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ABSTRACT The Foveal Avascular Zone (FAZ) is a capillary-free area that is placed inside themacula and its
morphology and size represent important biomarkers to detect different ocular pathologies such as diabetic
retinopathy, impaired vision or retinal vein occlusion. Therefore, an adequate and precise segmentation of
the FAZ presents a high clinical interest. About to this, Angiography by Optical Coherence Tomography
(OCT-A) is a non-invasive imaging technique that allows the expert to visualize the vascular and avascular
foveal zone. In this work, we present a robust methodology composed of three stages to model, localize,
and segment the FAZ in OCT-A images. The first stage is addressed to generate two FAZ normality models:
superficial and deep plexus. The second one uses the FAZ model as a template to localize the FAZ center.
Finally, in the third stage, an adaptive binarization is proposed to segment the entire FAZ region. A method
based on this methodology was implemented and validated in two OCT-A image subsets, presenting
the second subset more challenging pathological conditions than the first. We obtained localization success
rates of 100% and 96% in the first and second subsets, respectively, considering a success if the obtained FAZ
center is inside the FAZ area segmented by an expert clinician. Complementary, the Dice score and other
indexes (Jaccard index and Hausdorff distance) are used to measure the segmentation quality, obtaining
competitive average values in the first subset: 0.84±0.01 (expert 1) and 0.85±0.01 (expert 2). The average
Dice score obtained in the second subset was also acceptable (0.70 ± 0.17), even though the segmentation
process is more complex in this case.

INDEX TERMS Foveal avascular zone, OCT-angiography, modeling, localization, segmentation.

I. INTRODUCTION
Optical Coherence Tomography Angiography (OCT-A) [1]
represents a new image modality that is commonly used
in the ophthalmic field and allows the expert to visualize
non-invasively the vascularization at different levels of the
retinal layers. The OCT-A image acquisition process is com-
plex. It can be divided into several steps, as we can graph-
ically see in Fig. 1. Specifically, in step 1, it is necessary
to extract several OCT images in the region of interest by
forming a cube of OCT images. This process is repeated
several times, being obtained different OCT cubes at different
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consecutive moments in time. This is necessary to compare
the respective sections and generate OCT images with the
vascular differences between subsequent moments in time.
Note that the tissue remains fixed while the blood flow varies
between respective sections as time advances. Once the dif-
ferences are calculated, we obtain a new OCT cube where
the blood vessels are highlighted in each section (step 2).
Finally, by selecting the desired layer (superficial or deep),
which is specified by the configuration of the OCT-A capture
device, the cross-section of the cube is made in the region
of interest, being the final OCT-A image obtained (step 3).
Usually, OCT-A images are inspected by the expert clinicians
in two different depth configurations: superficial and deep
plexus; both of them representing the more relevant regions
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FIGURE 1. Representative steps of the OCT-A image acquisition.

of interest. The superficial plexus allows us the visualization
and analysis of the main retinal vessels, while the deep plexus
contains the deepest vessel information. Additionally, once
selected the depth to analyze, there are two typical levels of
zoom that are commonly used in the clinical field (3×3 mm2

or 6 × 6 mm2), allowing us to see a region of smaller area
and higher resolution or a region of a larger area and lower
resolution, respectively.

Retinal microcirculation represents valuable information
in the diagnosis and monitoring process of different systemic
and eye diseases that directly affect the blood flow, as could
be the retinal vein occlusion or diabetes, among others. In this
sense, the non-invasive imaging feature, which is associated
with OCT-A, implies a clear advantage over previous imag-
ing modalities. Furthermore, with OCT-A, it is possible to
analyze small regions, providing the option of monitoring the
more insignificant changes that can be relevant in the disease
identification process. In particular, one of these regions is
the foveal avascular zone (FAZ), whose morphology and size
represent relevant clinical biomarkers that have been recur-
rently analyzed in different ophthalmic image modalities [2].
The value of the parameters that measure these two properties
change with different diseases or phases of the same pathol-
ogy. In this sense, OCT-A allows us the visualization of the
FAZ region with a high level of quality, given that the images
are typically captured centered in this region. In Fig. 2, we
can see some representative examples of variable FAZ shapes
and sizes, clearly intuiting the usefulness of the study of
this region in the clinical diagnostic and monitoring process:
the FAZ in healthy subjects (Fig. 2.a) is characterized by a

FIGURE 2. Representative examples of the variation of the FAZ area and
contour in different OCT-A images and scenarios: (a) without pathology,
(b) diabetic retinopathy, and (c) retinal vein occlusion.

regular circular contour and a small size; on the contrary,
the FAZ contour in pathological cases (Fig. 2.b and 2.c) is
more irregular and presents larger sizes.

There is a high number of clinical studies that analyze
the FAZ in OCT-A images. The FAZ is related to the visual
acuity of the patient in different diseases, as could be diabetic
retinopathy (DR) and retinal vein occlusion [3]–[5], among
others [6]. In the same line, there are clinical studies that
demonstrate that the FAZ area varies with healthy and patho-
logical subjects [7], [8], as well as with different degrees of
the same disease [9]. Additionally, it has also been discovered
that the size of the FAZ region changes with some risk
habits, as occurs, for example, with tobacco consumption
[10]. In any case, not only the FAZ size is relevant, it is also
important the regularity of its contour [11].

In this context, a method aimed at automatically segment-
ing the FAZ is desirable, due to the objectivity and repro-
ducibility properties associated with this type of method.
There are several approaches in the literature that identify
and segment the FAZ in different retinal image modalities.
For example, there exist methods for the FAZ segmentation
in retinography images [12], [13]. In other cases, the FAZ
identification method is also used to obtain the DR degree
[14], [15]. There are also other studies where the FAZ is
segmented in images obtained by fluorescein angiography
[16], an invasive image modality that allows the experts a
better visualization of the retinal vessels and FAZ than with
traditional retinography.

However, given the novelty of the OCT-A imaging, there
are few computational studies based on the automatic extrac-
tion of the FAZ in this new image modality. Most of them are
based on semi-automatic approaches. For example, Lu et al.
[17] introduced a semi-automatic approach to extract the FAZ
region and used this result to classify images in healthy or
diabetic subjects. Specifically, a manual initialization placed
a seed on the center of the FAZ region and, then, region
growing and morphological operators were applied to this
seed to obtain the final FAZ region. Similarly, Alam et al.
[18] proposed a semi-automatic approach, where the FAZ
contour was semi-automatically demarcated and the FAZwas
segmented using an active contour model, being the seed
point manually placed at the center of the fovea. Meanwhile,
Eladawi et al. [19] implemented an automatic method to
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perform the early detection of DR using different biomarkers:
the blood vessels density, the retinal vascular appearance and
the distance map of the FAZ (map that shows the Euclidean
distance between each pixel in the segmented FAZ area and
its nearest boundary pixel). In particular, for obtaining the last
biomarker, the authors carried out a semi-automatic extrac-
tion of the FAZ: the fovea center is manually selected as a
seed that is used by region growing techniques and morpho-
logical operators with the final objective of segmenting the
FAZ. Finally, in a different way, Díaz et al. [20] proposed the
first fully automatic method to extract the FAZ and it works as
follows. First, the largest dark blob in the image is localized
(it is assumed that this region always corresponds to the FAZ).
Then, the localization blob is used as a seed to apply region
growing techniques to precisely extract the FAZ contour.

In this work, we propose a three-stage approach to auto-
matically identify the FAZ in OCT-A images. The first stage
generates two FAZ normality models: one of them charac-
terizes the superficial plexus and, the other, the deep plexus.
The second stage uses cross-correlation-based adaptive tem-
plate matching to precisely and robustly localize the FAZ.
The OCT-A image and FAZ model play the role of frame
and template, respectively. The template matching applied
is said adaptive because the best-scaled template is auto-
matically chosen for each analyzed image. Finally, the third
stage uses global adaptive binarization for segmenting the
FAZ. Specifically, the implemented segmentation method
exploits different binarization thresholds oriented to find an
optimum segmentation that minimizes the root mean square
error between two sub-windows: the first one is centered in
the FAZ center of the input OCT-A image and the second
one contains two types of pixels that result of binarizing and
processing the first sub-window. Additionally, to reduce the
computational cost and noise, the three stages are applied
using a resolution lower than the original resolution of the
OCT-A images stored in the database used.

The rest of the manuscript is organized as follows:
Section II describes the features of the two OCT-A image
subsets used in the different experiments. Section III explains
in detail the approach that was proposed for modeling, local-
izing, and segmenting the FAZ region. Section IV shows and
analyzes the results obtained in the experiments performed to
validate our approach. Finally, Section V exposes the main
conclusions of this work.

II. MATERIALS
To validate the proposed method, we used two public subsets
of images belonging to the denominatedOCTAGONdatabase
(version 2) [21]. In this database, all the images were taken
using the optical coherence tomography capture device DRI
OCT Triton at the typical configurations: two different levels
of zoom (3× 3 mm2 and 6× 6 mm2) and depths (superficial
and deep), and with a resolution of 320× 320 pixels.
The first subset, also known in the literature as OCTAGON

database (version 1) or, simply, the OCTAGON database,

contains 213 OCT-A images (144 healthy and 69 with
diabetic retinopathy) grouped into different categories. The
FAZ in the images belonging to the ‘‘healthy’’ category was
manually labeled and segmented by two expert clinicians
(expert#1 and expert#2) and, in the case of the ‘‘diabetic
retinopathy’’ category, by just one expert. Table 1 summarizes
the number of images belonging to each category. A more
detailed description of this subset of images can be consulted
in [20].

TABLE 1. The number of images belonging to each category in the first
subset of the OCTAGON database (version 2).

The second subset contains 48 OCT-A images in which
the task of localizing and segmenting the FAZ is much
harder than the first subset. Three circumstances in this
dataset can difficult the automatic identification of the FAZ:
(i) the presence of ischemic areas, where blood circulation
has decreased or stopped, can increment the number of false
positives; (ii) the existence of different artifacts can lead to
the misidentification of the FAZ, especially if some of these
artifacts are dark or located within the FAZ; and (iii) the
handling of OCT-A images not centered in the FAZ can
be a great challenge since there are localization or seg-
mentation methods that assume that the image is always
centered in the FAZ. Table 2 summarizes the number of
images belonging to each category. In this subset, only one
expert clinician manually segmented the FAZ region of each
image.

TABLE 2. The number of images belonging to each category in
the second subset of the OCTAGON database (version 2).

III. METHOD DESCRIPTION
The complete description of the proposed method implies
three main stages. The first is dedicated to generating two
representative FAZ normality models (3 × 3 mm2): one of
them is associated with the superficial capillary plexus and,
the other, with the deep capillary plexus. Then, a template
matching-based method uses the superficial or deep FAZ
model as a template to localize the FAZ in superficial or
deep plexus images (independently of the level of zoom),
respectively. Finally, using the FAZ localization information,
a method based on adaptive binarization is applied to pre-
cisely segmenting the entire FAZ region. In this section, each
one of these stages is described in detail.

VOLUME 8, 2020 152225



E. J. Carmona et al.: Modeling, Localization, and Segmentation of the FAZ on Retinal OCT-Angiography Images

A. GENERATING FAZ NORMALITY MODELS
This section describes how to create a FAZ normality model
for later use as a template in the FAZ localization method.
Specifically, we created two FAZ normality models, consid-
ering the superficial and deep plexus, and both of them with
a level of zoom of 3 × 3 mm2. To do so, each model was
calculated as the average intensity of N square sub-windows
centered in the FAZ. We only used the images belonging
to the ‘‘healthy’’ category of the first subset of images (see
Section II). In particular, each sub-window has a width of
L × L, being centered in the actual FAZ center and extracted
from each 3 × 3 mm2 image, Ii, which is previously scaled
with a factor scale αi defined as:

αi = K ·

√
A
Ai
, (1)

where A is the average FAZ area (calculated from the FAZ
of N ‘‘healthy’’ images), Ai is the FAZ area corresponding to
the current image, and K is called the work scale and is given
by:

K = 1/2q (2)

being q ∈ N. The reduction of the image size that results
in applying the work scale, K , helps to decrease the image
processing time and also to eliminate some noisy artifacts
that are present in the original image. Additionally, the term√
A/Ai in Eq. (1) allows us to slightly readjust the size of each

image to ensure that the size of the FAZ is similar in all the
sub-windows considered to calculate themodel. For example,
if Ai > A, the value of αi will be slightly smaller than K , and
the size of the FAZ will decrease slightly before contributing
to the calculation of the mean. On the contrary, if Ai < A,
then αi will be slightly larger than K and the size of the FAZ
will increase conveniently.

Algorithm 1 shows the steps that are followed to obtain the
superficial plexus FAZ model. A similar procedure was used
to obtain the deep plexus FAZ model. The only difference
is that 3 × 3 mm2 superficial plexus healthy images were
just used in the construction of the superficial model and
3× 3mm2 deep plexus healthy images were used in the deep
model. Although the OCT-A images are gray-scale images,
they are stored in the TIFF file format with three channels,
where each channel has the same information. Therefore,
we use the RGB-to-grayscale operator to highlight the pres-
ence of the three channels in the input image, but the result
obtained by this operator is the same as selecting one of the
three channels.

The values of the parameters used to build both models
(see Algorithm 1) were the following: N = 36, that is, all
the ‘‘healthy’’ images (superficial or deep) of the first subset
of images with the level of zoom 3 × 3 mm2 were used (see
Table 1). The exponent used to calculate the work scale was
q = 2. This value is high enough to reduce the image size
and to eliminate some artifacts that are present at higher sizes,
as well as low enough so that the FAZ does not loose details

Algorithm 1 Pseudo-Code to Obtain the Superficial Plexus
FAZ Model (3× 3 mm2)
Inputs

IRGB = {I1, . . . , IN }, superficial plexus healthy imgs (3×
3 mm2)

C = {C1, . . .CN }, FAZ centers of superf. plexus healthy
imgs (3× 3 mm2 )

A = {A1, . . . ,AN }, FAZ areas in superf. plexus healthy
imgs (3× 3 mm2)
q, exponent to calculate the work scale (K = 1/2q)
m, m-by-m neighborhood used by the median filter
L, sub-window size (L × L)

Output
MFAZ, superficial plexus FAZ model (3× 3 mm2)

1: A← mean(A1, ..,AN )
2: for i← 1 to N
3: αi← K ·

√
A/Ai;

4: C′← scale-center (Ci, αi);
5: Ig← RGB-to-grayscale (Ii);
6: I′g← resize-image (Ig, αi);
7: In← normalize-image (I′g);
8: Im← median-filter (In,m);
9: WFAZ(i) ← extract-FAZ-subwindow

(Im,C′,L);
10: end-for
11: MFAZ← mean (WFAZ(1), . . . ,WFAZ(N ));
12: MFAZ← median-filter (MFAZ,m);

of interest (taking into account that 3 × 3 mm2 OCTAGON
images have a resolution of 320 × 320 pixels); the size of
m × m neighborhood used by the median filter was set to
m = 5 (at the work scale), considering that was a reasonable
size to indirectly produce the following actions: (i) blur the
vessels, (ii) preserve the typical pattern of contour lines of
the FAZ periphery, and (iii) eliminate the typical salt&pepper
noise associated with the FAZ in this image modality. Finally,
the value that was chosen for the sub-window size, L =
(2 × D) + 1, was high enough to include the FAZ and its
periphery, beingD the average FAZ diameter in pixels. To use
the maximum range of gray intensity, a normalization based
on contrast stretching was applied, where the bottom and
top 1% of all the pixel values are saturated to 0 and 255,
respectively. The values of FAZ areas, A1, . . . , AN , and FAZ
centers, C1, . . . , CN , were obtained from the expert#1.
Figures 3.a-b show the two obtained gray-level models.

It can be seen (and computed) that the average FAZ area asso-
ciated with the deep plexus (289.5 ± 83.9 pixels) is greater
than that associated with the superficial plexus (226.7± 65.3
pixels). This result is consistent with other related studies in
the literature [22], [23]. Additionally, Figs. 3.c-d show the
contour plots of each model. It can be seen that all the contour
lines (isolines) in the periphery of an average healthy FAZ are
nested (assuming that blood vessels are blurred), the intensity
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FIGURE 3. The two FAZ normality models (3× 3 mm2) at work scale: (a) the superficial plexus model (gray-level); (b) the deep
plexus model (gray-level); (c) the contour plot of the superficial plexus model; and (d) the contour plot of the deep plexus
model.

of the image grows from the FAZ center towards its periphery
and the slope of the intensity growth in the deep plexus is
greater than that corresponding to the superficial plexus.

Finally, note that to obtain the superficial and deep FAZ
normality model at work scale and for a level of zoom 6 ×
6 mm2, it will be enough to resize its respective 3 × 3 mm2

model, using a scale factor equal to 1/2. As will be seen in
Section IV, the generation of these normality models will
provide stability and robustness to the localization method,
not only facilitating the FAZ identification in normal cases
but also, and especially, in the most complex scenarios (with
presence of noise, artifacts or pathological FAZ).

B. FAZ LOCALIZATION STAGE
Using the FAZ model as a reference, the FAZ localization is
done using cross-correlation-based adaptive template match-
ing [24], [25]. In general, template matching (TM) is the pro-
cess of finding the position(s) at which a specified template

is located inside an image frame (search area of a larger
size than the template). Specifically, the matching process
involves the following steps: (i) the template is shifted from
left to right and from top to bottom within the frame, (ii) at
each template location, the similarity between the template
and the frame sub-window covered by the template is com-
puted, and (iii) those positions that obtain a high similarity
are stored. Although mean absolute error or other similar
error measurements have been used to compute the simi-
larity, the advantages of using correlation are its reliability
and accuracy [26]. Specifically, the correlation coefficient is
independent of any offset or linear transformation in the set
of pixel values to compare and, if we compute its normalized
version, its value will always be bounded in the interval
[−1, 1].

In the TM context, we use the OCT-A image as the
frame, and the FAZ model, associated with the OCT-A image
type (superficial or deep), as the template. Previously, it is
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necessary to make two considerations. First, before applying
TM, we have to apply to the image input the same preprocess-
ing steps that were used to build the FAZ model: (i) RGB-
to-grayscale, (ii) resize to the work scale, (iii) normalize,
and (iv) median filter. Second, it must be noted that the
FAZ of each patient’s eye may be slightly different in size
from our FAZ model. Therefore, we apply an adaptive TM,
where different sizes of the original FAZ model (template)
are used. For each template scale, the TM produces a matrix
of intensity levels with the property of having high-intensity
values where the degree of matching is high. However, due
to the existence of noise and other artifacts in the image,
the TM output can include one or more zones (blobs) with
high response. To count the number of blobs that present
this property, we binarize the TM output obtained for each
template size, using a threshold that represents a percentage
of the maximum correlation value that was obtained. This
percentage is predefined empirically. Finally, the FAZ center
is selected as the pixel of maximum correlation, considering
only those correlation matrices (one or more) where the num-
ber of maximum correlation blobs wasminimum (ideally, one
blob per matrix).

Algorithm 2 summarizes the different steps followed to
localize the FAZ in 3 × 3 mm2 superficial plexus images.
Note that, in each iteration of the ‘‘for’’ loop, a different
scale is applied to the template; additionally, the FAZ cen-
ter, CFAZ , and the maximum correlation value, MAXCORR,
are just updated when the number of maximum correlation
blobs obtained is: (i) less than that obtained in any previous
iteration, independently of the maximum correlation reached
until now; or (ii) equal to the minimum number of maxi-
mum correlation blobs obtained until now and the maximum
correlation obtained in the iteration is greater than or equal
to that stored in MAXCORR. A similar algorithm could be
used to localize the FAZ in 3 × 3 mm2 deep plexus images.
The only difference is that the input image and the FAZ
model would be associated with the 3× 3 mm2 deep plexus.
Similarly, the described algorithm could be used to localize
the FAZ in 6 × 6 mm2 deep and superficial plexus images:
the only consideration to take into account is that the original
resolutions of the 3× 3 mm2 and 6× 6 mm2 OCT-A images
are equal (see Section II). Therefore, in the case of 6×6mm2

OCT-A images, the value of exponent used to calculate the
work scale has to be set to q = q′− 1, being q′ = 2 the value
used to calculate the FAZ model.

The values of the parameters used to localize the FAZ
(see Algorithm 2), considering the different configurations in
the OCTAGON database, were the following: the parameter
values related to the preprocessing stage,m and q, were equals
to those used to build the FAZ models (see Section III-A).
Here, as already mentioned above, the only exception is the
value of parameter q for the case of 6 × 6 mm2 images,
which is set to q = 1 (q = 2 for 3 × 3 mm2 images). The
template scale is varied from 0.5 to 1.5 times the original
size of the FAZ model, using a step size equal to 0.1 (see
ScaleSet parameter). Finally, the percentage of the maximum

Algorithm 2 Pseudo-Code to Localize the FAZ in 3×3mm2

Superficial Plexus Images. To Adapt This Algorithm to 3 ×
3mm2 Deep, 6×6mm2 Superficial or 6×6mm2 Deep Plexus
Images, See Section III-B
Inputs

IRGB, 3× 3 mm2 superficial plexus image
MFAZ , superficial plexus FAZ model
q, exponent to calculate the work scale
m, m-by-m neighborhood used by the median filter
ScaleSet , set of values to scale the template
Th%, percentage of maximum correlation value

Output
CFAZ, FAZ center

1: MAXCORR←−1;
2: NBLOBS ←∞;
3: K ← 1/2q;
4: Frame← preprocess (IRGB,K ,m);
5: for TemplateScale ∈ ScaleSet
6: Template ← resize-template

(MFAZ ,TemplateScale);
7: MTM ← template-matching

(Frame,Template);
8: max ← max(MTM );
9: Th← Th% × max;

10: Mb← binarize (MTM ,Th);
11: nblobs← count-blobs (Mb);
12: if nblobs < NBLOBS
13: NBLOBS ← nblobs;
14: MAXCORR← max;
15: CFAZ ← extract-coordinates(MTM ,

MAXCORR);
16: end-if
17: if (nblobs = NBLOBS ) ∧ (max ≥ MAXCORR)
18: MAXCORR← max;
19: CFAZ ← extract-coordinates(MTM ,

MAXCORR);
20: end-if
21: end-for
22: CFAZ ← scale-center (CFAZ , 1/K );

correlation value was set to Th% = 0.75. The tuning of this
parameter wasmade by trial and error, but it is not critical, that
is, other values close to the chosen value work adequately.

Figure 4 shows different steps of interest related to the
localization stage. Specifically, Fig. 4.a shows the result of
preprocessing the input image (frame) at the work scale.
In this case, the original input image corresponds to a 3 ×
3 mm2 superficial healthy OCT-A image. Figure 4.b shows
a plot where each point represents the maximum correlation
value (y-axis) of the correlation matrix obtained when the
template matching uses a template resized with a scale given
(x-axis). Figure 4.c shows the optimal size template that
was automatically selected. Figure 4.d shows the correlation
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matrix at work scale obtained by template matching using
the template of optimal size. The result of binarizing the
correlation matrix of Fig. 4.d is shown in Fig. 4.e, where
just one blob appears. Finally, the FAZ center is obtained
from the pixel coordinates of the maximum correlation in
the correlation matrix of Fig. 4.d. However, these coordinates
are expressed at the work scale. Therefore, they have to be
transformed at the original scale, as shown in Fig. 4.f.

FIGURE 4. Different steps related to the localization stage (see
Section III-B for more information): (a) preprocessed input image (frame)
at work scale (80× 80 pixels); (b) plot of maximum correlation value vs.
template scale; (c) optimum size template (25× 25 pixels); (d) correlation
matrix obtained by template matching and using the optimum size
template (80× 80 pixels); (e) binarized correlation matrix where one blob
only appears (80× 80 pixels); (f) FAZ center on the original input image at
original scale (320× 320 pixels).

C. FAZ SEGMENTATION STAGE
The FAZ segmentation is carried out using an adaptive bina-
rization process applied to an image sub-window centered
in the FAZ center. In this context, the optimum binarization
threshold will produce a binary image where the pixels cor-
responding to the actual FAZ region present value zero, and
the rest of the pixels present values equal to 1. There exists
in the literature different binarization techniques [27], [28],
but we propose here a global adaptive binarization method
that was adapted to segment the FAZ region. Specifically,
Algorithm 3 shows the procedure in pseudo-code. First of
all, a preprocessing stage is applied to the input OCT-A
image, IRGB, that includes the same steps as the localization
preprocessing stage: (i) RGB-to-grayscale, (ii) resize to the
work scale, (iii) normalize, and (iv) median filter. Next, a sub-
window,WFAZ , centered in the FAZ center,CFAZ , is extracted
from the preprocessed image, I. We assume that the FAZ
center is obtained as a result of applying our localization
algorithm (see Section III-B). However, any other localiza-
tion method could be used. Then, an iterative process of
binarization is applied to WFAZ . In each iteration, a different
binarization threshold, belonging to a set of possible values,
is used. In order to evaluate each FAZ sub-window segmen-
tation result,Wb

FAZ , obtained for each binarization threshold,

Algorithm 3 Pseudo-Code to Segment the FAZ in OCT-A
Images
Inputs:

IRGB, OCT-A image
q, exponent to calculate the work scale
m, m-by-m neighborhood used by the median filter
CFAZ , FAZ center of IRGB
w, size of sub-window (w× w)
ThresholdSet , set of thresholds to binarize the sub-window

Output:
FAZ, FAZ segmented

1: ERROR←∞;
2: K ← 1/2q;
3: I← preprocess (IRGB,K ,m);
4: WFAZ ← extract-subwindow (I,CFAZ ,w,m);
5: x ←mean(WFAZ );
6: for Th ∈ ThresholdSet
7: Wb

FAZ ← binarize (WFAZ ,Th);
8: Wtmp← x ·Wb

FAZ ;
9: errori← RMSE(WFAZ ,Wtmp);
10: if errori < ERROR
11: ERROR← errori;
12: SFAZ ←Wb

FAZ ;
13: end-if
14: end-for
15: FAZtmp ← resize-to-original-scale

(SFAZ , 1/K );
16: FAZ← postprocess (FAZtmp);

we apply the following procedure: Wb
FAZ is multiplied by

the mean value of WFAZ , denoted by x, obtaining Wtmp,
and then the root mean square error (RMSE) is calculated
betweenWFAZ andWtmp. The hypothesis of the segmentation
method is the following: the binarization that produces the
best approximation to the actual FAZ segmentation will also
return the smallest RMSE.

To clarify our segmentation hypothesis, we can consider
three scenarios clearly differentiated, depending on the bina-
rization threshold value: (i) it is too large; (ii) it is too
small; and (iii) it is close to the optimum value. In particular,
Fig. 5 illustrates each of these scenarios. Thus, using a very
large threshold, almost all the pixels of the preprocessed
sub-window (Fig. 5.a) are binarized to zero (Fig. 5.b), that is,
almost all the pixels are considered as belonging to the FAZ.
Then, the multiplication by x produces a matrix Wtmp with
almost all its elements equal to zero (Fig. 5.c) and, therefore,
practically all the pixels, except those that actually belong
to the FAZ region, will contribute to increasing the RMSE
(Fig. 5.d). Conversely, the use of a very small thresholdmakes
that almost all the pixels of the sub-window are binarized to 1
(Fig. 5.e); now, the multiplication by x produces a matrix
Wtmp with almost all its elements equal to x (Fig. 5.f) and,
therefore, those elements that actually belong to the FAZ,
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FIGURE 5. Three FAZ segmentation scenarios (rows) based on the
binarization threshold value (see Section III-C for more details):
(a) sub-window centered in the FAZ (WFAZ ); (b), (e) and (h) matrices
resulting (Wb

FAZ ) from applying a maximum, minimum and near optimal
binarization threshold value to WFAZ , respectively; (c), (f) and (i) matrices
resulting (Wtmp) from multiplying the scalar x = mean(WFAZ ) and the
matrix obtained in (b), (e) and (h), respectively; (d), (g) and (j) error
matrices resulting from calculating Werror = (WFAZ −Wtmp)2, where
Wtmp is obtained from (c), (f) and (i), respectively. Note that, in the
matrices Werror (last column), a greater intensity level implies a greater
error.

but have not been labeled correctly, will contribute mainly to
increase the RMSE (Fig. 5.g). Finally, the use of the optimum
threshold, or close to the optimum, makes that those pixels
actually belonging to the FAZ region are binarized to zero,
and the remaining pixels are binarized to 1 (Fig. 5.h). The
multiplication by x produces a matrix Wtmp with elements
associated with the actual FAZ equal to zero and with the
remaining elements equal to x (Fig. 5.i); this is the case
in which the contribution to the RMSE will be minimal:
the elements equal to zero (FAZ pixels) will not contribute
practically to the error and the remaining elements, whose
value are equal to x, will contribute minimally to the error
(Fig. 5.j).

Note that Algorithm 3 can be used without any change with
deep and superficial plexus OCT-A images and with both
levels of zoom. The only particularity is that the exponent to
calculate the work scale is set to q = 1 for the level of zoom
6 × 6 mm2 and q = 2 when the level of zoom 3 × 3 mm2

is considered. This is because the OCT-A image resolution
for both levels of zoom is the same (see Section II). The
values used for the preprocessing parameters are the same
as those used in the FAZ localization (see Section III-B).
The size of the sub-window, w × w, defined at the work
scale was set to w = L + 14, where L × L is the size of
the template used in the localization stage. The idea is that,
in the calculation of the mean value, x, there were much more
retina background pixels than FAZ pixels in the sub-window.

In any case, the chosen sub-window size is not critical and any
other similar value could have been chosen. The ThresholdSet
parameter varies from 0 to 0.5 with a step of 0.01 (values
belonging to the interval (0.5, 1] were not utilized because
they always guaranteed the largest RMSE values). Addition-
ally, the FAZ segmentation includes a post-processing stage
that implies the following sequence of steps: (i) elimination
of holes; (ii) selection of the blob of the maximum area;
(iii) eroding image; (iv) selection of the blob of the maximum
area; (v) dilating image. The justification for these steps is
as follows. The step (i) eliminates possible holes in the FAZ
blob. The step (ii) assumes that, if the binarization process
produces two o more blobs, the largest will correspond to
the FAZ blob. Finally, the objective of the steps (iii) - (v) is
to eliminate the possible appearance of noisy artifacts in the
form of small appendages protruding from the FAZ blob.

IV. RESULTS AND DISCUSSION
We conducted different experiments to validate the proposed
localization and segmentation method using the two image
subsets belonging to the public dataset described in Section II.
With the first subset, we compare our results to the manual
labeling of each expert clinician and to the results obtained in
[20], considering the different levels of complexity associated
with the six possible configuration criteria (deep or super-
ficial plexus, two levels of zoom, and healthy vs. diabetic
retinopathy). With the second subset, we are more interested
in the behavior of the localization and segmentation method
in each category of difficulty (images with ischemia, with
artifacts or not centered in the FAZ), comparing the results
obtained with those labeled by the expert.

A. LOCALIZATION RESULTS
To evaluate the FAZ localization method, we consider that a
localization result was successful if the obtained FAZ center
is placed inside the manual segmentation of the expert clin-
ician. Besides, we provide the average distance considering
the obtained FAZ centers and the expert FAZ centroids. Note
that, in [20], a localization result is successful if the obtained
FAZ blob centroid is placed inside the expert manual seg-
mentation, and the average distance is calculated considering
the obtained blob centroids and the expert FAZ segmentation
centroids. Hereinafter, the two mentioned average distances
will be called the average inter-centroid distances. Tables 3
and 4 show the localization results obtained in the first subset
of the OCTAGON database for the ‘‘healthy’’ and ‘‘diabetic’’
images, respectively. As can be seen, our success rate (SR)
is equal to 100% in all the considered scenarios. Comparing
our method with the localization method used in [20], the
results are very similar. There is only a slight difference in
the case of 6 × 6 mm2 superficial healthy OCT-A images,
where the SR in the second method drops to 88.9% (for
expert#1 and expert#2). In addition, if we consider the total
number of images in the mentioned subset, our SR is 100%
vs. 98.1% (four wrong localizations) in the method imple-
mented by Díaz et al. On the other hand, about the average
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TABLE 3. Results of the FAZ localization success rate (SR) and the average inter-centroid distance (D) calculated for the ‘‘healthy’’ images in the first
subset of the OCTAGON database (version 2). The standard deviation (SD) is also included. The best result in the comparison for each configuration and
method is highlighted in bold.

TABLE 4. Results of the FAZ localization success rate (SR) and the average inter-centroid distance (D) calculated for the ‘‘diabetic’’ images in the first
subset of the OCTAGON database (version 2). The standard deviation (SD) is also included. The best result in the comparison for each configuration and
method is highlighted in bold.

inter-centroid distance, the results are also very similar when
both approaches are compared and, the most important, they
are also similar compared to the average distance between
both experts (see Table 3). In summary, we can say that
our localization method has adequate performance in typical
scenarios where previous approaches were also satisfactory.

Additionally, for evaluating our method in a more chal-
lenging scenario, we used the second subset of images,
which includes more complex and challenging conditions
(see Section II). Table 5 includes the obtained localization
results. In this case, we only show the SR and the average
inter-centroid distance for each indicated category, since the
value of these two parameters for the other criteria (zoom or
depth levels) could produce results that are not statistically
significant, given the low number of images associated with
some of these criteria (zero in some cases). Therefore, con-
sidering the total number of images in this subset, we obtain
a SR and average inter-centroid distance of 95.8% and
0.13± 0.19 mm, respectively. The errors only appear in two
images belonging to the category ‘‘images with ischemia’’
and the rest of the images are successfully localized. Note
that the most penalized average distance also corresponds to

TABLE 5. Results of the FAZ localization success rate (SR) and the
average inter-centroid distance (D) calculated for the images in the
second subset of the OCTAGON database (version 2). The standard
deviation (SD) is also included.

the mentioned category. On the other hand, the images not
centered in the FAZ have an average distance and standard
deviation very similar to those shown in Tables 3 and 4.
This result evidences that the performance of our localization
method does not depend on the position of the FAZ in the
input image. Fig. 6 shows some localization examples in this
complex image subset.

Finally, taking into account both subsets of images,
the localization SR of our method is 99.2%. We think that
this global result is good enough to consider our localization
method as an alternative to the initialization phase used in
some semi-automatic methods where a point inside the FAZ
has to be manually selected [17]–[19]. Furthermore, given
that our localization method is based on a model, it works
well without assuming that the FAZ has to be centered [17],
[19], [20] or is the larger avascular zone in the image [20].
Note that the presence of a large dark or avascular area may
be associated with the presence of an artifact or ischemia,
respectively, and not necessarily with the FAZ. Summarizing,
the proposed localization method, based on a robust and
versatile FAZ model, takes advantage of the characteristics
of the FAZ region and offers satisfactory results, not only in
normal and typical conditions but also in those challenging,
noisy and pathological scenarios that are frequent in clinical
practice.

B. EVALUATING THE ROBUSTNESS OF THE
LOCALIZATION METHOD
An interesting aspect of working with two OCT-A images
of the same patient’s eye with two different levels of zoom
(3× 3 mm2 and 6× 6 mm2) is that it is possible to consider
the idea of comparing the FAZ centers obtained in each level

VOLUME 8, 2020 152231



E. J. Carmona et al.: Modeling, Localization, and Segmentation of the FAZ on Retinal OCT-Angiography Images

FIGURE 6. Examples of localization results in the more complex subset of the OCTAGON database (version 2): (a)-(b) images with artifacts; (c)-(d)
images not centered in the FAZ; (e)-(f) images with ischemia (successful localization); (g)-(h) images with ischemia (wrong localization).

of zoom. Thus, if the distance obtained between both centers
is close, the automatic FAZ localization system can give more
credit to the obtained localization results. However, the com-
parison of these two FAZ centers cannot be made directly,
since the origin of the coordinate system of each of them
is different. In order to solve this inconvenience, we again
utilize correlation-based template matching. In this case, the
3 × 3 mm2 OCT-A image is considered as the template and,
the 6 × 6 mm2 OCT-A image, as the frame. Algorithm 4
summarizes the steps proposed to carry out the comparison.
First, a preprocessing stage is applied in order to reduce the
effect of noise and other artifacts. This stage includes the
same steps as those used in the localization stage: (i) RGB-to-
grayscale, (ii) resize to thework scale, (iii) normalize, and (iv)
median filter. Here, the exponent used to calculate the work
scale in each image depends on the exponent used to obtain
the FAZ center in each level of zoom, that is, q3×3 = 2
for the 3 × 3 mm2 images and q6×6 = q3×3 − 1 for the
6 × 6 mm2 images. Then, assuming that template matching
produced maximum correlation in position (x0, y0) and the
FAZ center coordinates obtained in the localization stage for
the corresponding 3× 3mm2 and 6× 6mm2 OCT-A images
were C3×3 = (x3×3, y3×3) and C6×6 = (x6×6, y6×6), respec-
tively, then the FAZ center, C′3×3, of the 3 × 3 mm2 OCT-A
image referred to the coordinate system of the 6 × 6 mm2

OCT-A image will be:

x ′3×3 = x0 + x3×3
y′3×3 = y0 + y3×3 (3)

and the distance between C′3×3 y C6×6 is now easily
computable:

D(C′3×3,C6×6) =
√
(x ′3×3−x6×6)

2+(y′3×3−y6×6)
2 (4)

Note that the distance expressed by Eq. (4) is finally mul-
tiplied by 1/K6 in Algorithm 4. The idea is to obtain the
distance value at the original scale.

We can compare the FAZ centers obtained by the localiza-
tion method for the corresponding 6× 6mm2 and 3× 3mm2

OCT-A images in each eye. However, this comparison can
only be done systematically here for images belonging to the
‘‘healthy’’ category in the first image subset, since only in
this case there are pairs of images of the same patient’s eye
with the two zoom levels. Figure 7 shows the box-plots of the
inter-center distances, expressed in mm, for superficial and
deep plexus. We can observe that the box-plots are nearly
identical, with the only exception of the one distance value
that is labeled as an outlier in the box-plot associated with
the superficial plexus. The median obtained was 0.038 mm
in both cases. To put in context the two obtained distance
distributions, we have to take into account that the average
FAZ radius is 0.315 and 0.356 mm for superficial and deep
OCT-A ‘‘healthy’’ images, respectively. The largest obtained
distance corresponds to the outlier (0.191 mm), that is, all
the distances are less than any of the two average FAZ radii,
even considering the worst case. Therefore, assuming that
the FAZ gold standard was unknown, we could trust in the
obtained localization results. This hypothesis is confirmed
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Algorithm 4 Pseudo-Code to Compute the Distance Between
the FAZ Centers of the Corresponding 6 × 6 mm2 and 3 ×
3 mm2 OCT-A ‘‘healthy’’ Images Obtained in the Localiza-
tion Stage
Inputs

I6×6, 6× 6 mm2 OCT-A image
I3×3, 3× 3 mm2 OCT-A image
q3×3, exponent used to calculate the work scale of I3×3
C3×3, FAZ center of I3×3 obtained at work scale (q3×3)
C6×6, FAZ center of I6×6 obtained at work scale (q6×6 =

q3×3 − 1)
m, m-by-m neighborhood used by the median filter

Output
D, distance between FAZ centers C3×3 and C6×6 at origi-

nal resolution

1: K3×3← 1/2q3×3 ;
2: K6×6← 1/2(q3×3−1);
3: Frame← preprocess (I6×6 ,K6×6,m);
4: Template← preprocess (I3×3,K3×3,m);
5: MTM ← template-matching (Frame,Template);
6: Maxcorr ← max(MTM );
7: C0← extract-coordinates(MTM ,Maxcorr );
8: C′3×3← C0 + C3×3;
9: D← (1/K6×6)×distance(C′3×3,C6×6);

FIGURE 7. Box-plots of the inter-center distances considering each of the
two FAZ centers obtained by the localization method when it is applied to
the corresponding 6× 6 mm2 and 3× 3 mm2 ‘‘healthy’’ images in the first
subset of the OCTAGON database (version 2).

when we assess the obtained location results based on their
gold standard (100% success).

C. SEGMENTATION RESULTS
To evaluate the FAZ segmentation results, we use three well-
known indexes in the related literature: Jaccard index [29],
Dice score [30] and Hausdorff distance [31]. In particu-
lar, the Jaccard (J) index, and Dice (D) score is defined,

respectively, as:

J =
|AGS ∩ AS |
|AGS ∪ AS |

(5)

D =
2 |AGS ∩ AS |
|AGS | + |AS |

(6)

where AGS is the gold standard area, AS , the segmented area,
and |x| represents the cardinality of x. Both indexes measure
the degree of overlap between AGS and AS , being equal to
1 when the segmentation is perfect and equal to zero when
there is no overlap. The Dice score is different from the
Jaccard index which only counts true positives once in both
the numerator and denominator. Additionally, the Hausdorff
distance (HD) is defined as:

HD(AGS ,AS ) = max{d1, d2} (7)

being:

d1 = sup
x∈AGS

inf
y∈AS

d(x, y)

d2 = sup
y∈AS

inf
x∈AGS

d(x, y)

and where sup is the supremum, inf is the infimum, and
d(x, y) is the Euclidean distance. These three indexes are
frequently used in the evaluation of numerous medical image
segmentation methods [32], [33].

Tables 6 and 7 show the segmentation method results
obtained for the ‘‘healthy’’ and ‘‘diabetic’’ images in the first
subset of the OCTAGON database (version 2), respectively.
In each table, the results are divided according to several
scenarios (combinations for different values of zoom level,
plexus depth and expert). With regards to the Jaccard index
and Dice score, we can see that the method described in
[20] is better than ours in the configuration ‘‘3 × 3mm2

plus superficial plexus’’ (regardless of the expert or if the
image is ‘‘healthy’’ or ‘‘diabetic’’). Conversely, our method
performs better in the configuration ‘‘6 × 6mm2 plus deep
plexus’’ (regardless of the expert or if the image is ‘‘healthy’’
or ‘‘diabetic’’). In the rest of the configurations, the result of
the comparison depends on the expert considered or the type
of image (‘‘healthy’’ or ‘‘diabetic’’). Regarding the Hausdorff
distance, in general, our approach gives better results. This
could be interpreted as that the segmentation obtained by
our approach adjusts better the expert’s contour. Additionally,
Table 8 shows the average Dice score obtained for each of the
configuration criteria in isolation. From a global point of view
(see the last column in this table), we can say that the behavior
of both methods is very similar, although we can observe
that our proposal is slightly better and presents somewhat
less variability (lower standard deviation). Low variability
is highly desired in the performance of any computational
approach applied to medical image analysis. In any case,
when interpreting these results, the high inter-observer vari-
ability of the two experts in each ‘‘healthy’’ image category
must be taken into account (see Table 6). This makes it
difficult to evaluate and compare the quality of the obtained

VOLUME 8, 2020 152233



E. J. Carmona et al.: Modeling, Localization, and Segmentation of the FAZ on Retinal OCT-Angiography Images

TABLE 6. Jaccard (J) index, Dice (D) score and Hausdorff Distance (HD) calculated for the ‘‘healthy’’ image FAZ segmentation in the first subset of the
OCTAGON database (version 2). The standard deviation (SD) is also included. The best result in the comparison for each configuration and method is
highlighted in bold.

TABLE 7. Jaccard (J) index, Dice (D) score and Hausdorff Distance (HD) calculated for the ‘‘diabetic’’ image FAZ segmentation in the first subset of the
OCTAGON database (version 2). The standard deviation (SD) is also included. The best result in the comparison for each configuration is highlighted in
bold.

TABLE 8. Comparison of the average Dice score obtained for the FAZ segmentation in the first subset of the OCTAGON database (version 2), considering
each of the configuration criteria in isolation. The best result in the comparison for each criterion is highlighted in bold. The label ‘‘SD’’ denotes standard
deviation. Note that the ‘‘diabetic’’ images were only labeled by one expert.

segmentation results since it is hard to select an appropriate
gold standard based on which to perform a fair evaluation
or comparison. Additionally, Figs. 8 and 9 allow us to com-
pare the best and worst FAZ segmentation results for the
‘‘healthy’’ and ‘‘diabetic’’ images, respectively. In Fig. 8,
the segmentation of expert#1 is used as a reference to order
the segmentation results from best to worst regarding the
value provided by the Dice score.

To study the behavior of our segmentation method in more
noisy and pathological images, we show in Table 9 the results
obtained in the second subset of the OCTAGON database
(version 2). Although each image in this subset is included
in one of the three categories shown in the mentioned table,
some of them could simultaneously belong to several of
these categories or, in other cases, belong to a new category
related to a high degree of FAZ damage. All this makes
the FAZ segmentation task in this subset harder than the
first subset of images, as can be seen when the standard
deviations are compared: much higher in the second subset
than in the first. Figure 10 allows us to compare our best and
worst segmentation results with the expert and also clearly
shows the degree of difficulty associated with the images

TABLE 9. Jaccard (J) index, Dice (D) score and Hausdorff Distance (HD)
calculated for the images in the second subset of the OCTAGON database
(version 2). The label ‘‘SD’’ denotes standard deviation.

that belong to this subset. These results corroborate that the
proposed segmentation method not only offers satisfactory
results in normal and typical foveal conditions but also in
those noisy and pathological scenarios that are common in
clinical practice.

We can also compare our proposal with other works. How-
ever, the comparison will not be fair because the approach
proposed here is fully automatic and those proposals exist-
ing in the related literature are semi-automatic. Furthermore,
in some cases, the comparison of results may be impos-
sible because other proposals focused on addressing the
diagnostic task and not on evaluating the quality of the
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FIGURE 8. Comparing the best (1st row) and worst (2nd row) FAZ segmentation results (magenta) with expert#1 (green) for the ‘‘healthy’’ images in
the first subset of the OCTAGON database (version 2). The expert#2’s segmentation (yellow) is also shown: (a) 3× 3 mm2 superf. plexus
(D1 = 0.94, D2 = 0.86); (b) 3× 3 mm2 deep plexus (D1 = 0.93, D2 = 0.93); (c) 6× 6 mm2 superf. plexus (D1 = 0.92, D2 = 0.91); (d) 6× 6 mm2 deep
plexus (D1 = 0.94, D2 = 0.93); (e) 3× 3 mm2 superf. plexus (D1 = 0.77, D2 = 0.73); (f) 3× 3 mm2 deep plexus (D1 = 0.59, D2 = 0.85); (g) 6× 6 mm2

superf. plexus (D1 = 0.68, D2 = 0.88); (h) 6× 6 mm2 deep plexus (D1 = 0.58, D2 = 0.89). The variable Di denotes the Dice score regarding the
expert#i .

obtained segmentation. For example, in the Alam et al.’s
approach [18], there were two steps with human intervention:
the contour of the FAZ was semi-automatically delimited
and the center of the fovea was placed manually. The rea-
son for manually providing this kind of information is that
their main goal was to obtain the FAZ area as accurately
as possible. In particular, a comparison of the FAZ area for
normal patients and patients with sickle cell disease was
reported. Similarly, in [19], the FAZ segmentation process
also required human intervention (the fovea center was man-
ually selected) and the goal of this study was to make an early
diagnosis of DR. Therefore, different performance measures
from different classifiers, which distinguish sub-clinical RD
patients from normal cases, were provided. Finally, in the
Lu et al.’s approach [17], manual selection of the fovea center
was also required. However, in this case, for the configura-
tion ‘‘3 × 3mm2 plus superficial layer’’, we can compare
their Jaccard index results, 0.87 and 0.86 in healthy and
diabetic cases, respectively, with our proposal, 0.77 and 0.76,
respectively. However, to add context to this comparison,
it should be noted that the scope of our proposal is wider
(it includes more configuration criteria, such as 6 × 6mm2

zoom level and deep plexus) and the images of the dataset
used are better adjusted to the real conditions faced by the
expert clinicians, including significant variability in the dif-
ferent scenarios analyzed. For example, our first subset of

images contains 69 diabetic OCT-A images with advanced
stages of RD, whereas the dataset of [17] contains 66 images,
being 16 of them without RD, 22 mild to moderate RD and
28 with severe RD. Furthermore, our approach also provides
acceptable results under more difficult conditions, as is the
case of the second subset of the OCTAGON database, which
is characterized by images with the presence of ischemia or
artifacts, or by images not centered in the FAZ.
Finally, we analyze the computational cost associated with

the methods implemented in this work. Thus, the average
costs of the localization method (including its standard devi-
ation) were 133.2±15.9 and 234.8±30.9 ms/image for the
3 × 3 mm2 and 6 × 6 mm2 level of zoom, respectively.
On the other hand, the average costs of the segmentation
method, including the cost associated with the FAZ center
search, were 148.4±16.0 and 262.6±25.3 ms/image for the
3× 3mm2 and 6× 6mm2 level of zoom, respectively. These
costs were obtained for a code implemented inMATLAB and
using a computer with a processor Intel Core i5-3350CPU@
3.10GHz (8GB RAM). Note that much of the computational
cost associated with the segmentation process corresponds to
the process of localizing the FAZ center. This is so since the
convolution process associated with template matching has
a much higher cost than that associated with the adaptive
binarization process. In any case, the magnitude order of
the times obtained for both methods is not prohibitive. The
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FIGURE 9. Comparing the best (1st row) and worst (2nd row) FAZ segmentation results (magenta) with expert’s segmentation (green) for the
‘‘diabetic’’ images in the first subset of the OCTAGON database (version 2): (a) 3× 3 mm2 superf. plexus (D = 0.93); (b) 3× 3 mm2 deep plexus
(D = 0.93); (c)6× 6 mm2 superf. plexus (D = 0.91); (d) 6× 6 mm2 deep plexus (D = 0.92); (e) 3× 3 mm2 superf. plexus (D = 0.73); (f) 3× 3 mm2 deep
plexus (D = 0.58); (g) 6× 6 mm2 superf. plexus (D = 0.76); (h) 6× 6 mm2 deep plexus (D = 0.58). The variable D denotes the Dice score.

FIGURE 10. Comparing the best (1st row) and worst (2nd row) FAZ segmentation results (magenta) with expert’s segmentation (green) for the images
in the second subset of the OCTAGON database (version 2): (a) artifacts (and image not centered in the FAZ) (D = 0.92); (b) image not centered in the
FAZ (D = 0.91); (c) ischemia (D = 0.89); (d) ischemia (D = 0.83); (e) ischemia (D = 0.65); (f) ischemia (D = 0.57); (g) artifacts (D = 0.46); (h) ischemia
(D = 0.35). The variable D denotes the Dice score.

cost could be reduced even more if a compiled language
is used instead of an interpreted language, as is the case
of MATLAB.

V. CONCLUSION
This paper presents a new approach for modeling, localizing,
and segmenting the FAZ in OCT-A images. The first stage
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generates two FAZ normality models (superficial and deep
plexus). The second stage uses the FAZ model created in
the first stage to define a robust method based on template
matching that allows us to automatically localize the FAZ
center. Finally, the third stage uses the FAZ center obtained
in the second stage to define a method based on an adap-
tive binarization process that segments the FAZ region. The
localization and segmentation methods are validated in the
OCTAGON database (version 2). This database is public and
contains two image subsets with different scenarios (‘‘dia-
betic’’/’’healthy’’, superficial/deep plexus, and two levels of
zoom) and different levels of complexity.

In terms of localization, we obtained a SR of 100% and
96% in the first and second subset of images, respectively.
These results evidence that: (i) the two generated FAZ nor-
mality models (3 × 3 mm2) are enough to address the local-
ization problem, independently of the level of zoom, level of
depth, and absence/presence of noise and pathology of the
images considered; and (ii) the localization method exhibits
a robust behavior, given that it also works quite well in images
with serious limitations, including the presence of ischemia,
artifacts, or images not centered in the FAZ. Additionally,
we propose a simple mechanism based on template matching
to compare the FAZ centers obtained in two OCT-A images
of the same patient’s eye, but with different level of zoom
(3 × 3 mm2 and 6 × 6 mm2). This mechanism represents a
new procedure to automatically validate any FAZ localization
method in OCT-A images. In particular, when it is applied to
evaluate our method, the obtained results support the hypoth-
esis of being a robust localization method.

Finally, the segmentation results obtained in the first subset
of images were significantly stable and competitive. Thus,
the global average values of the Dice score (including its
standard deviation) were 0.84± 0.01 and 0.85± 0.01, when
compared to the expert 1 and 2, respectively. The low standard
deviation obtained explains the fairly homogeneous behavior
of the method in the different configurations of this dataset.
The global average value of the Dice score in the second
subset of images was 0.70 ± 0.17. However, it is important
to note that the last subset contains images in which FAZ
segmentation is a more difficult task to accomplish than in
the first subset.

DECLARATION OF INTERESTS
The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

REFERENCES
[1] T. E. de Carlo, A. Romano, N. K. Waheed, and J. S. Duker, ‘‘A review

of optical coherence tomography angiography (OCTA),’’ Int. J. Retina
Vitreous, vol. 1, no. 1, p. 5, Apr. 2015.

[2] H. A. Nugroho, D. A. Dharmawan, N. A. Litasari, and L. Listyalina,
‘‘Automated segmentation of foveal avascular zone in digital colour reti-
nal fundus images,’’ Int. J. Biomed. Eng. Technol., vol. 23, no. 1, p. 1,
2017.

[3] C. Balaratnasingam, M. Inoue, S. Ahn, J. McCann, E. Dhrami-Gavazi,
L. A. Yannuzzi, and K. B. Freund, ‘‘Visual acuity is correlated with the
area of the foveal avascular zone in diabetic retinopathy and retinal vein
occlusion,’’ Ophthalmology, vol. 123, no. 11, pp. 2352–2367, Nov. 2016.

[4] M. C. Salles, A. Kvanta, U. Amrén, and D. Epstein, ‘‘Optical coherence
tomography angiography in central retinal vein occlusion: Correlation
between the foveal avascular zone and visual acuity,’’ Investigative Opthal-
mol. Vis. Sci., vol. 57, no. 9, pp. OCT242–OCT246, Jul. 2016.

[5] J.-W. Kang, R. Yoo, Y. H. Jo, andH. C. Kim, ‘‘Correlation ofmicrovascular
structures on optical coherence tomography angiographywith visual acuity
in retinal vein occlusion,’’ Retina, vol. 37, no. 9, pp. 1700–1709, 2017.

[6] Y.-C. Chen, Y.-T. Chen, and S.-N. Chen, ‘‘Foveal microvascular anoma-
lies on optical coherence tomography angiography and the correlation
with foveal thickness and visual acuity in retinopathy of prematurity,’’
Graefe’s Arch. Clin. Experim. Ophthalmol., vol. 257, no. 1, pp. 23–30,
2019.

[7] A. Demircan, C. Yesilkaya, C. Altan, Z. Alkin, D. Yasa, E. D. Aygit, and
D. Bektasoglu, ‘‘Foveal avascular zone area measurements with optical
coherence tomography angiography in patients with nanophthalmos,’’ Eye,
vol. 33, no. 3, pp. 445–450, Mar. 2019.

[8] J. Kwon, J. Choi, J. W. Shin, J. Lee, and M. S. Kook, ‘‘Alterations of the
foveal avascular zone measured by optical coherence tomography angiog-
raphy in glaucoma patients with central visual field defects,’’ Investigative
Ophthalmol. Vis. Sci., vol. 58, no. 3, pp. 1637–1645, 2017.

[9] M. Fadzil, L. Izhar, and H. Nugroho, ‘‘Analysis of foveal avascular zone
for grading of diabetic retinopathy,’’ Int. J. Biomed. Eng. Technol., vol. 6,
no. 3, pp. 232–250, 2011.

[10] E. Çiloğlu, F. Unal, E. A. Sukgen, Y. Kocluk, and N. C. Dogan, ‘‘Eval-
uation of foveal avascular zone and capillary plexus in smokers using
optical coherence tomography angiography,’’ J. Current Ophthalmol.,
to be published. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2452232519301738, doi: 10.1016/j.joco.2019.09.002.

[11] B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema,
P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, ‘‘Acircularity index and axis
ratio of the foveal avascular zone in diabetic eyes and healthy controls mea-
sured by optical coherence tomography angiography,’’ Vis. Res., vol. 139,
pp. 177–186, Oct. 2017.

[12] A. G. Silva, M. S. Fouto, A. T. da Silva, R. Arthur, A. M. Arthur, Y. Iano,
and J. M. L. de Faria, ‘‘Segmentation of foveal avascular zone of the retina
based on morphological alternating sequential filtering,’’ in Proc. IEEE
28th Int. Symp. Comput.-Based Med. Syst., Jun. 2015, pp. 38–43.

[13] H. A. Nugroho, D. Purnamasari, I. Soesanti, W. K. Oktoeberza, and
D. A. Dharmawan, ‘‘Segmentation of foveal avascular zone in colour fun-
dus images based on retinal capillary endpoints detection,’’ J. Telecom-
mun., Electron. Comput. Eng., vol. 9, nos. 3–8, pp. 107–112, 2017.

[14] A. F. M. Hani, N. F. Ngah, T. M. George, L. I. Izhar, H. Nugroho,
and H. A. Nugroho, ‘‘Analysis of foveal avascular zone in colour fundus
images for grading of diabetic retinopathy severity,’’ in Proc. Annu. Int.
Conf. IEEE Eng. Med. Biol., Aug. 2010, pp. 5632–5635.

[15] S. HajebMohammad Alipour, H. Rabbani, andM. Akhlaghi, ‘‘A new com-
bined method based on curvelet transform and morphological operators
for automatic detection of foveal avascular zone,’’ Signal, Image Video
Process., vol. 8, no. 2, pp. 205–222, Feb. 2014.

[16] D. Hofer, J. I. Orlando, P. Seeböck, G. Mylonas, F. Goldbach,
A. Sadeghipour, B. S. Gerendas, and U. Schmidt-Erfurth, ‘‘Foveal avascu-
lar zone segmentation in clinical routine fluorescein angiographies using
multitask learning,’’ in Proc. Int. Workshop Ophthalmic Med. Image Anal.
Cham, Switzerland: Springer, 2019, pp. 35–42.

[17] Y. Lu, J. M. Simonett, J. Wang, M. Zhang, T. Hwang, A. M. Hagag,
D. Huang, D. Li, and Y. Jia, ‘‘Evaluation of automatically quantified foveal
avascular zone metrics for diagnosis of diabetic retinopathy using optical
coherence tomography angiography,’’ Investigative Ophthalmol. Vis. Sci.,
vol. 59, no. 6, pp. 2212–2221, 2018.

[18] M. Alam, D. Thapa, J. I. Lim, D. Cao, and X. Yao, ‘‘Quantitative char-
acteristics of sickle cell retinopathy in optical coherence tomography
angiography,’’ Biomed. Opt. Express, vol. 8, no. 3, pp. 1741–1753, 2017.

[19] N. Eladawi, M. Elmogy, L. Fraiwan, F. Pichi, M. Ghazal, A. Aboelfetouh,
A. Riad, R. Keynton, S. Schaal, andA. El-Baz, ‘‘Early diagnosis of diabetic
retinopathy in OCTA images based on local analysis of retinal blood ves-
sels and foveal avascular zone,’’ in Proc. 24th Int. Conf. Pattern Recognit.
(ICPR), Aug. 2018, pp. 3886–3891.

[20] M. Díaz, J. Novo, P. Cutrín, F. Gómez-Ulla, M. G. Penedo, and M. Ortega,
‘‘Automatic segmentation of the foveal avascular zone in ophthalmological
OCT—A images,’’ PLoS ONE, vol. 14, no. 2, pp. 1–22, 2019.

VOLUME 8, 2020 152237

http://dx.doi.org/10.1016/j.joco.2019.09.002


E. J. Carmona et al.: Modeling, Localization, and Segmentation of the FAZ on Retinal OCT-Angiography Images

[21] OCTAGON. (2018). Angiography By Optical Coherence Tomography
(OCT-A) Images Used to the Segmentation of the Foveal Avascular Zone.
Accessed: Jun. 1, 2020. [Online]. Available: http://www.varpa.es/research/
ophtalmology.html

[22] N. Iafe, N. Phasukkijwatana, X. Chen, and D. Sarraf, ‘‘Retinal capillary
density and foveal avascular zone area are age-dependent: Quantitative
analysis using optical coherence tomography angiography,’’ Investigative
Opthalmol. Vis. Sci., vol. 57, pp. 5780–5787, 2016.

[23] F. Ghassemi, R. Mirshahi, F. Bazvand, K. Fadakar, H. Faghihi, and
S. Sabour, ‘‘The quantitative measurements of foveal avascular zone using
optical coherence tomography angiography in normal volunteers,’’ J. Cur-
rent Ophthalmol., vol. 29, no. 4, pp. 293–299, Dec. 2017.

[24] A. Rosenfeld, ‘‘Picture processing by computer,’’ ACM Comput. Surv.,
vol. 1, no. 3, pp. 147–176, 1969.

[25] R. Brunelli, Template Matching Techniques in Computer Vision: Theory
and Practice. Hoboken, NJ, USA: Wiley, 2009.

[26] S. Sun, H. Park, D. R. Haynor, and Y. Kim, ‘‘Fast template matching using
correlation-based adaptive predictive search,’’ Int. J. Imag. Syst. Technol.,
vol. 13, no. 3, pp. 169–178, 2003.

[27] J. Sauvola and M. Pietikäinen, ‘‘Adaptive document image binarization,’’
Pattern Recognit., vol. 33, no. 2, pp. 225–236, Feb. 2000.

[28] N. Chaki, S. H. Shaikh, and K. Saeed, A Comprehensive Survey on Image
Binarization Techniques. New Delhi, India: Springer, 2014, pp. 5–15.

[29] R. Real and J. M. Vargas, ‘‘The probabilistic basis of Jaccard’s index of
similarity,’’ Systematic Biol., vol. 45, no. 3, pp. 380–385, Sep. 1996.

[30] L. R. Dice, ‘‘Measures of the amount of ecologic association between
species,’’ Ecology, vol. 26, no. 3, pp. 297–302, Jul. 1945.

[31] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, ‘‘MESH: Measuring errors
between surfaces using the hausdorff distance,’’ in Proc. IEEE Int. Conf.
Multimedia Expo, vol. 1, Aug. 2002, pp. 705–708.

[32] V. Chalana and Y. Kim, ‘‘A methodology for evaluation of boundary
detection algorithms onmedical images,’’ IEEE Trans. Med. Imag., vol. 16,
no. 5, pp. 642–652, Oct. 1997.

[33] J. Bertels, T. Eelbode, M. Berman, D. Vandermeulen, F. Maes,
R. Bisschops, and M. B. Blaschko, ‘‘Optimizing the Dice score and Jac-
card index for medical image segmentation: Theory and practice,’’ in
Medical Image Computing andComputer Assisted Intervention—MICCAI,
D. Shen, Eds. Cham, Switzerland: Springer, 2019, pp. 92–100.

ENRIQUE J. CARMONA received the M.S.
degree in electronic engineering from the Univer-
sity of Granada, Spain, in 1996, and the Ph.D.
degree in physics from the Universidad Nacional
de Educación a Distancia (UNED), Madrid, Spain,
in 2003. Since 2009, he has been an Associate
Professor with the Department of Artificial Intel-
ligence, School of Computer Engineering, UNED.
His research interests include computer vision,
evolutionary computation, and the application of

the latter to different areas (medical images, aeronautics, electronics, and
mathematics).

MACARENA DÍAZ received the degree in com-
puter engineering and the M.Sc. degree in bioin-
formatics from the University of A Coruña, Spain,
in 2017 and 2019, respectively. She is currently
pursuing the Ph.D. degree in computer science in
a collaborative project between the ophthalmology
and computing centers in Galicia, Madrid, and
the University of A Coruña. Her main research
interests include computer vision and biomedical
imaging processing.

JORGE NOVO received the M.Sc. and Ph.D.
degrees (cum laude) in computer science from the
University of A Coruña, in 2007 and 2012, respec-
tively. He was a Visiting Researcher involved in
CMR images in the detection of landmark points
at Imperial College London and a Postdoctoral
Research Fellow at the INEB and INESC-TEC
research institutes in the development of CAD
systems for lung cancer diagnosis with chest CT
images. His main research interests include com-

puter vision, pattern recognition, and biomedical image processing.

MARCOS ORTEGA received the degree in com-
puter science, in 2004, and the Ph.D. degree in
computer science, in 2009. He currently serves
as an Associate Professor at the University of A
Coruña, where he is teaching mainly in the Faculty
of Computer Science and is also serving as the
Secretary. He is also Researcher at the Research
Centre in Information and Communication Tech-
nologies (CITIC), a member of its scientific com-
mittee, and its Representative in the ECHAlliance.

He is also a member of the Institute of Biomedical Research of A Coruña
(INIBIC) with a rank of Principal Investigator. His research interests include
computer vision, medical image processing, and medical informatics.

152238 VOLUME 8, 2020


