles and people. Bobick [1] 
characterises movement in terms of consistency of the entities and relations detected in 
a time sequence. In contrast, the concept of activity is understood as “a statistical 
sequence of movements”, i.e., a composition of stereotyped movements, whose time 
sequence is characterised by statistical properties (e.g. hand gesture). Finally, he defines 
action as “semantic primitives relating to the context of the motion”. In [15], a 
hierarchical ontology is structured by Nagel (events, verbs, episodes, stories, etc.). On 
the other hand, Chleq and Thonnat [4] only distinguish between primitive and 
composed events. All these works use context and the injection of complementary 
knowledge to link the physical signals with the underlying actions. Generally, the 
activities or more abstract events are thus considered to be a composition from other 
more primitive lower-level events. This composition is done with spatial-temporal 
relations, like in [19], or with common-sense knowledge on hierarchies and concept 
relations, like in [13]. 

 
However, in neuroscience the complementary effect of bottom-up organisation of 

perception is well known, which includes all the processes of selective visual attention 
and specification of the characteristics defining the events and objects of interest. 
Computationally, this implies considering different feedback loops from the highest to 
the lowest semantic levels to improve the specific tasks of these levels. There are 
specific references to using top-down feedback in high-level vision in the works of 
Howarth&Buxton [8], Rincón et al [20] and Rota&Thonnat [21]. 
In this paper, we illustrate the positive effect of feedback for three specific examples. 
(1) Use of object-level knowledge to improve segmentation in the blob level, thereby 
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reducing the noise underlying the initial segmentation (bottom-up). This makes it 
possible to improve the detection of areas as a result of the emergence of new object 
pixels that before feedback would not have been considered as belonging to this object. 
(2) Feedback from the activity level to the object level to improve the detection of 
events which, previously, in bottom-up organisation, had not been considered as such 
from the object level information. In particular, we shall see how feedback resolves 
inconsistency problems. (3) Feedback from the activity level to the object level with the 
aim of focusing, centring computational resources on the search for new findings 
necessary to fully understand the activities.  

 
In this paper we do not aim to present an evaluated prototype in a wide repertoire of 

scenarios but to illustrate specifically, in our prototype, the effectiveness of top-down 
feedback in a multilevel representation space. Thus, we shall stress the basic method for 
explicitly resolving prototype tasks selected in the level, and the effectiveness of 
feedback for improving this task. While in earlier works we introduced our approach to 
bottom-up organisation [3][10][12], in this work we explore the usefulness of top-down 
feedback that uses the specific knowledge in each level to improve the tasks in the 
lower levels.  

 
The rest of the work is structured as follows. Section 2 explains the structure of the 

description levels proposed for interpreting video sequences and how this structure is 
integrated into the surveillance task. Also a general top-down feedback scheme between 
adjacent description levels is proposed. Section 3 shows examples characteristic of the 
different types of description-level feedback, where the system’s effectiveness is 
substantially improved. The interface for monitoring and tracking of the scene is shown, 
and each of the four levels is described in its own language. Section 4 summarises the 
conclusions.  

2. Communication between Description Levels  

There is agreement in the area, within a varied and dispersed nomenclature, on 
facilitating the large semantic gap between the physical signal and the knowledge level 
by breaking it down into several intermediate description levels with an increasing 
degree of semantics [10][14][17]. This enables knowledge to be injected at the right 
level and environment information (physical, behavioural or social environment, 
knowledge of the task, etc.) to be projected on each of these intermediate levels. In 
particular, following the proposal of [14], in our works we distinguish between pixel, 
blob, object and activity levels (Fig. 1). Each of these levels is modular and 
independent, and the information handled comes from the ontology of the own level and 
from the adjacent levels. In the blob level, the entities are associated with the visible 
part of objects of interest, the blobs. In the object level the information associated with 
blobs for producing a description of the objects of interest on the scene is reorganised. 
The models of the objects of interest are described here, which contain: 1) the visual 
characterisation of the object and its spatial-temporal evolution; 2) the composition 
relations used to describe complex objects; and 3) the relations between objects for 
generating the geometric task-oriented description of the scene. The activity level 
constructs complex events (activities) using the set of predefined primitive events from 
the object level. These primitive events emerge from measurements on the morphology 
and trajectory of the objects identified by visual operators (identification and tracking). 
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Fig. 1 Description levels and processes in each level, from the physical level to cognitive interpretation of 
the scene. 

 
 
 
In addition to the emerging interlevel communication, which corresponds to a flow of 

bottom-up information from each level (i-1) to its immediately higher level (i), in this 
work we explore the complementary function of top-down organisation in the creation 
and updating process of a multilevel representation space. In other words, an 
information feedback scheme that descends from each level (i) to its immediately lower 
level (i-1), as shown in Fig. 2.  

 
The emergence process arises as a direct consequence of the breakdown of the task 

into different levels of abstraction and, therefore, the need to transmit the new 
information that is generated at each level to the immediately higher level. If the output 
information in each level were complete and error free, the information flow between 
levels would be solely and exclusively emergent. However, these two hypotheses are 
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not fulfilled in real application domains. In fact, the output in each level is subject to the 
presence of noise, which may falsify the processing in the next level, or the information 
provided by a level may be incomplete, which would prevent processing in the next 
level because of insufficient data. Consequently, it is necessary to introduce two new 
interlevel communication mechanisms with which it is possible to tackle the effects of 
the two aforementioned problems. Naturally, we are speaking of two feedback 
processes: repair-oriented feedback and focus-oriented feedback. The first will 
eliminate errors and the second will refine the already existing information. 

 
 
 

 
 

Fig. 2. Generic scheme showing the emergent and feedback information flow between adjacent levels. 
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To model these two feedback mechanisms, we have included two diagnosis tasks. In 

the first (Diagnose-1), from the output information from level (i-1), which constitutes 
the input (Finding) to level (i), a diagnosis is done to evaluate the consistency of the 
new information with the knowledge of the level. In case of error (Error Diagnosis), it 
is necessary to go back to level (i-1) to select the appropriate therapy (Configure 
Therapy) and repair the error detected. In the second diagnosis (Diagnose-2), the 
completeness of the results obtained from the level processing is assessed and, if the 
information is incomplete (Requested-Findings), it is necessary to go back to the 
previous level to complete this information and select new operators (Therapy). 
 
3. Examples of surveillance system feedback 
 

This section describes examples of feedback between the different adjacent levels 
used in our surveillance system and how this feedback solves different problems and 
substantially improves the system’s performance. 

3.1. Repair-oriented Feedback between the Blob and Object Levels 

The feedback that we propose in this section, between the blob and object levels, aims 
to improve the segmentation task output belonging to the blob level with information 
provided by the object level.  Fig. 3 shows the different stages in this process and the 
information flow. This figure is obtained by instantiating the generic scheme shown in 
Fig. 2. Thus, the segmentation process begins by taking a frame of the video sequence 
as input. The result of this initial segmentation will be a first segmentation proposal 
consisting of obtaining a foreground map of the set of blobs associated with moving 
objects on the scene. The quality of this set of objects is assessed using the diagnosis 
task (Diagnose-1), which takes a normality model as a reference, distinguishing 
between normal situations (Normality Diagnosis) and anomalies (Error Diagnosis). A 
normality diagnosis means that there are no anomalies in the blob level segmentation 
and, consequently, all the object level processing can be done with the segmentation 
result as input. In contrast, if an anomalous situation is detected, a therapy is proposed 
to act on the segmentation process. In the new context proposed by the therapy, the 
segmentation stage is executed again, thereby producing an output where the errors 
detected are repaired. The feedback cycle is accordingly completed. Each of the stages 
of this process is described in detail below. 

 
Initial segmentation 

In any segmentation method of moving objects based on background subtraction, the 
main demonstrations of noise are associated with foreground noise (shadows, 
reflections, ghosts, fluctuation) and background noise (moving object pixels that are not 
detected). In our surveillance system, we use the truncated cone method (TCM) [3] as 
the segmentation method. Given that with this method it is possible to eliminate a large 
part of the foreground noise, here we only focus on describing how to eliminate the 
background noise from the scene using the repair-oriented feedback mechanism.  
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Fig. 3. Repair-oriented feedback structure for segmentation improvement. 

 
 

The basic idea of the TCM is to transform the three-dimensional RGB colour space 
into a new two-dimensional space called angle-module space. The new resulting space 
allows us to define a segmentation rule, represented by Eq. (1), whose application 
produces a foreground map denoted by Ft(x,y). In this equation, t corresponds to the 
instant of current time; Θt(x,y) is the angle matrix, in which each element represents the 
angle forming the image RGB vector, It,  and the background model RGB vector, Bt; 
Δt

mod(x,y) is the matrix formed by the difference in the modules It(x,y) and Bt(x,y), in 
absolute value and, finally, the constants ω0 and h0 are threshold values.  
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Geometrically, the underlying idea in Eq. (1) is the following: for each point of the 

image, (x,y), a revolution cone can be built in the RGB space (see Fig. 4.a) by using the 
straight line containing Bt as an axis, and another straight line as a generatrix which, 
passing through the origin, forms an angle ω0 with the other straight line. If we now 
trace three planes perpendicular to vector Bt, one containing the point (r,g,b)B, and the 
other two, situated above and below this, at a distance h0, they will delimit, along with 
the cone surface, two regions of interest: a truncated cone located on the upper part of 
the intermediate plane and another on the lower part. It is quite immediate that if we 
choose sufficiently small ω0 and h0, it is possible to establish as a movement condition 
that every point of the image, (r,g,b)I, which is outside the truncated cone region, will 
belong to a real moving object. Most of the remaining points inside this region 
correspond to fluctuation noise. 
 

The use of the angle-module space facilitates the characterisation of foreground noise 
and, consequently, its elimination [3]. However, the truncated cone region mentioned 
earlier not only contains points belonging to fluctuation noise, but also includes all the 
moving object pixels whose intensity is very similar to their corresponding background 
model pixels and they are not detected (background noise). Therefore, the problem 
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posed is how to fine-tune the value of the parameters, ω0 and h0, in order to separate the 
two types of pixels mentioned. The strategy proposed here is to include new parameters 
that make it possible to delimit new subregions in the original truncated cone volume. 
For example, the inclusion of the new thresholds h01, h02 and ω1, as defined in Fig. 4.b, 
make it possible to delimit, along with h0 and ω0, new subregions. The right choice of 
threshold values will be sufficient to separate the pixels belonging to background noise 
from the ones belonging to fluctuation noise. 
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Fig. 4. Truncated cones associated with a point of the background model in (a) the RGB space and (b) as 
a projection on the Z1-Z2 plane (the Z2 axis is constructed to coincide with the background RGB vector). 

Bt and It represent the background RGB vector and the image RGB vector, respectively. 
 
As will be seen in the next two subsections, the idea is to use the diagnosis task to 

determine those regions of the scene which have a high probability of containing 
background noise. Immediately after, the therapy configuration task will fine-tune the 
threshold values. 
 
Diagnosis 

As shown in Fig. 3, the set of blobs (findings) resulting from the segmentation 
process are used as input in the object level and taking a normality model of the kind of 
moving objects of interest as a reference, the diagnosis task assesses whether the result 
obtained in the segmentation is consistent with this model.  

 
In this work, we have restricted the type of objects of interest to humans. 

Consequently, an approximate model of the human is required to use it as a reference 
model. The human model used here [5] is based on a block model. Basically, it consists 
of dividing a human’s blob vertically into six regions of the same height (Fig. 5). Each 
of these regions is defined by the rectangle around it called block. Conceptually, the 
blocks in this division correspond to areas related to the physical position of specific 
parts of the body (head, hands, feet, trunk) when a human performs habitual actions. 
The main advantage of this division is that it enables us to study the human in parts. 
Thus, with this model it is possible to detect distinct anomalies in the segmentation of a 
human silhouette, like the disappearance of some significant part that may cause 
fragmentation of the silhouette into several unconnected blobs, unjustified changes in 
the segmentation from a frame to the next or the presence/absence of blobs not related 
to the human (foreground/background noise). 
 



 
 

Fig. 5. A human's blob in frontal and lateral position divided into blocks. 
 
 
Using this human model as a reference, the diagnosis task will search to see whether 

any block exists associated with this model with a significant number of pixels missing 
(error diagnosis). If it does, this region of the image will be proposed as the region of 
interest (ROI) where the search for the missing pixels must be done. Note that, although 
the process was described just using one block of the human model with background 
noise, really there is no limit whatsoever to the number of boxes that can be re-fed to the 
lower level.  
 
Therapy configuration 

To fine-tune the thresholds used by the segmentation method in the ROI determined 
in the diagnosis stage, each of the angle-module space dimensions will be analysed 
independently. For each dimension, the input ROI histogram will be compared with a 
background model histogram. Thus, an increased number of pixels in some regions of 
the first histogram will correspond to pixels associated with moving object blobs. 

 
We are going to focus on analysing the angle dimension, because the analysis for the 

module is similar. In the first place, it is defined a mask  (Eq. B
ROIiM (2)) that allows us 

to select those pixels in the input ROI, ROIi, that have initially been classified as 
background.  

 
}0),(F |  ),{( t =∈= yxROIyxM i

B
ROIi  (2) 

 
We shall use this mask to select the elements, , from the angle matrix, Θt(x,y), that 

will form part of the analysis (see Eq. 

θ
MiV

(3)). 
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B
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The normalised histogram of  with regard to angle, , is calculated according 

to Eq. 

θ
MiV θ

MiNH
(4), where hist(list,range,N) represents the histogram function, which groups the 

list of values, list, in N bins of the same size into which the space of possible values 
(range) is divided, and the function card(x) returns the cardinal of set x. In our example, 
range = [0,w0], where w0 is the value obtained from Eq. (1) and N = 100.  
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Furthermore, to calculate the background model histogram an extended ROI is taken, 

ROIe, resulting from expanding the ROIi a certain offset, δ, in height and width. From 
ROIe and following the same steps described in Eqs. (2), (3) and (4), we obtain the 
mask, , the reference elements, , and the normalised histogram, . Figure 6 
shows an example of normalised histograms obtained for ROIi and ROIe for the 
parameter angle. 
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The next step is to analyse both histograms in order to classify the ROIi pixels in 
background and foreground pixels. If we assume that the effect of foreground pixels is 
negligible in , for each bin j, Eq. θ

MeNH

j
Fp

(5) defines the relation of background and 
foreground pixels in this bin with the normalised histograms corresponding to ROIi and 
ROIe, where  are the pixels in bin j belonging to the object, j

Bp  the pixels that are 
still background and j

BFp e pixels belonging to the background according to the 
background distribution obtained from ROIe with  but that are in the area 
occupied by the foreground object. 
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Those pixels belonging to the object will increase the normalised histogram in 

specific bins, therefore, if the bins j where  were selected, a 
segmentation would be obtained that would contain the object pixels, but also pixels 
corresponding to background in the selected bins. To reduce this undesired effect, the 
following approximation is used. The bins j are ordered in decreasing order according to 

)()( jNHjNH MeMi
θθ >
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the ratio between  and  and the first B bins are selected, until the 
constraint expressed by Eq. 

)( jNH Mi
θ )( jNHMe

θ

(6) ceases to be fulfilled. This constraint establishes a 
relationship between the foreground and background pixels included in the new 
segmentation. A K value close to 1 will ensure that all the object pixels are detected, but 
it will also segment much background. Currently, the K value is pre-selected with a 
commitment value in the range [1.5, 3]. 

 

 

(6) 

 11

K
B

jNH
jNHB

j Me

Mi

>
∑
=1

  
)(
)(

θ

θ

 
Finally, to reduce the computational cost, only those bins are selected that form part 

of groups of more than three consecutive bins, thereby obtaining n groups of bins. For 
each group of bins, the ends define a range [wa,wb] of the parameter angle with which a 
partial segmentation, ,is obtained acting on the parameter angle according to Eq. ω

iF (7), 
where i = 1,...,n. 
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The same analysis is done for the parameter module. In this instance, the ranges will 

be defined in accordance with the end bins [ha,hb] and the partial segmentation will 
obey Eq. (8), where j = 1,...,m. 
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 The final result of the segmentation will be achieved by joining the initial 

segmentation and all the partial results obtained from applying Eqs. (7) and (8) to the 
selected ranges of each parameter, as indicated in Eq. (9), where (x,y)  represent the 
coordinates of any point of the frame and (x’,y’) within the ROIi.  
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Figure 7 shows the result of applying the repair-oriented feedback to one of the scene 

frames where a human appears with background noise. Note the extreme similarity 
between human pixels to be restored and their corresponding background pixels in Fig. 
7.a. Taking this frame as input, an initial segmentation is done that produces the set of 
blobs depicted in Fig. 7.b. An analysis at object level of the blobs obtained reveals that 
there are several boxes associated with the human model with no pixels, which makes it 
possible to propose an ROI to focus upon. The normalised histograms of ROIi and ROIe 
of the parameters angle and module (Fig. 7.c-d) are analysed and the set of restored 
pixels associated with each parameter is obtained (Fig. 7.e-f). The joining of these 
pixels to the blobs already existing in the initial segmentation produces the final result 
shown in Fig. 7.g. As can be seen in Fig. 7.f, sometimes it is not possible to restore the 



background noise from just analysing one parameter. That is why the result from 
analysing both parameters is accumulated. 
 

 

(a)

(b)

(c) (e)

(d) (f)

(g)

Fig. 7. Example of repair-oriented feedback loop of Fig. 2: (a) Input frame; (b) Foreground map 
corresponding to the initial segmentation with ROIi (obtained in diagnose-1) and ROIe.; (c) and (d) 

normalised histograms corresponding to parameters w and h, respectively, indicating the ranges obtained 
for K=1.7 (the triangles mark the beginning and end of the selected ranges); (e) and (f) pixels restored 

after segmenting with the new parameter configuration; (g) result of the final segmentation after feedback 
(joining of the initial segmentation and those obtained in (e) and (f). 

 
 

Note that when we make those parts of the human that have disappeared (background 
noise) emerge, not only are we restoring the silhouette of the moving object, but we are 
also explicitly relating all those blobs belonging to the same object and which initially 
were not joined. This segmentation improvement mechanism could be used with any 
object level process which proposes an ROI hypothesis where it is assumed that an 
erroneous segmentation has been done, for example, after analysing a blob implying the 
presence of a human or when it is not possible to recognise the type of object associated 
with this blob. 

3.2. Repair-oriented feedback between the activity and object levels 

The feedback that we propose in this section is to repair the output produced by the 
task for detecting events, belonging to the object level. Fig. 8 shows the different tasks 
involved in this process, as well as the flow of information obtained from instantiating 
the generic scheme proposed in Fig. 2. In this instance, the task Detect Events identifies 
the primitive events that are going to be used as input to the activity level. The existence 
of inconsistencies between the events detected is assessed with the task Diagnose-1 that 
distinguishes between normality diagnosis and error diagnosis. Normality diagnosis 
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indicates that no inconsistencies have been found between events; therefore, all the 
activity level processing can be done from these events. Inconsistencies are defined as 
event incompatibility patterns. If the diagnosis identifies some inconsistency, a therapy 
is proposed to act on those operators that determined the events participating in the 
inconsistency pattern, either in the sense of reconfiguring the input parameters or 
applying a new operator. Thus, in a second phase, the operator with the new parameter 
configuration or a different operator is executed. The feedback cycle is accordingly 
completed.  

 
To exemplify this type of feedback, we are going to use the scenario that we have 

been working with [12].  It is an indoor space that is a pass-through area for humans. 
Humans can move freely, come in and go out of the observation area, sit down, carry a 
briefcase, leave it, pick it up, etc. An alarm will go off when someone leaves a briefcase 
(a package) in the area under surveillance and tries to abandon a larger site (airport, 
hospital, etc.). If someone picks up the briefcase, the alarm will stop.  
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Fig. 8. Repair-oriented feedback structure for event correction. 
 
 
 
Event detection 

For the scenario described above, the primitive events that emerge at the activity level 
from the object level are shown in Table 1. These events are obtained using a set of 
operators that handle information from the object level. Movement information obtained 
in the tracking task is used to determine the events Enters, Goes-Out, Stops, Begins-To-
Walk, Appears, Disappears, Is-Near-To, Is-Far-From, At, Is-Going-To, Is-Going-Back 
and Goes-Out. Other events, such as Crouches-Down, Gets-Up, Detected-Man-Object 
and Not-Detected-Man-Object are obtained with operators that use the human block 
model described in section 3.1. Some of these events are obtained by default 
(monitoring process) and others upon request from the activity level. 
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Events (from object level)  Type Description 
Enters (h, (x, t)) monitoring The human h appears in the scene at space-

time position (x, t). 
Goes-Out (h, (x, t)) monitoring The human h disappears from the scene at 

space-time position (x, t). 
Stops (h, (x, t)) monitoring The human h stops at space-time position 

(x, t). 
Begins-To-Walk (h, (x, t)) monitoring The human h begins to walk at space-time 

position (x, t). 
Crouches-Down (h, (x, t)) monitoring The human h crouches down at space-time 

position (x, t). 
Gets-Up (h, (x, t)) monitoring The human h gets up at space-time position 

(x, t). 
Detected-Man-Object (h, o, (x, t)) monitoring Detected that the human h is holding the 

object o at space-time position (x, t). 
At (h, x, t) monitoring The human h is located at space-time 

position (x, t). 
Not-Detected-Man-Object (h, (x, t)) monitoring Detected that the human h is not holding 

any object at space-time position (x, t). 
Appears (vo, (x, t)) monitoring The visual object vo (object or human) 

appears at space-time position (x, t). 
Disappears (vo, (x, t)) monitoring The visual object vo (object or human) 

disappears at space-time position (x, t). 
Is-Near-To (h, d, t) upon 

request 
The human h is close to door d at time t. 

Is-Far-From (h, d, t) upon 
request 

The human h is far from the door d at time 
t. 

Is-Going-To (h, d, t) upon 
request 

The human h is going to door d at time t. 

Is-Going-Back (h, d, t) upon 
request 

The human h is going back from the door d 
at time t. 

Goes-Out (h, d, t) upon 
request 

The human h goes out through the door d at 
time t. 

 
Table 1. Simple events detected at the object level which are transmitted to the activity level. 

 
 
By way of example, the operator Operator_Detected-Man-Object determines the 

events Detected-Man-Object and Not-Detected-Man-Object from the block model. This 
operator analyzes human morphology in specific blocks to calculate whether the human 
is carrying an object or not. In particular, it focuses its study on the block with greater 
probability of containing the object and compares the dimensions of the regions 
contained in this block with others for other parts of the body. We have considered two 
possible positions of the object for the human: situated partially in block B5 (see Figure 
5), where the human is carrying a suitcase or bag, and situated partially in block B2, 
where the human is carrying a rucksack. In the first instance, block B5 is compared with 
blocks B2 and B3 (which corresponds to the human trunk), thereby making it possible 
to determine its width approximately. By comparing the width of the trunk with the 
widest region found in B5 we can determine whether the human is carrying the suitcase 



or not. In Fig. 9 the difference can be seen in the region in block B5 of a human not 
carrying a suitcase (Fig. 9.a) with when he carries it (Fig. 9.b). To summarise, the input 
parameters to the operator, in this instance, will be (B5, B2, B3). In the second instance, 
block B2 is compared with blocks B3 and B4 where most of the human trunk is found. 
Now, the input parameters to the operator will be (B2, B3, B4). In accordance with the 
scenario posed, initially, in the monitoring process, we will assume that the object 
carried has a higher probability of being in block B5. 
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Fig. 9. Examples of a block model for a human without a suitcase (a) and a human with suitcase (b). Note 
the difference in width in the regions in B5 compared with the width of the trunk in B2 and B3. 

 
 
Diagnosis 

The set of primitive events plays the role of findings in the activity level and will be 
the input to the diagnosis task. The aim is to assess whether the set of events detected is 
consistent with the knowledge of the activity level. 

 
Let us look at a specific example. At a given moment the primitive event 

Appears(o1,(x1,t1)) reaches the activity level from the object level, i.e., at instant t1 the 
inanimate object o1 has appeared on the scene in position x1. The task Diagnose-1 must 
check whether any human h is near to it at instant t1 and whether this human, at earlier 
instants, carried an object, in other words, the event Detected-Man-Object(h, o, 
(x,(k,…,t-1))) was active, k being the instant when the human appeared on the scene. 
The inconsistency could appear either because there are no humans near the object at 
the same instant or because although they exist, none of them carried an object at 
previous instants. In the first instance, it could be thought that it is an error of the event  
Appears(o1,(x1,t1)), i.e., this object does not exist in the image, or, in the second 
instance, it is a detection error of the event Detected-Man-Object(h, o, (xh,(k,…,t-1))). 
Anyway, feedback to correct the error is necessary. 

 
 



 Therapy configuration 
The aim of this task is to correct the event that produced the inconsistency. 

Depending on the event to be corrected the therapy will differ. In the example, a first 
option diagnoses that the erroneous event is Detected-man-object(h, o, (xh,(k,…,t-1))). If 
from this assumption, feedback is unable to correct the error, a second option diagnoses 
that the erroneous event is Appears(o1,(x1,t1)).  
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Fig. 10. Example of repair-oriented feedback for the event Detected-man-object. 
 
 
 
When the erroneous event is taken to be Detected-Man-Object(h, o, (xh,(k,…,t-1))), 

the therapy consists of reconfiguring the input parameters to the operator 
Operator_Detected-Man-Object which become (B2, B3, B4). However, if the erroneous 
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event is taken to be Appears(o1,(x1,t1) we shall assume that it has been the effect of a 
reflection and this event will be deactivated.  

 
In Fig. 10 we show how this example is executed. At instant t1=46, an error occurs 

after diagnosis due to inconsistency between the events Appears(o1,(x1,46)) and Not-
Detected-Man-Object(h, o, (xh,(k,…45)). Feedback is done (broken line), configuring 
the input parameters to the operator Operator_Detected-Man-Object with the values 
(B2, B3, B4). Then, the operator generates the event Detected-Man-Object for each 
instant. Immediately after, Diagnose-1 analizes the new events. Now there are no 
inconsistencies, since it was detected that the human was carrying a rucksack, and the 
activity level processing continued. 

3.3 Focus-oriented feedback between the activity and object levels 

For surveillance of very simple activities a monitoring stage is sufficient whose basic 
process in the activity level is event composition. In this level, as we have mentioned, 
from object level simple events, complex events are composed that describe significant 
high-level abstraction activities within the scenario considered. This composition forms 
part of the level processing according to the terms in the scheme in Fig. 2. An example 
of this type of inference: the event Leaves(), which is activated when it is detected that a 
person has left an object, is based on the occurrence of its component events and their 
spatial-temporal constraints (Table 2). This event is composed by instantaneous events, 
like Appears, and state-events, with a specific duration occurring since ti to tj, like 
Carrying and Not-Carrying. In this table, xi is a location, hi is a human and oi is an 
object. The expression ti>>tj is used meaning that t2 is “sufficiently” greater than t1 so 
that indeed the event Not-Carrying is significant. The expression ti≥tj  is used meaning 
that ti is equal o “lightly” greater than t2. The symbol ≅ is also used to express the 
condition that the two locations are “sufficiently” near so that the composition that is 
based on this quasi-coincidence makes sense. 

 
 

Composed Event Components 
Leaves (h, o, (x, t)) events: 

   Carrying (h,o1,(-,t1) (x1,t2)) and, 
   Appears (o, x, t) and 
   Not-Carry g (h,o1,(-,t1),(x1,t2))in
constraints:  
     x

1
 ≅ x

2 
≅ x  

    t
4
 >>  t

3
 ≥  t ≥  t

2
 >> t

1
  

 
Table 2. Composition of event Leaves. 

 
Yet the scenarios are usually complex, and especially so if the reaction time is 

critical, and it is not possible to obtain all the necessary characteristics of the images in 
the monitoring. It is therefore necessary to include, in addition to the monitoring-
composition, a diagnosis stage of the situation that adds a top-down organisation, which 
corresponds to the usual concept of knowledge-guided search. This type of feedback 
enables the system to assign (or reassign) computational resources by generation 
hypothesis and the associated selective search of confirmation findings not available 
from the emergence. 
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The distinction between bottom-up emergence of higher-level abstraction data and 

top-down attention search is usual, for example, in clinical medicine, where symptoms 
and signs from lower cost and more reactive clinical exploration are distinguished from 
those from complementary explorations (for example, magnetic resonance scanning) 
where higher cost resources are assigned based on suspicion or hypothesis. Already in 
image interpretation, in the work of Howarth and Buxton [8] monitoring was explained 
as “passively passing from images to conceptual descriptions”, while watching is “more 
active and task oriented”, with feedback between a pre-intentional level from where 
behaviours emerge (from images), and an intentional control level, which focuses on the 
surveillance task process. 

 
The inferential scheme in Fig. 11 shows the key subtasks for diagnosing situations as 

part of the activity level processing in the overall surveillance task. A claim resulting 
from the event composition leads us to pose (generate) hypotheses of situations (future, 
past or present) relevant for scenario surveillance, which are necessary to check 
according to the determination (prediction) of confirmation findings. Chleq and 
Thonnat [4] also include this hypothesis approach, which implies the need to explore 
alternative solutions in parallel. Discriminating these hypotheses will require focusing 
on new characteristics of the images and, therefore, requesting the participation of new 
visual operators in the object level. Fig. 11 also shows the connection of the roles in the 
inferential scheme with the domain entities, according to KADS methodology [22] for 
knowledge based system development. The subtask generate is based on the suggestion 
relation between findings and anomalies, while the subtask predict is based on the 
confirmation relation between finding and anomaly that would confirm them 
(confirmation findings). The assessment of the current availability of these findings 
corresponds to task Diagnose-2 in the scheme in Fig. 2. Otherwise, this same task 
would transmit the request of these findings to the object level as “requested findings”, 
which in turn, would select new operators (Configure Therapy), thereby closing the 
feedback loop. Fig. 12 shows an example of this: the sequencing of prealarms and an 
alarm that makes it possible to adjust the computational cost to the danger of the activity 
identified. The composed event Leaves(h, o, t) places the system in the initial state of 
prealarm. From here it returns to a state of normality if an event Picks-Up (h’,o, t) is 
activated on the same object (it could have a different human h’ as a first argument).  In 
this initial prealarm state a request is made to the object level to search for the event Is-
Near-To(Exit). If it is obtained, the system passes to a higher prealarm state. This state 
requests the search for Is-Far-From(Exit) and Is-Going-Out. If it receives the event Is-
Far-From(Exit),  it returns to the previous prealarm level. If it receives Is-Going-Out it 
passes to the alarm, which implies communication to the internal or external guard.  

 
 
The Fig. 13 shows the main window of the surveillance prototype that we have 

developed. It simultaneously describes the events at the four levels. The top left window 
shows the original frame of the current processing instant, while the top right window 
shows the segmented frame of the same instant with the superimposed information of 
the identify objects. In the bottom left window the fired events are represented, while in 
the bottom right window the composed events or activities inferred by the system are 
presented. Both spaces add the new inputs to the top section and use a horizontal line to 
separate the events of each instant of time. The figure shows the window of the 
prototype at an instant when an event leaves has been identified and, therefore, the 



system is in the initial state of prealarm. In the last subwindow the consistent search for 
findings is notified (as request type events), which focuses on the object level events 
that would enable the state to evolve, either towards normality or towards the following 
prealarm state. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

generate predict hypotheses claim 
Confirmation 

finding 
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finding    suggest Is-confirmed-by

suggestion relation confirmation relation 

“A leaves object O” “A wants to leave the airport 
without objetct O” 

“A is near to exit E” 
“A is going to exit E” 

“H has no picked object O” 

INFERENCE  KNOWLEDGE 

DOMAIN  KNOWLEDGE 

Fig.  11. Inferential structure of the situation diagnosis forming part of the activity level processing, which 
generates hypotheses and predicts the findings confirming them. Inference knowledge linking to domain 

knowledge is also shown. 
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Prealarm II 
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Alarm 
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Fig. 12. Diagram of states representing the transitions of prealarm states until the very alarm goes off. 
Request type events are sent from the activity level to the object level, focusing on the search for new 

findings. Output events are written in cursive letter. 
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Fig. 13. Main window of the surveillance prototype with which it is possible to monitor what is 
happening in any of the four levels: the raw image from the camera (top-left), the segmented and 

identified objects (top-right), the events in the object level as a result of identification and tracking 
(bottom-left) and, finally, the resulting composition of events in the activity level (bottom-right). 

4. Conclusions 

In this work we have proposed a general top-down feedback scheme between 
adjacent description levels to improve the interpretation of video sequences. This 
scheme distinguishes two types of feedback: repair-oriented feedback and focus-
oriented feedback. It highlights the improvement from using information from higher 
semantic levels in the sense of “repairing” errors and “focusing” resources to locate 
findings that with just bottom-up organisation is impossible, unless very superior 
computational resources are available. 

 
Three feedback examples of both types are shown for interpreting different video 

sequences in surveillance applications: the first improves segmentation in the blob level 
from object level information, the second resolves inconsistencies in object level events 
from activity level knowledge, and the third adjusts the computational load according to 
the degree of alarm of the events detected in each specific surveillance scenario. 

 
A visual surveillance prototype was implemented that integrates bottom-up with top-

down organisation according to this generic feedback scheme. This prototype shows the 
scene representation in the four description levels simultaneously. Thus, it is possible to 
compare the results before and after introducing the aforementioned feedback scheme, 
thereby improving the identification and description of the scene events of interest and 
the system’s general performance.  
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