
Solving Differential Equations with Fourier Series and
Evolution Strategies

Jose M. Chaquet∗, Enrique J. Carmona

Dpto. de Inteligencia Artificial, Escuela Técnica Superior de Ingenieŕıa Informática,
Universidad Nacional de Educación a Distancia, Madrid, Spain

Abstract

A novel mesh-free approach for solving differential equations based on Evolu-
tion Strategies (ESs) is presented. Any structure is assumed in the equations
making the process general and suitable for linear and nonlinear ordinary and
partial differential equations (ODEs, PDEs), as well as systems of ordinary
differential equations (SODEs). Candidate solutions are expressed as partial
sums of Fourier series. Taking advantage of the decreasing absolute value of the
harmonic coefficients with the harmonic order, several ES steps are performed.
Harmonic coefficients are taken into account one by one starting with the lower
order ones. Experimental results are reported on several problems extracted
from the literature to illustrate the potential of the proposed approach. Two
cases (an initial value problem and a boundary condition problem) have been
solved using numerical methods and a quantitative comparative is performed. In
terms of accuracy and storing requirements the proposed approach outperforms
the numerical algorithm.

Keywords: Differential equations, Fourier series, evolution strategies,
mesh-free methods, harmonic analysis

1. Introduction

Differential equations are mathematical equations for one or several un-
known functions that relate the values of the functions themselves and their
derivatives of various orders. Differential equations play a prominent role in en-
gineering, physics, economics, and other disciplines. Some important examples
are the Newton’s Second Law in dynamics, the Maxwell’s equations in electro-
magnetism, the heat equation in thermodynamics, Einstein’s field equation in
general relativity, Schrödinger equation in quantum mechanics or the Navier-
Stokes equations in fluid dynamics [6].

∗Corresponding author. Tel.: +34 91 398 7301
Email addresses: jose.chaquet@gmail.com (Jose M. Chaquet), ecarmona@dia.uned.es

(Enrique J. Carmona)

Preprint submitted to Applied Soft Computing April 11, 2012

This version of the article has been accepted for publication, after peer review but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1016/j.asoc.2012.05.014. Use of this Accepted Version is subject to the Licence CC BY-NC-ND.

ENRIQUE JAVIER CARMONA SUAREZ
Rectángulo

http://dx.doi.org/10.1016/j.asoc.2012.05.014

Some simple differential equations admit solutions given by explicit formulas.
But in the general case, only approximate solutions can be found. Among the
engineering community, the most popular methods for solving differential equa-
tions use numerical analysis techniques such as finite element method (FEM)
[21], finite difference method [14], or finite volume method [11]. These ap-
proaches relied on a grid or a mesh for discretizing the equations, bringing them
into a finite-dimensional subspace. The original problem is reduced to the solu-
tion of algebraic equations.

On the other hand, mesh-free methods work with a set of arbitrary dis-
tributed points without using any mesh that provides the connectivity of these
nodes. Some examples of mesh-free methods are Smoothed particle hydro-
dynamics (SPH), Diffusive element method (DEM) and Point Interpolation
Method (PIM) among others [12].

Other mesh-free methods have its inspiration in the artificial intelligence
field. For instance Legaris et al. [10] use a feed forward neural network to
codify the solution of this type of problems. The trial solutions are computed as
a sum of two parts. The first part satisfies the initial/boundary conditions and
contains no adjustable parameters. The second part is constructed so as not to
affect the initial/boundary conditions. This approach is problem dependent and
in some cases could be difficult to split the candidate solutions in the two terms.
Neural network weights and bias are optimized using a quasi-Newton Broyden-
Fletcher-Goldfarb-Shanno method. This approach has been successfully applied
to a system of partial differential equations which models a non-steady fixed bed
non-catalytic solid-gas reactor [15]. In this last work, the boundary condition
error is added to the cost or fitness function as a penalty term.

Nowadays an increasing interest in solving differential equations using artifi-
cial neural networks is observed. In [19] a Multilayer Perceptron and Radial Ba-
sis Function neural network is successfully applied to the nonlinear Schröndinger
equation in hydrogen atom. Yazdi et al. [24] combine a neural network and a
fuzzy system to solve some simple first and second order ordinary linear differen-
tial equations. Fast convergence is achieved training the adaptive network-based
fuzzy inference system in unsupervised way. In [3] other mesh-free numerical
method for solving PDEs based on integrated radial basis function networks
with adaptive residual subsampling training scheme is presented. Numerical
experiments solving several PDEs show that this algorithm with the adaptive
procedure requires fewer neurons to attain the desired accuracy than conven-
tional radial basis function networks. A different approach dealing with neural
networks consist of solving a family of differential equations using traditional
methods and training a neural network for building surrogate models. Following
this line, work [5] presents a new hybrid adaptive neural network with modified
adaptive smoothing errors based on genetic algorithm to construct a learning
system for complex problem solving in fluid dynamics. The system can pre-
dict an incompressible viscous fluid flow represents by stream function through
symmetrical backward-facing steps channels.

Recently new methods for solving differential equations using Genetic Pro-
gramming (GP) have been reported. These approaches can be considered mesh-

2

free methods because the derivatives are computed symbolically, so any node
connectivity is needed. Sobester et al. [20] propose a technique for the mesh-free
solution of elliptic partial differential equations where least-squares collocation
principle has been employed to define an appropriate objective function, which
is optimized using GP. In that work no particular function basis is used, but
symbolic regression is performed. This makes the search space very large. An-
other GP approach can be seen in [8] where polynomials are used for solving the
convective-diffusion equation. In the same line of research, Tsoulos and Legaris
[23] use a similar technique, with the novelty of evolving the candidate solutions
using Grammatical Evolution (GE) [13]. This technique has been employed
successfully for solving the matrix Ricatti differential equation for nonlinear
singular system [1]. GE has been used as well for enhanced the constructed
neural method in [22]. The main advantage of this last approach is that the
user does not choose a priori the number of neuron cells. In that contribution
local search is employed over some individuals.

Seaton et al. [18] investigate the influence of the problem complexity and
perform a search analysis when differential equations are solved within an evo-
lutionary framework. They show that reducing the search space can improve
significantly the algorithm performances. A possible approach for reducing the
search space dimension is using some kind of function basis for building can-
didate solutions. This idea is used by Kirstukas et al. [9], where a hybrid GP
approach from an engineering perspective is employed. In that approach, for the
particular case of linear differential equations, a modified Gram-Schmidt algo-
rithm is used to reduce the set of general solutions located by GP to a function
basis set.

In the present work a novel mesh-free method for solving differential equa-
tions is reported. Candidate solutions are expressed as partial sums of Fourier
series. In order to simplify the problem, an even periodic expansion of the so-
lutions is done in such a way that all the sine coefficients are vanished. This
representation can be regarded equivalent to a Discrete Cosine Transform (DCT)
[17] which has been successfully used in several science and engineering appli-
cations, as for lossy compression of audio (MP3) and image (JPEG). With the
chosen solution representation, the problem of solving differential equations is
transformed into an optimization one, where the differential equation residuals
and the boundary condition errors are minimized. The optimal Fourier coeffi-
cients are sought using Evolution Strategies (ESs). In order to systematize the
process, the harmonic searching is done in a progressive way starting with the
lowest order harmonic and using a different ES cycle to find the optimum value
for each one.

The rest of the paper is organized as follows: In Section 2 a description
of the proposed approach is given. In Section 3 a set of test cases extracted
from the literature is described and experimental results are reported. Section
4 gives some qualitative and quantitative comparisons with numerical methods
and other evolutionary approaches. Finally, the conclusions and some future
work guides are outlined in Section 5.

3

2. Method description

In this section the proposed method is described. First the mathematical
statement of the problem is given in subsection 2.1. The particular coding of
candidate solutions using Fourier series is explained in subsection 2.2. Each
optimal harmonic coefficient is sought using several ES steps. Subsection 2.3
describes these particular steps, and subsection 2.4 explains how the steps are
combined for solving the global optimization problem.

2.1. Statement of the problem

Using the same notation than Sobester et al. [20] but extending the original
problem to systems of differential equations, we consider the general equation

Ly (x) = f (x) in Ω ⊂ Rd (1)

subject to the boundary conditions

By (x) = g (x) on ∂Ω, (2)

where L and B are differential operators in the space x ∈ Rd and y (x) denotes
the unknown solution vector. Functions f (x) and g (x) denote source terms, so
only depend on x, but not on y or its derivatives. From a general point of view,
y (x), f (x) and g (x) belong to the set of vector-valued functions Rd→ Rm.
Ω ⊂ Rd is a bounded domain and ∂Ω denotes its boundary1. Note that if d = 1
and m = 1, we have an ODE problem. If d = 1 and m > 1, a SODE problem is
managed and, finally, if d > 1 and m = 1, a PDE problem is established. The
solution vector satisfying (1) and (2) can be computed solving the following
Constrained Optimization Problem (COP):

Minimize :
�
Ω
‖Ly (x)− f (x)‖2 dx

Subject to :
�

∂Ω
‖By (x)− g (x)‖2 dx = 0

(3)

where ‖·‖ denotes the Euclidean norm in Rd space. This problem is discretized
using a set of collocation points C = {(xi) |i=1,··· ,nC

⊂ Ω} situated within the do-
main and as well on the boundary B = {(xj) |j=1,··· ,nB

⊂ ∂Ω}. Finally the orig-
inal COP is transformed into a Free Constrained Optimization Problem defining
a cost function as follows

F (y) =
1

d · (nC + nB)

 nC∑
i=1

‖Ly (xi)− f (xi)‖2 + ϕ

nB∑
j=1

‖By (xj)− g (xj)‖2
 ,

(4)

1This notation corresponds to elliptic equations appearing in the solution of boundary
value problems. Other kind of differential equations such as initial value problems can be
treated in a similar way.

4

where ϕ is a penalty parameter. Note that the cost function is obtained dividing
the residuals by the total number of collocation points d · (nC + nB) in a similar
way than Parisi et al. [15]. Other authors [1, 10, 20] do not make this normal-
ization, which makes their values more dependent on the number of collocation
points.

2.2. Candidate solutions
In the proposed approach, each component y (x) of the trial solution is ex-

pressed as a partial sum of a Fourier series. The periodic expansion of y (x) from
the original definition range to all Rd is always performed using even functions.
Therefore all the sine Fourier coefficients are vanished. In order to define this
expansion, first some notation must be introduced. For each coordinate xk with
k = 1, · · · , d, variables xk,min and xk,max are defined as the minimum and max-
imum values among the inner collocation points C and the boundary condition
points B. Using these values and an user defined parameter ξ ≥ 0 called range
extension, a new coordinate origin ck and a semi-period Lk are defined as

ck = xk,min − ξ (xk,max − xk,min) (5)

Lk = (xk,max − xk,min) (1 + 2ξ) (6)

Then each component y (x) of the solution vector is expressed as a partial sum
of Fourier Cosine series:

y (x1, . . . , xd) =
a0

2
+

N∑
n1,...,nd=1

an1,...,nd

d∏
k=1

cos
(

πnk

Lk
(xk − ck)

)
(7)

where a0 and an1,...,nd
are the unknown coefficients or harmonics and N is an

user defined parameter which determines the number of harmonics used. The
total number of harmonics for each component will be 1 + Nd. By definition,
this expanded function is periodic in each dimension with period 2Lk and, in
addition, is defined everywhere, continuous and infinitely differentiable. How-
ever, according to Eq. (4), this function will be only evaluated in the original
definition range. Therefore the expansion can be done anyhow with the follow-
ing constraints: the expanded function must be periodic, even and solution to
the original problem in Ω and ∂Ω.

Range extension parameter ξ is needed in order to suppress the intrinsic lim-
itations of even functions at the boundaries regarding the first partial derivative:

∂y (x1, . . . , xd)
∂xk

∣∣∣∣
xk=ck

= 0. (8)

Note that if ξ = 0 the null first derivative will be obtained at points xk = xk,min,
which could be interesting in some particular cases. Nevertheless, a general
problem will have not-null first derivatives at boundaries. Because non dis-
continuities are introduced, neither in the expanded function itself nor in their

5

0 1 2 3 4 5 6
x

3

3.5

4

4.5

y(
x)

x xc

L

ξ (x - x)

min max

minmax

(x - x)

(x - x)

ξ

(x - x)

max min

Figure 1: Even periodic expansion example of a function originally defined in the range [1, 2].

derivatives, convergence problems regarding Gibbs phenomenon (large oscilla-
tions of the nth partial sum of the Fourier series near the discontinuity jump)
are avoided. According to expression (7), Fig. 1 shows an even periodic expan-
sion example of a function originally defined in the range [1, 2], in one dimension
(d = 1) with a range expansion ξ = 1. Note the null first derivatives at points
x = 0, x = 3 and x = 6.

Computing the cost function (4) implies obtaining derivatives of expression
(7). A generic derivative operator D can be expressed as

D =
∂λ1

∂xλ1
1

∂λ2

∂xλ2
2

. . .
∂λd

∂xλd

d

. (9)

Using Eq. (7), the differential operator D applied to the dependant variable y
yields

D (y) =
N∑

n1,...,nd=1

an1,...,nd

d∏
k=1

(
πnk

Lk

)λk

cos(λk)

(
πnk

Lk
(xk − ck)

)
(10)

where the nth derivative of cosine function can be computed as

cos(n) x =

cos x if n%4 = 0
− sinx if n%4 = 1
− cos x if n%4 = 2
sinx if n%4 = 3

. (11)

6

2.3. Evolution Strategy
The optimization problem of searching the best set of harmonic coefficients

is solved using a ES which is an optimization technique based on ideas of adap-
tation and evolution [2]. Among all the Evolutionary Computing paradigms,
ES has been chosen because they are typically used for continuous parameter
optimization problems and its very useful feature: self-adaptation of strategy
parameters [4]. There is a strong emphasis on mutation for creating offspring.
In this approach uncorrelated mutation with several step sizes is used. Regard-
ing the genotype coding, each component of the solution vector is represented
by a0, a1,··· ,1, · · · , aN,··· ,N︸ ︷︷ ︸

a

, σ0, σ1,··· ,1, · · · , σN,··· ,N︸ ︷︷ ︸
σ

 . (12)

The first part of the genotype, a, codifies all the harmonic coefficients needed
for building the individual’s phenotype using Eq. (7). For each individual, a
fitness value can be computed using Eq. (4). The second part of the vector, σ,
codifies the mutation strengths for each harmonic.

Within one ES generational cycle, λ offspring individuals are generated from
a set of µ parent individuals using recombination and mutation operators. Then
selection operator chooses those individuals which will form the population in
the next generation. The process will be repeated in a close loop until some
stop condition is fulfilled.

Global discrete recombination is used for the harmonics, and global inter-
mediate recombination is performed for the mutation strengths. That is,

achild
n = aparent1

n or aparent2
n

σchild
n =

(
σparent1
n + σparent2

n

)
/2

(13)

where n ≡ n1, · · · , nd is an index vector according to expression (7) and the
parents are chosen randomly among all the population. This scheme of recom-
bination is the most used in ES implementations because preserves diversity
within the phenotype space, allowing the trial of very different combinations of
values, whilst the averaging effect of intermediate recombination assures a more
cautious adaptation of mutation strengths [4].

Each λ offspring individual is mutated using independent random samples
from a standard normal distribution N (0, 1)

σ′
n = σn exp (τ ′N (0, 1) + τNi (0, 1)) (14)

a′n = an + σ′
nNi (0, 1) (15)

where τ and τ ′ are the learning rates defined as τ ′ = fτ/
√

2 (1 + Nd) and
τ = fτ/

√
2
√

1 + Nd being fτ a learning rate factor defined by the user. In
order to avoid too small mutation steps, a threshold ε is applied in the following
way:

if σ′
n < ε =⇒ σ′

n = ε (16)

7

The threshold used in the present work is ε = 10−20. In order to guarantee
extinction of misfit individuals, the classical selection process (µ, λ) is used.
However, it is modified adding elitism of one individual. That is, the next
generation is formed by the best µ individuals among the λ mutated offspring
and the best individual among all the parents. In this way, the fitness of the best
individual in the population is a monotonic function with the generation number.
Two stop conditions are checked: maximum number of generations or unchanged
fitness of the best individual during a predefined number of generations. The
tolerance used in the present work to distinguish unchanged fitness values is
10−9.

2.4. Global algorithm
In this section a global strategy for solving the original problem is presented.

The basic idea consists of introducing harmonics one by one in the evolution-
ary process starting with the lower order ones. This strategy is based on the
assumption that the absolute values of Fourier coefficients decrease when the
harmonic number is increased. There are several works that gives bounds to the
Fourier coefficients assuming some properties to the original function [7]. For
instance, if we assume that y is an absolutely continuous function of one real
variable, then the nth Fourier coefficient an fulfils

|an| ≤
K

n
, (17)

where the constant K only depends on y but not on n. Better bounds can
be given if more features are assumed on y. This property has been observed
experimentally in all the test problems. In Fig. 2 the absolute value of the first
ten Fourier coefficients |an| are shown for ODE1 case (the test cases will be
introduced in section 3). We can observe the decay of the absolute values when
the harmonic number is increased. Note the logarithm scale on the vertical axis.

The global algorithm consists of several basic steps, called ES steps. Each
ES step is instantiated as it was explained in subsection 2.3. In addition, a
global flag of three possible values (active, inactive and frozen), named flagn,
is associated to each harmonic coefficient an. Each flagn is initialized before
running an ES step, does not evolve and has the same value for all individuals
in the population. If a harmonic is active, it participates for computing the
fitness value of the individual, using Eq. (4), and is evolved by the ES step. If a
harmonic is inactive, it is not used (zero value) for computing the fitness value
and is not evolved. Finally, if the harmonic is frozen, it is used for computing
the fitness value but is not evolved by the ES step. Representing each ES step
by ES [mlow,mhigh], each harmonic in an individual is classified as follows:
harmonic an1,...,nd

will be active if there is at least one index ni ∈ [mlow,mhigh]
and the remaining indexes are nj ≤ mhigh. A harmonic will be considered frozen
when for all indexes nj < mlow. Finally, a harmonic will be considered inactive

8

0 1 2 3 4 5 6 7 8 9 10
Harmonic number

0.0001

0.001

0.01

0.1

1
H

ar
m

on
ic

 c
oe

ff
ic

ie
nt

 a
bs

ol
ut

e
va

lu
es

Figure 2: First 10 Fourier coefficients computed for ODE1 case.

if there is at least one index nj > mhigh. Using the aforementioned notation,
the global strategy can be implemented by a sequence of ES steps represented
by the algorithm shown in Fig. 3.

Note that there is always an ES step of type ES [0,m] after of an ES step of
type ES [m,m]. As can be seen easily, a new harmonic is tuned (activated) in
an ES step of type ES [m,m]. Then, all the harmonics lower or equal than the
new one are tuned in a step of type ES [0,m]. With this policy the search space
dimension is reduced making the searching process more systematic and the
optimization problem easier. The steps ES [0, 0] and ES [1, 1] are not consid-
ered because the algorithm starts tuning the two first harmonic simultaneously
(ES [0, 1]). The final step is called Fine Tuning phase and its aim is to adjust
finely all the harmonics simultaneously, so all of them are activated. The stop
criterion for each ES step is fulfilled when the best fitness during a predefined
number of consecutive generations is not modified within a given tolerance or
when a predefined maximum number of generations G are fulfilled. These three
parameters (number of generations, tolerance and G) are input parameter for
the algorithm.

Before running each ES step, the population must be initialized. The initial-
ization policy is different for ES steps of types ES [m,m], ES [0,m] or the Fine
Tuning phase. The population initialization in each ES step of type ES [m,m]
can be summarized as follows:

9

�����
�����
�����
�����

�
�
�
�

��
��
��
��

�����
�����
�����
�����

ES[3,3]

ES[0,1]
ES[2,2]
ES[0,2]

ES[N−1,N−1]
...
ES[0,3]

ES[N,N]
ES[0,N−1]

ES[0,N]
ES Fine Tuning

Figure 3: Global strategy as a sequence of ES steps. Each bar represents, going from left
to right, the frozen harmonics (pattern filled), the active (black color) and the inactive ones
(white color).

an =

 U (α, β) if flagn = active
ân if flagn = frozen
0 if flagn = inactive

, (18)

where U (α, β) is a random sample from a continuous uniform distribution in
the range [α, β], being α and β user defined parameters. The symbol ân de-
notes the harmonic with index n of the best individual at the final population
of the previous ES step run. This policy avoids the algorithm being trapped in
local optima when a new harmonic is used. On the other hand, it is not per-
formed any particular initialization in steps of type ES [0,m] or Fine Tuning
steps. Therefore the initial population is copied from the final population of the
previous ES step.

Mutation strengths are initialized in a similar way. For steps of type ES [m,m]
it is used the next expression

σn =
{

U (γ, δ) if flagn = active
0 if flagn = inactive or frozen

, (19)

where the range of the random variable U (γ, δ) is as well a user defined pa-
rameter. Initialization for ES [0,m] is done in a range ten times lower than in
expression (19) in order to re-adjust lower harmonics when the new harmonic
has been computed:

σn =
{

U (γ, δ) /10 if flagn = active
0 if flagn = inactive or frozen

. (20)

Finally, all the mutation strengths in Fine Tuning phase are initialized to a
small value (10−7 in the experiments).

In PDEs, an increment of the harmonic order implies a non linear increment
in the number of harmonics depending on the problem dimension. For instance,

10

for a two dimensional problem, going from ES [0, 3] to ES [0, 4] implies an in-
crement in the number of harmonics of 7.

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =⇒

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 . (21)

Therefore, in PDE problems, the maximum number of new coefficients to tune
in each ES [m,m] phase could be specified as another algorithm input. In this
way, this type of phases would be split into several sub-phases.

3. Experimental results

In this section experimental results are presented. First a detailed description
of each test problem is given. Then a quality measure of the final solutions, that
is different from the fitness function, is explained. Due to the stochastic nature
of the algorithm, results are presented as an average of 10 independent runs for
each problem. Standard deviation values are given as well. Of a total of 26
test cases studied, we have only identified some convergence problems in one of
them. In that problematic case, further runs are reported in order to clarify the
behaviour of the algorithm.

3.1. Test cases
The proposed method was tested on several problems: linear and nonlinear

ODEs, SODEs and PDEs with two variables and Dirichlet boundary conditions.
These test cases have been extracted from several previous works [10, 23, 20, 22,
24, 3]. In table 1 all the problems are given: differential equations, independent
variable ranges and boundary conditions. The exact solutions are provided as
well in table 2 with the exception of Allen-Cahn equation [3] in NLODE6, which
does not have a close analytical solution. Note that PDE5 and PDE6 are defined
on non-rectangular domains (Fig. 4).

3.2. Quality solution measure: Root of the Mean Squared Error
Fitness function value is not a good measure for comparing the final so-

lutions obtained in different problems because it is very dependent on some
algorithm parameters as for example the boundary condition penalty ϕ. More-
over, the fitness value can be modified depending on how the differential equa-
tion is provided to Eq. (4). For instance, ODE1 equation can be provided
as y′ − (2x− y) /x, y′x − (2x− y) or even [y′ − (2x− y) /x] /k. Although the
same problem is solved, the fitness function values are modified: First and last
equations have the same fitness landscape, but with a scale value given by the

11

C
a
se

E
q
u
a
ti
o
n

R
a
n
g
e

B
o
u
n
d
a
r
y

C
o
n
d
it
io

n
s

O
D

E
1

y
′
=

(2
x
−

y
)
/
x

x
∈

[1
,2

]
y

(1
)

=
3

O
D

E
2

y
′
=

(1
−

y
co

s
(x

))
/

si
n

(x
)

x
∈

[1
,2

]
y

(1
)

=
3
/

si
n

1

O
D

E
3

y
′′

=
6
y
′
−

9
y

x
∈

[0
,1

]
y
(0

)
=

0
;y

′ (
0
)

=
2

O
D

E
4

y
′′

+
1 5
y
′
+

y
=
−

1 5
e−

x
/
5
co

s
(x

)
x
∈

[0
,1

]
y
(0

)
=

0
;y

′ (
0
)

=
si

n
(0

.1
)
/
e0

.2

O
D

E
5

y
′′

+
1 5
y
′
=

1 5
co

s
(x

)
x
∈

[0
,1

]
y
(0

)
=

0
;y

′ (
0
)

=
1

O
D

E
6

y
′′

+
2
x
y

=
0

x
∈

[0
,1

]
y
(0

)
=

0
;y

′ (
0
)

=
1

O
D

E
7

y
′′

` x
2

+
1

´ −2
x
y
−

x
2
−

1
=

0
x
∈

[0
,1

]
y
(0

)
=

0
;y

′ (
0
)

=
1

O
D

E
8

y
′
+

2
y

=
1

x
∈

[0
,1

0
]

y
(0

)
=

1

O
D

E
9

y
′
+

2
y

=
si

n
(x

)
x
∈

[0
,1

0
]

y
(0

)
=

1

O
D

E
1
0

y
′′

=
−

1
6
π

2
si

n
(4

π
x
)

x
∈

[0
,1

]
y
(0

)
=

2
;y

(1
)

=
2

N
L
O

D
E

1
y
′
=

1
/

(2
y
)

x
∈

[1
,4

]
y
(1

)
=

1

N
L
O

D
E

2
(y
′)

2
+

lo
g

y
=

co
s2

x
+

2
co

s
x

+
1

+
lo

g
(x

+
si

n
x
)

x
∈

[1
,2

]
y
(1

)
=

1
+

si
n

1

N
L
O

D
E

3
y
′′
y
′
=
−

4
/
x
3

x
∈

[1
,2

]
y
(1

)
=

0
;y

′ (
1
)

=
2

N
L
O

D
E

4
x
2
y
′′

+
(x

y
′)

2
+

1
/

lo
g

x
=

0
x
∈

[e
,2

e]
y
(e

)
=

0
;y

′ (
e)

=
1
/
e

N
L
O

D
E

5
y
′′
−

y
y
′ /

` x
si

n
x
2

´ =
−

4
x
2
si

n
x
2

x
∈

[1
,2

]
y
(1

)
=

si
n

1
;y

(2
)

=
si

n
4

N
L
O

D
E

6
1
0
−

4
y
′′

+
y

+
y
3

=
0

x
∈

[−
1
,1

]
y
(−

1
1
)
=
−

1
;y

(1
)

=
1

S
O

D
E

1
y
′ 1

=
co

s
x

+
y
2 1

+
y
2
−

` x
2

+
si

n
2

x
´

y
′ 2

=
2
x
−

x
2
si

n
x

+
y
1
y
2

ff
x
∈

[0
,1

]
y
1
(0

)
=

0
y
2
(0

)
=

0

ff
S
O

D
E

2
y
′ 1

=
(c

o
s
x
−

si
n

x
)
/
y
2

y
′ 2

=
y
1
y
2

+
ex
−

si
n

x

ff
x
∈

[0
,1

]
y
1
(0

)
=

0
y
2
(0

)
=

1

ff

S
O

D
E

3

y
′ 1

=
co

s
x

y
′ 2

=
−

y
1

y
′ 3

=
y
2

y
′ 4

=
−

y
3

y
′ 5

=
y
4

9 > > > = > > > ;
x
∈

[0
,1

]

y
1
(0

)
=

0
y
2
(0

)
=

1
y
3
(0

)
=

0
y
4
(0

)
=

1
y
5
(0

)
=

0

9 > > > = > > > ;
S
O

D
E

4
y
′ 1

=
−

si
n

(e
x
)
/
y
2

y
′ 2

=
−

y
2

ff
x
∈

[0
,1

]
y
1
(0

)
=

co
s
1

y
2
(0

)
=

1

ff
P

D
E

1
∇

2
Ψ

(x
,y

)
=

e−
x

` x
−

2
+

y
3

+
6
y

´
x
,y
∈

[0
,1

]
Ψ

(0
,y

)
=

y
3
;Ψ

(1
,y

)
=

` 1
+

y
3

´ e−
1

Ψ
(x

,0
)

=
x
e−

x
;Ψ

(x
,1

)
=

(x
+

1
)
e−

x

ff
P

D
E

2
∇

2
Ψ

(x
,y

)
=
−

2
Ψ

x
,y
∈

[0
,1

]
Ψ

(0
,y

)
=

0
;Ψ

(1
,y

)
=

si
n

(1
)
co

s
(y

)
Ψ

(x
,0

)
=

si
n

(x
)
;Ψ

(x
,1

)
=

si
n

(x
)
co

s
(1

)

ff
P

D
E

3
∇

2
Ψ

(x
,y

)
=

4
x
,y
∈

[0
,1

]
Ψ

(0
,y

)
=

y
2

+
y

+
1
;Ψ

(1
,y

)
=

y
2

+
y

+
3

Ψ
(x

,0
)

=
x
2

+
x

+
1
;Ψ

(x
,1

)
=

x
2

+
x

+
3

ff
P

D
E

4
∇

2
Ψ

(x
,y

)
=
−

Ψ
` x

2
+

y
2

´
x
,y
∈

[0
,1

]
Ψ

(0
,y

)
=

0
;Ψ

(1
,y

)
=

si
n

(y
)

Ψ
(x

,0
)

=
0
;Ψ

(x
,1

)
=

si
n

(x
)

ff
P

D
E

5
∇

2
Ψ

(x
,y

)
=

4
x

co
s
x

+
` 5
−

x
2
−

y
2

´ si
n

x
x
2

+
y
2
≤

1
Ψ

(x
,y

)
=

0
in

∂
Ω

P
D

E
6

∇
2
Ψ

(x
,y

)
=

2
e(

x
−

y
)

R
2
(θ

)
≤

co
s
(2

θ
)
+

p 1
.1

si
n
2
(2

θ
)

Ψ
(x

,y
)
=

e(
x
−

y
)
+

ex
co

s
y

in
∂
Ω

T
a
b
le

1
:

T
es

t
ca

se
s:

d
iff

er
en

ti
a
l
eq

u
a
ti
o
n
s,

ra
n
g
es

a
n
d

b
o
u
n
d
a
ry

co
n
d
it
io

n
s.

12

Case Exact Solution
ODE1 y = x + 2/x
ODE2 y = (x + 2) / sin (x)
ODE3 y = 2xe3x

ODE4 y = e−x/5 sin (x)
ODE5 y =

� x

0
sin(t)

t dt

ODE6 y =
� x

0
e−t2dt

ODE7 y =
(
x2 + 1

)
arctan (x)

ODE8 y =
(
e−2x + 1

)
/2

ODE9 y =
[
6e−2x + 2 sin (x)− cos (x)

]
/5

ODE10 y = 2 + sin (4πx)
NLODE1 y =

√
x

NLODE2 y = x + sin (x)
NLODE3 y = log

(
x2

)
NLODE4 y = log (log (x))
NLODE5 y = sin

(
x2

)
NLODE6 No analytical solution

SODE1
y1 = sinx
y2 = x2

}
SODE2

y1 = sin (x) /ex

y2 = ex

}
SODE3

y1 = y3 = y5 = sinx
y2 = y4 = cos x

}
SODE4

y1 = cos (ex)
y2 = e−x

PDE1 Ψ (x, y) =
(
x + y3

)
e−x

PDE2 Ψ (x, y) = sin (x) cos (y)
PDE3 Ψ (x, y) = x2 + y2 + x + y + 1
PDE4 Ψ (x, y) = sin (xy)
PDE5 Ψ (x, y) =

(
x2 + y2 − 1

)
sinx

PDE6 Ψ (x, y) = e(x−y) + ex cos y

Table 2: Exact solutions for the test cases.

13

a) b)

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y

-1 0 1
x

-0.4

-0.2

0

0.2

0.4

y

Figure 4: Non-rectangular domains. Unit circle for PDE5 (a), and Cassini’s oval for PDE6
(b).

constant k. Second equation has a different fitness landscape so could have a
different behaviour during the evolving process.

Therefore we believe that a new metric for measuring the final solution qual-
ity obtained is necessary. Concretely, in this work we propose using the Root
of the Mean Squared Error (RMSE) between the computed final solution y and
the exact solution yexact:

RMSE =

√∑nC

i=1,xi∈C ‖y (xi)− yexact (xi)‖2 +
∑nB

j=1,xj∈B ‖y (xj)− yexact (xj)‖2

d · (nC + nB)
.

(22)
Other authors use the same measure for determine the achieved accuracy [19].
This error does not deal with the differential equation residuals, but measures
distances between the computed solution and the exact one. Obviously RMSE
can be only used when the exact solution is known and for benchmarking pur-
poses. Because NLODE6 does not have analytical solution, the RMSE for this
problem has been computed using a numeric approximation of the solution com-
puted with a Runge-Kutta relaxation method [16] discretizing the domain range
in 1000 nodes.

3.3. Results

The method was run 10 times on every differential equation described previ-
ously using different seeds for the random number generator and averages were
taken. A total of 100 equidistant collocation points have been used in all cases,
except for PDE5 and PDE6. In those non-rectangular domain cases, 51 internal
points and 25 boundary points have been used for PDE5 (Fig. 4a), and 48
internal and 32 boundary points in PDE6 (Fig. 4b) as in [20]. A maximum
harmonic order N = 10 has been used, which gives a total of 11 harmonics for

14

ODEs and NLODEs problems, 22 harmonics for SODEs (systems of two equa-
tions each) cases except SODE3 (system of five equations) with 55 harmonics,
and 101 harmonics for PDEs.

Table 3 lists the algorithm parameter values which have been used for all
test cases and the good results obtained provide evidence about the robustness
of the method. However, more improvements could be obtained if the parame-
ters were tuned specifically for each case. In this way, we can differentiate those
parameters which are directly sensitive to the solution quality (maximum har-
monic order N and range extension ξ) and those which affect to the convergence
process (rest of algorithm parameters in Table 3). Regarding the former, the
required maximum harmonic order N depends on the variations of the solution
function and its derivatives. Generally speaking, more harmonics implies bet-
ter accuracy in terms of a lower value of RMSE. As it will further be shown,
good results have been obtained for N = 10 because the solution functions
do not have high frequency harmonics. Nevertheless, in some punctual cases
higher harmonics are needed. This is the case of ODE3, ODE8, ODE9, ODE10
and NLODE6 problems as it will further be described. The range extension ξ
should be higher than 0 when no null first derivatives are desired in the domain
boundaries. Good results have been obtained for ξ = 1. Low sensitivity has
been observed when this value is increased or reduced, except for values close to
0. Concerning the second type the parameters, the initialization values have a
high sensitivity in the results. According to Table 3, the best results have been
obtained using low values for the initial coefficients, and a similar maximum
value for the initial mutation strengths. Regarding the population, as expected,
better convergence is achieved increasing its size. A trade-off among perfor-
mance and computational cost is achieved using a population size of µ = 10.
A higher selective pressure than the standard one (λ/µ ' 7 according to [4])
has been observed more effective. The learning rate factor could be increased
in some cases up to 2 or 3 for speed-up the convergence process. According to
the definition of the fitness function, Eq. (4), the boundary condition penalty
ϕ should be of the same order than the number of collocation points and the
boundary point ratio nC/nB . Finally, in simple cases as ODEs, the stop criteria
could be relaxed in order to find the solution in less number of generations.

Table 4 shows the result of the proposed method over all the test cases.
Average values of the 10 runs are listed for fitness and it can be seen the RMSE
values of the best individual in the last generation and the number of generations
used. This table also gives the standard deviation of these values, showing low
dispersion in the results. As we can appreciate, ODE3 problem results are very
different from the rest of test cases. In the next subsection further details will be
given. Excluding ODE3 problem, good results have been obtained with RMSE
values between 10−6 and 10−1 for one-dimensional problems, and between 10−4

and 10−2 for PDEs. As an example, Fig. 5 and 6 show plots related to the
evolution of characteristic parameters of the algorithm and the quality of the
solution obtained for a run of the NLODE4 case. In particular, Fig. 5a and Fig.
5b show the fitness value and harmonic coefficients of the best individual over
the generations. Fig. 6a shows the evolution of the mutation strengths of the

15

Parameter Values
Maximum harmonic order N 10

Initial coefficients Between α = −10−3 and β = 10−3

Initial mutation strength Between γ = 3 · 10−4 and δ = 3 · 10−3

Parent selection (µ, λ) = (10, 400)
Learning Rate factor fτ 1

Boundary Condition Penalty ϕ 300
Range extension ξ 1

Stop criteria
15 generations with unchanged fitness

or 80 generations
Maximum Generations G 3000

Max. new harmonics in each step 8

Table 3: Numerical values for the parameters of the method.

Case Fitness RMSE Generations σFitness σRMSE σGenerations

ODE1 5.94 · 10−7 3.70 · 10−5 2581 6.30 · 10−8 1.66 · 10−6 476

ODE2 2.51 · 10−6 6.59 · 10−5 3000 1.28 · 10−7 2.55 · 10−6 0

ODE3 7.48 13.16 3000 1.32 · 10−2 1.35 · 10−2 0

ODE4 4.96 · 10−6 1.65 · 10−6 1113 3.33 · 10−9 8.72 · 10−7 38

ODE5 4.31 · 10−8 9.90 · 10−5 819 3.65 · 10−9 3.83 · 10−6 21

ODE6 2.91 · 10−8 5.44 · 10−6 801 1.47 · 10−8 3.64 · 10−6 74

ODE7 9.34 · 10−6 1.25 · 10−5 3000 4.65 · 10−7 2.64 · 10−6 0

ODE8 1.51 · 10−3 1.22 · 10−2 3000 2.00 · 10−5 1.00 · 10−4 0

ODE9 9.98 · 10−3 3.15 · 10−2 3000 2.91 · 10−4 5.29 · 10−4 0

ODE10 1.46 · 102 3.90 · 10−2 3000 2.06 · 101 1.65 · 10−3 0

NLODE1 2.26 · 10−7 7.42 · 10−5 1218 9.63 · 10−8 1.81 · 10−5 419

NLODE2 7.87 · 10−8 5.90 · 10−6 1349 7.07 · 10−9 5.49 · 10−7 106

NLODE3 1.12 · 10−5 3.64 · 10−5 3000 6.87 · 10−7 4.92 · 10−6 0

NLODE4 3.67 · 10−7 8.32 · 10−5 2187 8.14 · 10−9 7.91 · 10−6 49

NLODE5 3.58 · 10−7 3.19 · 10−6 2755 1.03 · 10−7 5.96 · 10−7 78

NLODE6 3.12 · 10−2 3.03 · 10−1 3000 1.97 · 10−4 9.49 · 10−4 0

SODE1 2.13 · 10−7 7.67 · 10−5 1117 2.18 · 10−8 1.66 · 10−5 147

SODE2 2.43 · 10−8 3.90 · 10−5 2701 2.43 · 10−8 3.77 · 10−6 166

SODE3 1.73 · 10−7 8.51 · 10−5 1149 5.88 · 10−8 4.02 · 10−5 48

SODE4 1.17 · 10−6 4.72 · 10−5 3000 9.90 · 10−8 2.61 · 10−6 0

SODE5 3.58 · 10−7 3.19 · 10−6 2755 1.03 · 10−7 3.18 · 10−6 78

PDE1 1.56 · 10−2 6.37 · 10−3 2700 3.01 · 10−3 7.33 · 10−4 57

PDE2 7.18 · 10−4 1.16 · 10−3 1956 1.77 · 10−4 2.14 · 10−4 139

PDE3 1.70 · 10−2 5.90 · 10−3 2564 3.63 · 10−3 7.99 · 10−4 156

PDE4 6.90 · 10−4 1.23 · 10−3 2066 6.76 · 10−5 3.62 · 10−5 102

PDE5 9.24 · 10−4 9.06 · 10−4 2599 2.10 · 10−4 1.29 · 10−4 66

PDE6 2.22 · 10−1 1.79 · 10−2 2979 6.24 · 10−2 3.84 · 10−3 42

Table 4: Experimental results.

16

Case Max. Harmonic Order Fitness RMSE
ODE8 10 1.51 · 10−3 1.22 · 10−2

20 1.35 · 10−4 2.84 · 10−3

30 1.84 · 10−5 9.24 · 10−4

ODE9 10 1.00 · 10−2 3.16 · 10−2

20 8.32 · 10−4 7.08 · 10−3

30 1.18 · 10−4 2.32 · 10−3

ODE10 10 1.46 · 102 3.39 · 10−2

20 3.27 · 10−1 1.34 · 10−3

30 5.65 · 10−3 5.33 · 10−4

NLODE6 10 3.13 · 10−2 3.03 · 10−1

20 1.80 · 10−2 2.17 · 10−1

30 1.25 · 10−2 1.73 · 10−1

Table 5: Harmonic number analysis for ODE8, ODE9, ODE10 and NLODE6 problems.

best individual with the generation number. Fig. 6b compares the exact solution
with the computed one. We can appreciate the good matching obtained.

Observing the RMSE for one dimensional problems in table 4, we can see
that all the cases have achieved a good accuracy with RMSEs values between
10−5 and 10−6 except for cases ODE3, ODE8, ODE9, ODE10 and NLODE6.
These last cases have a more complicated shape and more than 10 harmonics are
needed for approximate the solution. In table 5 the fitness and RMSEs values
running the algorithm with the same solver parameters (table 3) but using 10, 20
and 30 harmonics are given. As expected, the accuracy is increased when more
harmonics are used. Fig. 7 compares the solutions obtained for NLODE6 case
with the numerical approximation using a numerical method. We can appreciate
that due to the strong variation of the function near the origin 10 harmonics
are not enough for a proper representation of the solution.

3.4. ODE3 discussion
Not as good results have been obtained for ODE3 problem, with a RMSE of

several orders of magnitude bigger than the rest ODEs. Studding the differences
between this problem and the others, we can see that the variation range of
the derivatives appearing in the differential equation is around one order of
magnitude higher than in the other cases:

y′(1)
y′(0)

= 4e3 ' 80

y′′(1)
y′′(0)

=
30
12

e3 ' 50

 . (23)

17

a)

0 500 1000 1500 2000
Generations

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1
B

es
t F

itn
es

s
(1)

(2)

(3)

(4)

(5)

(6)
(7)

(8)
(9)

(10)

Fine tuning

b)

0 500 1000 1500 2000
Generations

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

H
ar

m
on

ic
 C

oe
ff

ic
ie

nt
s

a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10

Figure 5: Fitness value (a) and harmonic coefficients (b) of the best individual over the
generations for one run of NLODE4 case. In (a) number in parentheses indicate the number
of active plus frozen harmonics. Fine tuning step is shown as well.

18

a)

0 500 1000 1500 2000
Generations

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1
M

ut
at

io
n

St
re

ng
ht

s

sa0
sa1
sa2
sa3
sa4
sa5
sa6
sa7
sa8
sa9
sa10

b)

3 4 5
x

0

0.1

0.2

0.3

0.4

0.5

y

Computed solution
Exact solution

3 4 5
x

0

5e-05

0.0001

0.00015

0.0002

y-
y_

ex
ac

t

Figure 6: Mutation strengths of the best individual over the generations (a), comparison (b,
top) and difference (b, bottom) between the exact solution and the computed one for one run
of NLODE4 case. Mutation strength in (a) of inactive harmonics are considered out of the
plot with a value close to 0.

19

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
Numerical solution
10 harmonics
20 harmonics
30 harmonics

Figure 7: Comparison of the computed solution using 10, 20 and 30 harmonics with the
numerical approximation for NLODE6 case.

In order to check if these ratios are the cause of the bad results, the same problem
ODE3 has been solved using the same solver parameters (table 3) but reducing
the independent variable range from the original x ∈ [0, 1] to x ∈ [0, 0.2]. In
this way, the above ratios turn

y′(0.2)
y′(0)

=
3.2
2

e0.6 ' 2.9

y′′(0.2)
y′′(0)

=
15.6
12

e0.6 ' 2.4

 . (24)

Algorithm performance has been recovered for this new problem, obtaining an
average fitness of 5.48 · 10−4 and an average RMSE of 1.02 · 10−4.

Focusing in the original ODE3 problem, a study on the influence of the num-
ber of harmonic coefficients in the result quality has been performed. Several
runs with an unlimited number of generations have been done. Results are
shown in table 6. As we can see the results improve when the number of har-
monic coefficients is increased. More than 20 harmonics are needed for having a
RMSE close to the rest of cases. Other important problem detected is the slow
convergence rate, needing a higher number of generations.

4. Comparative study

In this section some comparatives with other approaches are described. Two
non-linear ODEs are solved using a numerical method and the results are com-

20

Max. Harmonic Order Fitness RMSE Generations
5 7.60 13.03 20053
10 1.49 4.45 194630
15 2.40 · 10−1 2.00 230060
20 3.93 · 10−2 5.83 · 10−1 380060

Table 6: Harmonic number analysis for original ODE3 problem.

pared with the proposed algorithm. Then, some qualitative comparisons against
other Evolutionary approaches reported in the literature are presented.

4.1. Comparative with numerical methods

Maybe the greater advantage of the proposed approach is that it is a generic
framework, that is, it does not depend on the type of differential equation. On
the other hand, numerical methods are specific for each equation type. For
instance, classical Runge-Kutta methods are used for initial value problems due
to their higher accuracy features compared with more efficient algorithms as
Euler’s method. Classical Runge-Kutta methods are explicit, and are unsuitable
for stiff systems because of their small region of stability. On the contrary,
implicit Runge-Kutta methods have a large region of absolute stability [21].
Boundary value problems requires different algorithms, such as shooting method
for one-dimensional problems or the finite element method for more general
domains. Even for the same equation, in some problems depending on the
boundary conditions the numerical scheme must be changed due to stability
reasons [25]. Furthermore, the implementation of a new numerical method could
turn difficult because it is necessary to take into account several issues as the
discretization order, the algorithm stability, the convergence speed, how to fulfill
the boundary conditions, etc. In the method described in this work, the original
problem is transformed into an optimization one according to Eq. (4), so the
problem of choosing the most appropriate numeric method disappears.

For making a quantitative comparison with a numerical method, two non-
linear ordinary differential equations from the test case suite (table 1) have
been solved with traditional numerical methods. The first problem, NLODE2
is a first order non-liner differential equation. The domain interval x ∈ [1, 2]
is discretized into N equidistant nodes. This system can be solved in a very
efficient way using a fourth order Runge-Kutta (RK4) algorithm [16]. Once the
solution is obtained, the RMSE is computed according to expression (22). The
RMSE can be computed on different grids using a liner interpolation obtaining
the values of the dependant variable yi on each grid node xi. In table 7 the
results obtained for two different grid sizes (102 and 103 nodes) are compared
with the evolutionary approach. The RMSE are computed on three different
grid sizes (102, 103 and 104 nodes).

21

Method Grid size RMSE102 RMSE103 RMSE104

RK4 102 2.23 · 10−12 8.91 · 10−6 8.91 · 10−6

RK4 103 8.71 · 10−8 3.80 · 10−15 8.75 · 10−8

Evolutionary 102 5.98 · 10−6 5.99 · 10−6 5.99 · 10−6

Table 7: Comparison of the numerical method solution with the Evolutionary approach for
NODE2 case. Two grid sizes of 102 and 103 have been used. The RMSE are computed on
three grid sizes using a linear interpolation for the numerical solution and the equation (7)
for the evolutionary one.

We can see that the RMSE of evolutionary solution is not dependant on the
grid size. The RK4 solutions have a high accuracy in the grid used in the com-
putation, but this accuracy decreases when other grid is used due to the linear
interpolation. The RK4 algorithm with the same grid size as the evolutionary
solution has a less accuracy in the finer grids (103 and 104 nodes). As expected,
if the number of nodes is increased, the accuracy achieved is higher and better
than the evolutionary approach. It is worth to point out that the solution rep-
resentation of the evolutionary approach only needs to store 11 numbers (the
harmonic coefficients), whereas the RK4 solution requires to store the values of
x and y in all the grid nodes, i. e. the RK4 solution in the finer grid is around
200 times bigger than the evolutionary solution.

For the next comparative NLODE5 has been selected. It is as well a non
linear differential equation, but the boundary conditions are given in different
points. This type of cases is called two point boundary problems. The crucial
distinction between initial value problems and two point boundary value prob-
lems is that in the former case we are able to start an acceptable solution at
its beginning, while in the present case, the boundary conditions at the starting
point do not determine a unique solution to start with. For this reason, two
point boundary value problems require considerably more effort to solve than
do initial value problems. The shooting method [16] has been used to solve this
problem. In this method the original problem is transformed into a root finding
problem. We choose values for all of the dependent variables at one bound-
ary. We then integrate the ODE by initial value methods, arriving at the other
boundary. We find discrepancies from the desired boundary values there, so the
initial boundary condition is readjusted. The iteration process is stopped when
no improve is detected in the error of the boundary condition at the left side
of the domain interval. Each iteration is solved using a RK4 algorithm trans-
forming the initial two order equation into the following equivalent first order
system:

y′ = z
z′ = yz

x sin x2 − 4x2 sinx2

}
, (25)

Table 8 shows a comparative of the solutions obtained using two grid sizes.
As before, the RMSE values are computed in three different grids using a linear
interpolation in the numerical solutions, and equation (7) for the evolutionary
one.

We see that as in the previous case a finer grid is needed for achieving

22

Method Grid size RMSE102 RMSE103 RMSE104

Shooting 102 3.92 · 10−7 5.67 · 10−5 5.68 · 10−5

Shooting 103 5.54 · 10−7 3.89 · 10−10 5.60 · 10−7

Evolutionary 102 3.12 · 10−6 3.13 · 10−6 3.14 · 10−6

Table 8: Comparison numerical method solution with the Evolutionary approach for NODE5
case. Two grid sizes of 102 and 103 have been used in the numerical method. The RMSE is
obtained using a linear interpolation for the numerical solution and the equation (7) for the
evolutionary one in three different grids of 102, 103 and 104 nodes.

a better RMSE value than in the evolutionary approach. When the RMSE
is computed in a different grid than the one used in the Shooting algorithm,
the errors increase. On the other hand, the RMSE values of the Evolutionary
solutions are not affected by the grid size. Note that the numerical integration
is performed using a fourth order Runge-Kutta algorithm, which is a high order
method, i. e. the errors depends on the grid size rise to the power of four. The
memory requirements of the Shooting solution using 103 nodes is around 200
times bigger than the evolutionary solution (arrays of x and y values must be
stored, meanwhile only the harmonic coefficients must be kept in evolutionary
solution).

With these two examples, we can say that in some cases the evolutionary
approach can achieve a more accurate solution using less number of nodes. The
solutions obtained are coded in a more compact way requiring significantly less
amount of memory. Nevertheless, a major drawback is the CPU time consuming.
In this comparison, the Evolutionary approach consumes around 5000 more time
than the numerical approach. This number could be decreased in other problems
where efficient numerical methods as RK4 and Shooting can not be applied, as
for instance in PDEs.

4.2. Comparative with other Evolutionary Computing approaches

It is difficult to make a quantitative comparative study with other reported
approaches. Although the same problems described in [22] have been used with
the same collocation points, the comparative is not straightforward because, as
it was already commented in subsection 3.2, the fitness values are high depen-
dent on the solver parameters and on how differential equations are provided
to expression (4). A correct comparison of the solution quality should be done
with the RMSE values, but these quantities are not reported in previous contri-
butions. However, Tsoulos et al. [22] obtained an average fitness values between
10−5 and 10−9, meanwhile in the present work the fitness values are in the range
of 10−2 and 10−8. Therefore it seems that neural networks can approximate the
solution functions with better accuracy. Moreover, no problems have been re-
ported for ODE3 case in [22, 23]. It is important to notice that in the present
contribution all the test cases have been run with the same solver parameters in
order to present a systematic method. However, better results could be obtained
if these solver parameters were adjusted by trial and error for each problem.

23

In contribution [19] a PDE using complex numbers on a triangle shape do-
main is reported. The RMSE is computed approximating the exact solution by
a numerical method solution. The RMSE obtained is around 10−4, which is
better than those obtained in the present paper. Nevertheless, the number of
unknowns that must be tuned in [19] is much higher than in the present work. A
total of 132 neurons are needed, so considering the weights and bias, this implies
a number of unknowns around 260 against 100 of the present contribution. In
a similar way, good accuracy has been obtained for ODE9 using 30 harmonics,
whereas in [3] more than 70 neurons are needed for obtaining a similar solution.

It can be remarked that in some other previous contributions [10, 22, 23]
PDE’s results are of the same quality than ODEs. In the present work, the
PDE’s RMSE is around two orders of magnitude bigger compared with ODEs
and SODEs. This could be explained noting that the number of unknown co-
efficients needed by a neural network for solving a PDE problem scale linearly
with the dependent variable dimension. On the other hand, using an harmonic
approach, the number of harmonics increases quadratically for 2D problems, as
it was shown in expression (21).

Because local search is used in other approaches [10, 15, 22], but not in the
present contribution, it is difficult as well to make a quantitative comparison of
the required computational power. It should be compared not the generation
number, but the number of fitness evaluations. But these quantities have not
been reported in the approaches mentioned. Furthermore, in our method, the
fitness evaluation number could be reduced taking into account that is cheaper
to evaluate the fitness function when the number of active harmonics is lower
in the first ES steps than in the last ES steps.

From a qualitative point of view, some advantages of the current approach
can be enumerated. Firstly, in this contribution is straightforward to compute
the derivatives because all the solutions are only expressed as sum of cosine
functions. In works based on GP [1, 20, 23], an automatic differentiation engine
must be used. In neural networks approaches [10, 19, 22, 15, 3], the activation
function must be differentiated, which could be hard depending on the chosen
function. Furthermore, if more than one hidden layer is used, the symbolic
derivatives implementation could turn very complex.

Secondly, in this work, several steps of a classical ES are used, guiding the
search process in a more efficient way. Other approaches [10, 15, 22] use local
search, which makes the implementation and analyis more difficult. Neverthe-
less, the proposed approach can deal naturally with local search phases, but we
have wanted to test the skills of our method in the simplest way possible. In
any case, the addition of this kind of search could accelerate the convergence
velocity.

Thirdly, low dispersion in the results has been observed, so this finding
provides evidence about the robustness of our method. Works based on GP
reported a higher dispersion.

And finally, the proposed approach can be applied to any kind of differential
equations. Some authors [10, 20, 24] use some particular methods for dealing
with the boundary conditions, facilitating the optimization process eliminating

24

the constraints. Nevertheless, these methods are problem dependant and can not
be applied to all problems. Our proposed method do not assumed any particular
structures in the boundary conditions. That is, it is straightforward to assign
a fitness value to each individual in the population transforming the original
problem into an optimization one according to Eq. (4), even in those problem
with complex geometries and boundary conditions, such as PDE6 (see Table 1)
where the definition domain is a region different from a classical 2-dimensional
interval.

5. Conclusions

A novel mesh-free approach for solving differential equations based on ESs
has been presented. Unlike numerical methods, the proposed algorithm is gen-
eral and does not assume any structure of the differential equations. Therefore
the approach is suitable both for linear and nonlinear ODEs, SODEs and PDEs.
Candidate solutions are built using Fourier series. The periodic expansion of the
solutions is done in such a way that all the sine coefficients are vanished and the
constraint of null first derivative at the borders of the original range is avoided.
This method allows computing symbolically all the needed derivatives, so no
mesh connectivity is needed. Only a set of collocation points must be provided.
Taking advantage on the decreasing absolute value of the harmonic coefficients
with the harmonic order, several ES steps are performed. The harmonic coeffi-
cients are taking into account one by one starting with the lower order ones. In
this way the search space dimension is reduced making the search process more
systematic and easier.

The proposed method has been tested in a set of 26 different problems ex-
tracted from the literature. All the test cases have been successfully solved
using the same set of algorithm parameters. Assuming that the exact solution
is known for the test cases, the RMSE is used for comparing the quality of
the results. The achieved RMSE is around 10−5 for the majority of ODEs and
SODEs and around 10−3 for PDEs with rectangular boundaries. Lower con-
vergence has been achieved in PDE6 case, with a RMSE of 10−2. It has been
shown that depending on the solution’s shape, some cases need more than 10
harmonics for a correct representation.

A quantitative analysis was performed solving two cases with a numerical
method. This analysis has shown that the evolutionary algorithm could outper-
form the numerical approach in terms of accuracy, compactness and storage re-
quirements of the solution because the evolutionary approach produces a math-
ematical function, whereas numerical methods give arrays of values on the grid
nodes. In addition, in the proposed algorithm like other mesh-free approaches,
the connectivity in the mesh is not necessary, making the preprocessing steps
straightforward compared with a numerical approach.

The results obtained are encouraging but several improvements can be done
in cases where a high number of harmonics is needed for building candidate solu-
tions. In this type of problems, efficiency of the algorithm could be improved us-
ing a parallel implementation, which is relatively straightforward because of the

25

intrinsic parallel nature of the evolutionary algorithms. Several sub-populations
could be computed in different processor units. Another way of improving the
algorithm performance is using some kind of local search in the evolutionary
algorithm. This can be done in an easy way without modifying the ESs phases.

The proposed approach can naturally deal with differential equation prob-
lems defined on non-rectangular boundaries as it has been shown in PDE5 and
PDE6 cases. Such problems are very interesting and arise in many real engi-
neering applications. Nevertheless the behaviour of the Fourier expansions and
the ES dynamics must be investigated in more complex geometries. Another
important direction of research could be the application of the proposed method
to another kind of differential equations like PDEs with initial value problems.

References

[1] P. Balasubramaniam and A. V. A. Kumar. Solution of matrix riccati differ-
ential equation for nonlinear singular system using genetic programming.
Genetic Programming and Evolvable Machines, 10:71–89, 2009.

[2] H. G. Beyer and H. P. Schwefel. Evolution strategies - a comprehensive
introduction. Natural Computing, 1:3–52, 2002.

[3] H. Chen, L. Kong, and W.-J. Leng. Numerical solution of pdes via in-
tegrated radial basis function networks with adaptive training algorithm.
Applied Soft Computing, 11:855–860, 2011.

[4] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer-Verlag Berlin Heidelberg, 2 edition, 2007.

[5] N. N. El-Emam and R. H. Al-Rabeh. An itelligent computing technique
for fluid flow problems using hybrid adaptive neural network and genetic
algorithm. Applied Soft Computing, 11:3283–3296, 2011.

[6] S. J. Farlow. Partial Differential Equations for Scientists and Engineers.
Dover Publications, Inc., 1993.

[7] B. L. Ghodadra. Order of magnitude of multiple fourier coefficients of
functions of bounded p-variation. Acta Mathematica Hungarica, 22(3):187–
198, 2010.

[8] D. Howard and S. C. Roberts. Genetic programming solution of the
convection-diffusion equation. Proceedings of Genetic Evolutionary Com-
putation Conference (GECCO-2001), pages 34–41, 2001.

[9] S. J. Kirstukas, K. M. Bryden, and D. A. Ashlock. A hybrid genetic pro-
gramming approach for the analytical solution of differential equations.
International Journal of General Systems, 34:279–299, 2005.

[10] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for
solving ordinary and partial differential equations. IEEE Transactions on
Neural Networks, 5:987–1000, 1998.

26

[11] R. J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002.

[12] G. R. Liu. Meshfree Methods. Moving Beyond the Finite Element Method.
CRC Press, Inc., 2010.

[13] M. O’Neill and C. Ryan. Grammatical evolution. IEEE Transactions on
Evolutionary Computation, 5:349–358, 2001.

[14] M. N. Ozisik. Finite Difference Methods in Heat Transfer. CRC Press, Inc.,
1994.

[15] D. R. Parisi, M. C. Mariani, and M. A. Laborde. Solving differential equa-
tions with unsupervised neural networks. Chemical Engineering and Pro-
cessing, 42:715–721, 2003.

[16] W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery. Numer-
ical Recipes in C++: the art of scientific computing. Cambridge University
Press, New York, NY, USA, 2nd edition, 2002.

[17] K. R. Rao and P. Yip. Discrete Cosine Transform. Algorithms, Advantages
and Aplications. Academic Press, Inc, 1990.

[18] T. Seaton, G. Brown, and J. F. Miller. Analytic solutions to differen-
tial equations under graph-based genetic programming. EuroGP LNCS,
6021:232–243, 2010.

[19] Y. Shirvany, M. Hayati, and R. Moradian. Multilayer perceptron neural
networks with novel unsupervised trining method for numerical solution of
the partial differential equations. Applied Soft Computing, 9:20–29, 2009.

[20] A. Sobester, P. B. Nair, and A. J. Keane. Genetic programming approaches
for solving elliptic partial differential equations. IEEE Transactions on
Evolutionary Computation, 12:469–478, 2008.

[21] E. Suli and D. F. Mayers. An Introduction to Numerical Analysis. Cam-
bridge University Press, 2003.

[22] I. G. Tsoulos, D. Gavrilis, and E. Glavas. Solving differential equations
with constructed neural networks. Neurocomputing, 72:2385–2391, 2009.

[23] I. G. Tsoulos and I. E. Lagaris. Solving differential equations with ge-
netic programming. Genetic Programming and Evolvable Machines, 7:33–
54, 2006.

[24] H. S. Yazdi and R. Pourreza. Unsupervised adaptive neural-fuzzy inference
system for solving differential equations unsupervised adaptive neural-fuzzy
inference system for solving differential equation. Applied Soft Computing,
10:267–275, 2010.

27

[25] Xiaolu Zhao. Stream function solution of transonic flow along s2 stream-
surface of axial turbomachines. Journal of Engineering for Gas Turbines
and Power, 108(1):138–143, 1986.

28

View publication stats

https://www.researchgate.net/publication/230816654

	Introduction
	Method description
	Statement of the problem
	Candidate solutions
	Evolution Strategy
	Global algorithm

	Experimental results
	Test cases
	Quality solution measure: Root of the Mean Squared Error
	Results
	ODE3 discussion

	Comparative study
	Comparative with numerical methods
	Comparative with other Evolutionary Computing approaches

	Conclusions

