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Abstract

Certainly, one of the prominent ideas of Professor José Mira was that it is abso-
lutely mandatory to specify the mechanisms and/or processes underlying each task
and inference mentioned in an architecture in order to make operational that ar-
chitecture. The conjecture of the last fifteen years of joint research has been that
any bottom-up organization may be made operational using two biologically in-
spired methods called “algorithmic lateral inhibition”, a generalization of lateral
inhibition anatomical circuits, and “accumulative computation”, a working mem-
ory related to the temporal evolution of the membrane potential. This paper is
dedicated to the computational formulations of both methods, which have led to
quite efficient solutions of problems related to motion-based computer vision.
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1 Introduction

One of the most important problems in Artificial Intelligence (AI) and in Com-
putational Neuroscience (CN) is to find effective calculation procedures that
enable connecting the analytic models of the behavior of individual neurons,
typical of the Neurodynamics [2], [1], with the formulations in natural language
of the concepts and inferences associated to the high-level cognitive processes
[28], [37], [33]. Four years ago, the research community has celebrated the fifti-
eth anniversary of AI [15] and it is evident that there is still no general and
satisfactory solution to this problem, as clearly stated by Professor José Mira
in one of his last papers [34]. The reasons for this lack of links between the
models belonging to Physics and AI reside in the intrinsic complexity of the
cognitive processes and in the lack of adequate methodological approaches.

The search for architectures of the cognition (the“logic of the mind”) is a long-
haul task with very limited results that has roots in the ancient Greece. Since
then the task has essentially been of interest to philosophers, neurophysiolo-
gists, psychologists, mathematicians and, more recently, professionals of the
field of computation in general and of AI in particular. We are in front of a
partial, fragmented and non-structured knowledge and look for an abstract
structure that allows us to order adequately these pieces of knowledge. The
architecture needs organization and structure, easy indexation and search and,
finally, efficient use of this knowledge in inference and reasoning.

In the robotics field the name architecture is kept explicitly and such terms
as “reactive”, “situated” or “representational” are used to specify the orga-
nization of the software and hardware of an autonomous robot. In AI these
organizational approaches are usually called paradigms and it is again dis-
tinguished between connectionist, situated, symbolic or representational and
hybrid. In this work our architecture of hybrid character, which combines a
bottom-up part of connectionist type with a top-down one of symbolic type
is presented. To fix ideas we focus on the visual path but we also give out
the conjecture of the potential validity in other sensory modalities and in the
understanding and synthesis of other tasks in which reactive components are
combined with others of intentional nature.

The ideas underlying the work are: (1) In order to theorize and to solve prob-
lems that go beyond the retinotopic projection step it is necessary to propose
neurophysiologically plausible synthetic architectures (knowledge models), but
without the precision by which the more peripheral structures are known. (2)
It is not sufficient to model and interpret the neuronal function at physical
(physiological) level of registrations of slow potentials or spikes trains. It is
necessary to re-formulate the neuronal mechanisms at symbolic level in terms
of inferential rules and frames, closer to the natural language used by an
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Fig. 1. Non-recursive (continuous line) and recursive (discontinuous line) LI con-
nectivity schemes at the physical level. (a) Discrete case. (b) Continuous case

external observer when describing the visual processes, or when performing
psychophysical experiments [19], [18].

The rest of the paper is structured as follows. In section 2 the two neuronal pro-
cesses, algorithmic lateral inhibition (subsection 2.1) and accumulative com-
putation (subsection 2.2), are described in extensive. Then, in section 3 the
use of both processes are described in computer vision applications. Lastly,
we offer some conclusions.

2 Description of the two neural processes

In order to make operational any architecture it is necessary to specify the
mechanisms and/or processes underlying each subtask and inference men-
tioned in that architecture. The conjecture of our team is that any bottom-up
organization may be made operational using two biologically inspired meth-
ods called (1) “algorithmic lateral inhibition” (ALI), a generalization of lateral
inhibition (LI) anatomical circuits [3], and, (2) “accumulative computation”
(AC). Firstly, ALI is considered in the following section and AC in the next
one.

2.1 Algorithmic lateral inhibition

2.1.1 Lateral inhibition at the physical level

There are some neuronal structures that are repeated at all the integration
levels in the nervous system and that emerge again in the global behavior of
human beings. This leads us to think that they have endured the evolution pro-
cess because they were adaptively useful for interacting with the environment.
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If we look at these structures from an electronic and computational perspective
we could say that they are the “basic functional modules” in terms of which
evolution has designed the best architecture for the nervous system (NS) to
process information. This is the case of the lateral inhibition circuits, due to
the wide range of functions which they may synthesize, to their capacity of
explaining in neurophysiology, and their facility of abstraction when accepting
to maintain invariant their structure in front of semantic level changes.

LI schemes may be found in levels such as neurogenesis, dendro-dendritic
contacts, neuronal circuits in the retina, lateral geniculate body and in cerebral
cortex, in the interaction between groups of neurons (ocular and orientation
dominance columns) [30]. At the physical level, in terms of interconnected
circuits that are described using a language of signals, there are two basic
connectivity schemes: (1) non-recursive LI, and (2) recursive LI, with feedback
(as outlined in Fig. 1). In non-recursive LI, the modification of a unit response
depends on the inputs to the neighboring units, and in recurrent LI it depends
on the outputs of the neighboring units.

If extending the formulation to the continuous case (see Fig. 1b), the terms
of interaction become nuclei of a convolution integral, so that the output,
Φ(x, y), is the result of accumulating the direct excitation of each unit, I(x, y),
with the inhibition from modulating the excitation received by the connected
neighboring units, I(α, β),via the weight factors K(x, y; α, β). The difference
nucleus, K(x, y; α, β), is now responsible for the specific form of the calcu-
lation which, in all cases, acts as a detector of contrasts. In the recursive
LI , it is the direct output, Φ(x, y), which accumulates the inhibition from
the responses of the neighboring units, Φ(α, β), weighted by an interaction
coefficient K∗(x, y; α, β), basically different from that of the direct path (K).

Here again, in recursive LI, the shape and size of the receptive field (the inter-
action nucleus K∗) specifies the network connectivity (cooperation-competition
area) and the calculation details (syntony, orientations, shapes, speeds, and
so on). The most usual shape in K and K∗ is obtained from subtracting two
Gaussians. Thus the calculation structures inherent in the entire LI network
are obtained: (1) a central area (ON or OFF), (2) a peripheral area (OFF or
ON), and, (3) an excluded region (outside the receptive field).

2.1.2 Algorithmic lateral inhibition at the symbol level

The LI model at the physical level is limited to a language of physical signals
as functions of time. The first possible abstraction, which passes from a cir-
cuit to an algorithm, is obtained by rewriting the accumulation and inhibition
processes in terms of rules (conditionals “if-then”), as a generalization of the
weighted sum and the threshold. The condition field of a rule generalizes the

4



VVaalluueess iinn CC** VVaalluueess iinn PP**

{{EExxppii}}eevvaalluuaattee {{EExxppjj}} eevvaalluuaattee

RReessuullttss iinn CC** RReessuullttss iinn PP**

ccoommppaarree

IInnffoorrmmaattiioonn ffoorr DDiiaalloogguuee

CCrriitteerriiaa

gg

sseelleecctt CCrriitteerriiaa

MMooddiiffiieedd OOuuttppuutt

sseelleecctt

MMooddiiffiieedd OOuuttppuutt

Fig. 2. Recurrent ALI inferential scheme. The results of the evaluation in the central
(C*) and peripheral (P*) parts of the feedback receptive field are first compared
and the result of this comparison is used to select the updated output (see [32])

weighted sum and the conditional generalizes the non-linearity of the thresh-
old. Furthermore, the structure of the LI model is maintained. In other words,
now also receptive fields (data fields in a FIFO memory) with an excitatory
center and an inhibitory periphery, both for the input space (non-recursive LI)
and for the output space (recursive IL) are defined. However, the nature of
these input and output spaces is changed drastically, to be spaces of represen-
tation; that is, they are multidimensional spaces, where each “axis” represents
possible values of an independent variable which measure an independent pos-
sible property of inputs and outputs. For the input space, the properties are
those pertinent to the description of the external and internal “world”, as seen
by the previous neural nets. For the output space, properties are “decisions” of
the net under consideration in the proper time axis. In the simplest case, the
axons of each neuron of the net are proposing a sequence of “decisions” that
fill in the output FIFO memory. Additionally, the decision rules in ALI need
not be limited to analytic but can include also logical-relational operators as
components of the calculus carried out by its condition fields [3], [30].

With this interpretation of ALI, each element of calculus samples its data
in the center and periphery of the volume specified by its receptive field in
the input space, and also samples in the center and periphery of the volume
which specifies its receptive field in the output space. By specifying the nature
of the decision rules the different types of calculus attainable by a network of
algorithmic lateral inhibition (ALI) are obtained.
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2.1.3 Algorithmic lateral inhibition at the knowledge level

To complete the possibilities of the LI network, we do a new abstraction pro-
cess and we pass from the symbol level to the knowledge level by generalizing
the rules in terms of inferences [4], [30]. Through this abstraction process it is
possible to consider ALI circuits as the anatomical support of an inferential
scheme (see Fig. 2).

2.2 Accumulative computation

Usually the time evolution of the neuron membrane potential is modeled by
a first order differential equation known as the “leaky integrator model”. If
we move from differential equations to equations in finite differences then we
get the temporal ALI model previously described, in which each element of
calculus samples its input and feedback data from two FIFO memories. A
different way of modeling time evolution of membrane potential is consider
the membrane as a local working memory in which neither the triggering
conditions nor the way in which the potential tries to return to its input-
free equilibrium value, needs to be restricted to thresholds and exponential
increases and decays. This type of working memory was named “accumulative
computation” (AC) [6], [7], [31], and is characterized by the possibility of
controlling its charge and discharge dynamics in terms of:

(1) The presence of specific spatio-temporal features with values over a cer-
tain threshold.

(2) The persistency in the presence of these features.
(3) The increment or decrement values (±δQ) in the accumulated state of

activity of each feature and the corresponding current value, Q(t).
(4) The control (Mode of charge/discharge) and learning mechanisms .

Fig. 3 shows the block diagram of the accumulative computation model. The
model works in two time scales, a macroscopic, t, associated to the external
data sequence to be processed by the net and a microscopic one, τ , associated
to the set of internal processes that take place while the external data (an
image, for instance) remain constant.The control rules used to calculate the
persistency of motion through time are:

Q[x, y; t + ∆t] =











max(Q[x, y; t] − δQ, Qmin), if C[x, y; t] = 1

min(Q[x, y; t] + δQ, Qmax), otherwise
(1)

where C[x, y; t] = 1 means that motion has been detected on pixel [x, y] at
t, and Qmax and Qmin are the maximum and minimum charge values, respec-
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Fig. 3. The AC working memory model

tively. When providing values to −δQ, +δQ, Qmax and Qmin, the different
working modalities of the AC are obtained.

In Fig. 4 the behavior of the accumulative computation model is shown in one-
dimensional and very easy situations. Let us suppose that values of I(x, y; t)
correspond to an indefinite sequence of images where several objects are mov-
ing. Let us also suppose that the measured property, p(x, y; t) is simply the
result of the binary threshold of image I(x, y; t). Then, the control mode com-
pares values of p(x, y; t) in two successive instants, interpreting that p(x, y; t) =
1 means that there is a moving object over pixel (x, y) at t and that p(x, y; t) =
0 means there is no moving object. Thus, changes p(t − ∆t) = 0 to p(t) = 1
mean that a moving object has entered that unit’s receptive field (RF). If
p(t−∆t) = 1 and p(t) = 0, a moving object has left the RF; if both are zero,
there is no moving object over the RF, and, finally, if both are one, there is
a moving object crossing over the RF. For this property, the evolution of its
persistency, Q(t), is shown in Fig. 4 for some modalities of use selected.

3 Applications in computer vision

In this section we will re-explore the fact that with only two synthetic mecha-
nisms, ALI and AC, it is sufficient to do computational an important part of
the visual processes. Some of the works of our group support the validity of
this methodological approximation, as described in this part of the paper.
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Fig. 4. Illustration of the accumulative computation model used for the easy case of
binary threshold of an image. (a) Macroscopic clock t. (b) p(t). (c) Q(t) in length-
-speed relation modality. (d) Q(t) in input modality. (e) Q(t) in output modality.
(f) Q(t) in charge/discharge modality

Firstly, AC was applied to the problem of the classification of moving objects in
long image sequences [6], calculating the length-speed relation (LSR) starting
from equation 2, and showing its capacity to be implemented in real-time [8],
[17], [5].

Q[x, y; t + ∆t] =











max(Q[x, y; t] + δQ, Qmin), if C[x, y; t] = 1

Qmin, otherwise
(2)

Later on the combination of AC and ALI (introducing a second time scale into
the equation) was used in the resolution of the problem of segmenting moving
silhouettes in video sequences [9], [10]. Its neuronal nature was described in
detail [11], as well as the model for motion detection [12] and the influence
of each parameter of the combination between AC and ALI [13]. The object
segmentation task is composed of subtasks “charge-based pixel charge com-
putation” (using AC and ALI with macroscopic clock), “charge-based blob
fusion” (ALI, and microscopic and macroscopic clocks) and “charge-based
shape fusion” (ALI and AC, and microscopic and macroscopic clocks).

The novel model based in neural networks combining AC and ALI was denom-
inated “lateral interaction in accumulative computation” (LIAC) [12]. The
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LIAC structure is built as an artificial neural network (ANN) and hence it
inhabits a learning system by itself. Nevertheless, the learning capability of
the LIAC method has been extended through the modification of its param-
eters [29]. This optimization problem used a genetic algorithm (GA) in order
to obtain the best sets of parameters for an enhanced segmentation.

From the good results obtained by means of these methods in computer-vision-
based motion analysis, the following step was the challenge of facing selective
visual attention (dynamic) by means of a research line [20], [21] where the
importance of the incorporation of new parameters appeared. This research
aims in describing a method for visual surveillance based on biologically moti-
vated dynamic visual attention in video image sequences. The system is based
on the extraction and integration of local (pixels and spots) as well as global
(objects) features. Our approach defines a method for the generation of an ac-
tive attention focus on a dynamic scene for surveillance purposes. The system
segments in accordance with a set of predefined features, including gray level,
motion and shape features, giving raise to two classes of objects: vehicle and
pedestrian. The solution proposed to the selective visual attention problem
consists of de-composing the input images of an indefinite sequence of images
into its moving objects, defining which of these elements are of the user’s in-
terest at a given moment, and keeping attention on those elements through
time. Features extraction and integration are solved precisely by incorporating
the mechanisms described, AC and ALI.

An important problem in AI is to find calculation procedures to save the
semantic gap between the analytic formulations of the neuronal models and
the concepts of the natural language used to describe the cognitive processes.
Therefore, in a recent work [35], we explored a way of saving this gap for the
case of the attentional processes.

Among others, we also introduced velocity to improve the capture of the atten-
tion on the objects in movement [22]. In this case, we highlight the importance
of the motion features present in our algorithms in the task of refining and/or
enhancing scene segmentation in the methods proposed. The estimation of
these motion parameters is performed at each pixel of the input image by
means of the AC method. “Motion presence”, “module of the velocity” and
“angle of the velocity”, all obtained from AC computation method, are shown
to be very significant to adjust different scene segmentation outputs in our
dynamic visual attention method [23], [24].

In parallel with the previous works, again mainly AC was used, and ALI in a
minor degree, to improve the segmentation of moving objects, by introducing
stereovision, with the purpose of adding a parameter that can contribute enor-
mously in any tracking task in the three-dimensional world; this is parameter
depth [25]. In this work a method that turns around the existing symbiosis
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between stereovision and motion is used; motion minimizes correspondence
ambiguities, and stereovision enhances motion information. The central idea
behind our approach is to transpose the spatially-defined problem of disparity
estimation into the spatial-temporal domain. Motion is analyzed in the orig-
inal sequences by means of AC and the disparities are calculated from the
resulting two-dimensional motion charge maps [27], [14], [16].

During the last few years the first results applied to the potential usefulness
in mobile robotics have also been introduced [26]. Also, some recent work on
combining AC and fuzzification techniques has been presented [36]. Finally,
the LI model at the knowledge level has shown to be a good method to solve
problems of cooperation and dialogue in the theory of multi-agent systems
[32].

To date, the research team goes on working with the two neuronal processes,
but now applied to segmentation and tracking in color video sequences. We
are delighted to offer some initial results for the BEHAVE Test Case Scenario 0
(downloaded from http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/).
Fig. 5a to 5f show some frames with significant outputs. In the input video
frames red and yellow bounding boxes stand for moving objects as segmented
in the RGB and HLS color spaces, respectively. Fig. 5a shows frames 9303,
9320, 9333, 9359 and 9363 containing a moving car and people moving slowly.
In Fig. 5b we have frames 3684, 3692, 3704, 3713 and 3728, where you may
observe a moving cyclist and some stationary people. Fig. 5c and Fig. 5d are
examples of the presence of moving people (frames 6327, 6357, 6369, 6376 and
6398, as well as frames 102 to 104 , 107 and 109). Fig. 5e, composed of frames
122 to 125 and 133, contains people with little motion. Lastly, we offer the
results of the segmentation of a single moving human in Fig. 5f (frames 4379
to 4383).

4 Conclusions

Neurally-inspired computer vision involves at least memory processes, alert,
surveillance, selective attention, divided attention, reinforcement learning, in-
tentionality and conscience. The complexity of these mechanisms is the reason
for the difficulty found when trying to synthesize them computationally. A sat-
isfactory solution, close to biology, is still a long term objective.

In this work we have revisited the works in computer vision by using a de-
scription framework based in the use of two basic neuronal mechanisms, the
lateral inhibition and the working memory related to the temporal evolution
of the membrane potential, which was denominated accumulative computa-
tion. In order to extract the maximum performance the two mechanisms at
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Fig. 5. Qualitative results of applying the color-based LIAC algorithm to the BE-
HAVE test case. (a) Moving car and people moving slightly. (b) Moving cyclist and
non-moving people. (c) and (d) Moving people. (e) People moving slowly. (f) A
moving human

the three levels used in Artificial Intelligence to describe a calculation (the
physical level, the level of the symbols and the knowledge level) have been
formulated. We have proposed a method to interpret the function performed
by a neural circuit, not only at the level of neurophysiologic signals but also
in terms of symbolic rules and inferential schemes.
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In the previous section, we have also commented some of the results obtained
by the research team from using the conceptual scheme described in the pre-
vious sections. These results although reasonable in AI, are far away from
approaching biological solutions for at least two reasons. The first one is the
enormous constituent difference between biological systems and synthesis el-
ements used in computer vision. The second reason is the ignorance on the
architectures of cognition, starting from the doubt on the suitability of the
term architecture to describe perception in humans.

Nevertheless, when seeking to construct solutions able to be computed with
programs, cameras and robots, there is no other way than trying to equip
the knowledge that we have on the biological solution to the problem of at-
tention with structure and organization. Anything that we can not describe
in a structured, declarative, clear, precise and formal way is not computable.
That is why we think that our approach of firstly looking into neuroscience
as an inspiration source, then proposing real computational models, and at
the same time evaluating its efficiency in problem solving, independently of
its biological origin, is useful.
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