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Abstract
There are different retinal vascular imaging modalities widely used in clinical practice to diagnose different retinal

pathologies. The joint analysis of these multimodal images is of increasing interest since each of them provides common

and complementary visual information. However, if we want to facilitate the comparison of two images, obtained with

different techniques and containing the same retinal region of interest, it will be necessary to make a previous registration

of both images. Here, we present a weakly supervised deep learning methodology for robust deformable registration of

multimodal retinal images, which is applied to implement a method for the registration of fluorescein angiography (FA)

and optical coherence tomography angiography (OCTA) images. This methodology is strongly inspired by VoxelMorph, a

general unsupervised deep learning framework of the state of the art for deformable registration of unimodal medical

images. The method was evaluated in a public dataset with 172 pairs of FA and superficial plexus OCTA images. The

degree of alignment of the common information (blood vessels) and preservation of the non-common information (image

background) in the transformed image were measured using the Dice coefficient (DC) and zero-normalized cross-corre-

lation (ZNCC), respectively. The average values of the mentioned metrics, including the standard deviations, were DC =

0.72 ± 0.10 and ZNCC = 0.82 ± 0.04. The time required to obtain each pair of registered images was 0.12 s. These

results outperform rigid and deformable registration methods with which our method was compared.

Keywords Multimodal image registration � Diffeomorphic transformation � Deep learning � VoxelMorph �
OCT angiography � Fluorescein angiography

1 Introduction

Retinal imaging has developed rapidly and is nowadays a

fundamental tool for the detection and monitoring of dif-

ferent retinal diseases. Examples of these image techniques

are color fundus photography (CFP) [1], hyperspectral

retinal imaging (HRI) [2], fundus autofluorescence (FAF)

[3], optical coherence tomography (OCT) [4], fluorescein

angiography (FA) [5], indocyanine green angiography

(ICGA) [6], and optical coherence tomography angiogra-

phy (OCTA) [7]. In clinical practice, there is a growing

interest in using multimodal approaches. The combination

of these imaging modalities helps to improve the identifi-

cation, evolution, or grade of different retinal pathologies,

given that some anatomical or pathological structures are

better recognized in a particular modality than they are in

others.
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The joint analysis of two different multimodal medical

images requires of a previous step consisting in registering

both images. However, the problem of registering pairs of

multimodal medical images in general, and pairs of retinal

images in particular, is more challenging than the one using

unimodal medical images. In the multimodal problem, a

part of information which is associated with one of the two

images is not contained in the other, and vice versa. We

will assume here that the pair of multimodal retinal images

to be registered always presents a common structural

information that is represented by blood vessels. Other-

wise, the registration process would not make sense since

there would be no information to guide that process.

Specifically, all the retinal imaging techniques mentioned

above fulfill this assumption.

As a case study, we chose the FA and OCTA image

registration problem. It is an example of multimodal image

registration problem that is interesting from a clinical point

of view. FA is an invasive imaging modality in which dye

is injected into the bloodstream to highlight those vessels

belonging to the outermost retina layer. On the other hand,

OCTA is a noninvasive imaging modality that produces a

retinal blood flow image by comparing the differences

between repeated OCT cross-sections of a given location in

the retina. FA images have a wider field of view, but a

smaller level of detail than OCTA images. Typical fields of

view used in clinical practice for OCTA are 3� 3 mm and

6� 6 mm. Both techniques are widely used to study the

functioning of the retinal microcirculation and, conse-

quently, to diagnose and grade relevant ophthalmological

diseases such as diabetic retinopathy and age-related

macular degeneration, among others. The information

provided by both techniques is complementary, and each

one of them has advantages and disadvantages [8–10].

Although OCTA can display information at different

depths of the retina, registration between the two imaging

modalities considered is only possible when superficial

plexus OCTA images are used, since FA only provides

information of the superficial retinal plexus.

Regarding multimodal image registration techniques,

those based on deep learning have been gaining more and

more importance in recent years. When deep learning

techniques are selected, registration ground truth is typi-

cally used in supervised end-to-end registration (SE2ER)

approaches. However, this type of ground-truth is difficult

to obtain, especially if the transformation to learn is

deformable, since, in that case, the required ground-truth

quality has to be very high. For this reason, the called

weakly supervised end-to-end registration (WSE2ER)

approaches have recently gained importance over SE2ER

[11]. The term weakly supervised (or semi-supervised)

refers to the fact that the network learns to obtain the

registration transformation, but the used ground truth

corresponds to partial or approximated segmentation

knowledge. This rough knowledge is used by the network

during training to detect landmarks between each pair of

input images and thus guide the registration process. The

WSE2ER paradigm is well suited to the medical image

registration problem because, although in this type of

domain, the segmentation ground truth is difficult to obtain

manually, it can be approximately obtained using auto-

matic segmentation methods.

It is also interesting to note that deformable image

registration is more powerful and flexible than rigid one,

given that the former is able to learn a correspondence

(deformation field) between every pair of pixels to register,

while the latter is limited by the type of transformation

learned, generally linear.

Considering the advantages associated with deformable

transformations and weakly supervised learning, in this

work, we present a deep learning-based general method-

ology for deformable registration of multimodal retinal

images based on WSE2ER. Our methodology is strongly

inspirated by VoxelMorph [12, 13], a state-of-the-art gen-

eral learning framework for deformable unsupervised end-

to-end registration (UE2ER). The main contribution of our

work is twofold. First, we show that is possible to adapt

VoxelMorph to multimodal image domains. And second,

we describe how to implement a deformable multimodal

WSE2ER approach that proves to be competitive when

applied to the registration problem of FA and superficial

plexus OCTA images. Note that, to the best of our

knowledge, VoxelMorph has only been used with uni-

modal medical images, and furthermore, there are no

studies in the related literature devoted to registration of

FA and OCTA images using deformable transformations.

In any case, the methodology presented here is also valid

for registering pairs of images belonging to any of the

retinal imaging modalities mentioned at the beginning of

this section.

The rest of the manuscript is organized as follows.

Section 2 describes those approaches from the literature

related with our proposal. Section 3 explains the features of

the image dataset used in different experiments and the

proposed methodology. In Sect. 4, the obtained results are

shown, analyzed, and discussed. Finally, Sect. 5 summa-

rizes the main conclusions of this work.

2 Related works

There are many approaches related to medical image reg-

istration based on deep learning. A comprehensive review

is presented in [11]. Although these techniques require a

hard training process, once done, image registration can be

quickly and accurately calculated. Like our proposal, there
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are other interesting WSE2ER approaches in the related

literature that apply to multimodal medical imaging

[14–16], but in practice they have been applied to other

medical domains or imaging modalities than those used

here. This prevents us from making a fair comparison

between our proposal and these methods.

More specifically, considering the case of deep learning-

based multimodal retinal image registration, there are

works where rigid or deformable transformations are

obtained using supervised, weakly supervised, or unsu-

pervised approaches [17–23]. While deformable methods

[19, 22, 23] are more competitive than rigid ones

[17, 18, 20, 21], the former generally require that the input

image pair is already approximately registered (usually via

an affine transformation). To do the latter, there are two

options: incorporate this stage into the methodology itself

or assume that this step was previously performed with an

external method. The first option increases the complexity

of the proposed methodology but avoids having to use

additional methods. On the other hand, the second option is

simpler since it makes both types of registrations (ap-

proximate and deformable) independent, allowing us to use

any of the numerous methods already existing in the lit-

erature to obtain pairs of approximately registered images.

In relation to the unsupervised methods [18, 19, 23],

they have the advantage of not requiring segmentation

knowledge, but in the context of multimodal images, the

absence of this type of knowledge tends to reduce the

accuracy of the obtained registration. As for the purely

supervised methods [17, 20], the requirement of a high-

quality ground-truth can hinder their applicability, espe-

cially in a context associated with medical images and their

daily use in clinical practice. Finally, regarding the weakly

supervised methods [21, 22], such as the one proposed

here, they allow us to solve the shortcomings of the pre-

vious two (supervised and unsupervised), given that the

segmentation knowledge required may be partial and

imprecise (it may even contain noise), but it is still useful

enough to guide and improve the registration process.

Some of the studies mentioned above are of special

interest because they are very related to the characteristics

of the method we propose or to the case study addressed

here. For example, in [22], a weakly supervised approach is

used for registration of HRI image pairs and, simultane-

ously, an estimation of the blood vessel segmentation is

also done. Each of these two tasks is carried out by a

different neural network: The blood vessel ground truth of

the pair of multispectral images is used for fully supervised

training of the segmentation network and weakly super-

vised learning of the registration network. Additionally, the

prediction of the registration network, when is applied to

the pair of vessel images (associated with the pair of

images to be registered), is also used as the ground-truth to

train the segmentation network, making use of the unsu-

pervised adversarial training. Although the idea is inter-

esting and, as our proposal, a weakly supervised

mechanism is used to learn the registration network, two

networks have to be learned and the used ground truth

(blood vessel maps) have to be manually labeled. In our

case, as will be seen in Sec. 3, the process is simpler

because a single neural network has to be tuned, and the

vessel masks used in the training process can be approxi-

mately obtained (in fact, we use a simple segmentation

method to obtain them).

On the other hand, a two-step unsupervised learning

framework based on deep convolutional networks is pro-

posed in [23], which is used to register CFP and FA ima-

ges. In the first step, three sequentially connected networks

are used to carry out a coarse alignment based on vessel

segmentation information. In the second step, the align-

ment obtained from the previous step is refined, using a

deformable registration network which is aided by two

modality transformers to guide registration. Unlike the

weakly supervised approach of our proposal, the unsuper-

vised nature of the approach described in [23] is interesting

because it does not require ground-truth knowledge to

carry out the training. However, it requires the training of

four neural networks: three of them to obtain the parame-

ters of an affine transformation that performs an approxi-

mate registration, and one more network, aided by two

modal transformers, that learns the displacement field

necessary to improve the final alignment accuracy.

Finally, in relation to our case study, the FA and OCTA

image registration problem has been addressed manually or

semi-automatically [24–27], but it has recently started to be

solved automatically [17, 28, 29]. However, all existing

automated approaches in the related medical literature are

based on rigid transformations. As mentioned above,

deformable transformations allow us to obtain more exact

registrations than the rigid ones, especially when the pair of

multimodal images to register cover fields of view with

very different sizes, as occurs, for example, in the case of

FA and OCTA images.

3 Materials and methods

In this section, we describe the methodology proposed to

address the multimodal retinal image registration problem.

This methodology is instantiated into a method for regis-

tering FA and OCTA images. The dataset containing the

FA and OCTA images is also presented.
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3.1 Dataset

The method’s performance was evaluated using the same

dataset used in [29], which is publicly available in [30].

Basically, the dataset contains a total of 86 cases that were

previously anonymized: 31 healthy and 55 pathological.

Each case corresponds to a patient’s eye and consists of

one FA image (1536� 1536 pixels) and two superficial

capillary plexus OCTA images which correspond to two

different zoom levels: 3� 3mm (320� 320 pixels) and

6� 6mm (320� 320 pixels). Therefore, a total of 172

registrations are possible (86 pairs of FA and OCTA3�3

images plus 86 pairs of FA and OCTA6�6 images). In all

the cases, the area encompassed by each OCTA image is

contained in its respective FA image. Additionally, some of

the OCTA images present typical motion artifacts that are

produced by involuntary eye motions that occur during the

capture time [31]. These artifacts are characterized as

horizontal or vertical white lines that disrupt the continuity

of the vessels. It is important to highlight that the images

contained in this dataset were obtained under real condi-

tions, that is, in the daily scenario of clinical practice. This

makes the requirements for the registration method more

challenging but, on the other hand, more realistic. Table 1

summarizes the distribution of the FA and OCTA image

pairs of the dataset according to the different features

mentioned above, and Fig. 1 shows two examples of

healthy and pathological eye cases, illustrating different

scenarios. More information about this dataset can be

found in [29].

3.2 Method

We start by describing the generic methodology proposed

to address the multimodal retinal image registration prob-

lem, and then, we show how to instantiate it to be applied

to the particular problem of registering FA and OCTA

images.

3.2.1 Description of the methodology

Usually, deformable registration strategies, also called

nonlinear or non-rigid, involve two stages. First, an initial

affine transformation is made to obtain an approximate

registration. Second, a dense deformable transformation is

applied, taking the output of the first stage as the input. In

this work, we will only focus on the second stage, and

therefore, we assume that the images to be non-rigidly

registered are already affinely aligned. The consideration of

these two stages separately is especially important when

the alignment of the two images to be registered implies a

strong component of rotation, scale, translation, or a mix-

ture of two or more of these basic transformations. For

example, this situation occurs when the field of view

covered by one of the images in the pair is much larger

than the one covered by the other (see Fig. 1).

Let F and M be the fixed and moving multimodal retinal

images, respectively, and let w be the registration field that

maps coordinates of M to coordinates of F. According to

the VoxelMorph unsupervised framework [13], the prob-

lem of deformable registration may be seen as an opti-

mization problem:

argmin
w

fsimðF;wðMÞÞ þ kfregðwÞ
� �

; ð1Þ

where wð�Þ is the searched deformable transformation,

wðMÞ represents the result of transforming M using w,
fsimð�; �Þ measures image similarity between its two inputs,

and fregð�Þ adds a regularization mechanism weighted by

the parameter k.
In addition, due to the particular characteristics of the

registration problem addressed here (common information

corresponds to blood vessel information), we propose to

include, into the function to minimize, a similarity measure

of the vascular network segmentation between F and M.

Here, we will assume that a rough segmentation of the

vessels will suffice to guarantee the weakly supervised

nature of the proposed methodology. In this way, the new

optimization problem is given by:

argmin
w

cfsimðFseg;wðMsegÞÞ þ ð1� cÞfsim
�

ðF;wðMÞÞ þ kfregðwÞ
�
;

ð2Þ

where Fseg and Mseg represent a rough segmentation of the

vascular network in F and M, respectively, and c is a

parameter that allows us to weight the results of comparing

the similarity between the pairs of images (F, M) and

ðFseg;MsegÞ. Note that, from a general point of view, the

two similarity functions used in Eq. (2) do not have to be

the same.

In order to learn w, it is proposed to use a convolutional

neural network (CNN). In a first approximation, as is done

Table 1 Distribution of the pairs of FA and OCTA images based on

different characteristics of these images: healthy or pathological eye,

OCTA image zoom level (3� 3 or 6� 6), and presence or absence of

motion artifacts in the OCTA images

3� 3 OCTA 6� 6 OCTA

No-

artifacts

Artifacts No-

artifacts

Artifacts

Healthy 23 8 25 6

Pathological 48 7 48 7
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in [13], the CNN can be used to directly learn a function

hjðF;MÞ ¼ r, where j represents the network parameters

and, r, a displacement field (DF). In this context, let X be a

n-dimensional spatial domain in which M, F, Mseg and Fseg

are defined, then, for each pixel p 2 X � Rn, rðpÞ repre-

sents a displacement such that FðpÞ and wðMðpÞÞ should

correspond to similar locations, being w ¼ I þ r and, I, the

identity transformation. From now on, the module dedi-

cated to calculating wðMðpÞÞ will be called the transfor-

mation layer. However, there is no guarantee of getting a

smooth w in this learning process and, for example, two or

more pixels could collapse into only one transformed pixel

and vice versa. Therefore, to avoid this inconvenience and

obtain a more realistic smooth w, we decided to work with

diffeomorphic transformations. Note that every diffeo-

morphic deformation is bijective, and itself and its inverse

are differentiable. Consequently, this type of transforma-

tion always preserves the topology and guarantees that the

DF will be smooth. Here, the idea is to parameterize the

deformation field with a stationary velocity field (SVF), v,

and integrate it within the network to obtain a diffeomor-

phism [12, 32]. This integration operation will be done in a

new module denominated the integration layer.

A graphical overview of the proposed general method is

shown in Fig. 2. As indicated in the figure, the network can

be used in two different modes: training and inference

mode. In the former, the network weights are learned using

the following loss function:

Floss ¼ cfsimðFseg;wðMsegÞÞ þ ð1� cÞfsim
ðF;wðMÞÞ þ kfregðwÞ:

ð3Þ

Note that this function is the same as the one to be mini-

mized in our optimization problem (see Eq. (2)), but it is

different to the one proposes in VoxelMorph [13]. Here,

the idea is to study the influence of each similarity func-

tions in the method performance, including the more

extreme cases (c ¼ 0 and c ¼ 1). In the training mode, the

network learns how to obtain a SVF by each pair of F and

M images. In turn, each SVF thus obtained is integrated to

obtain its respective DF and is also used to further

encourage the achievement of a smoother DF by mean of

the regularization mechanism. Finally, each DF is used to

calculate the transformed images wðMÞ and wðMsegÞ, which
are used to calculate the similarity with F and Fseg,

respectively.

Fig. 1 Examples of healthy and pathological eye cases (first and

second row, respectively): a FA image; b and c 3� 3mm and 6�
6mm superficial plexus OCTA image without artifacts, respectively;

d FA image; e and f 3� 3mm and 6� 6mm superficial plexus OCTA

image with artifacts, respectively
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On the other hand, in the inference mode, the trained

network only uses the pair of images to be registered, F and

M, to produce a specific SVF that, once integrated, will

produce a specific DF. Finally, this DF will be used to

obtain wðMÞ, which represent the image aligned with F,

thus ending the registration process. Note that, in this

mode, the segmented images, Fseg and Mseg, are not uti-

lized, and therefore, vessel segmentation is no longer

necessary to register new pairs of images.

3.2.2 Instantiating the architecture

We now describe how the general architecture described

above is instantiated to solve the multimodal registration

problem of FA and superficial plexus OCTA images.

On the one hand, we associate F and M with the FA and

OCTA images, respectively. They were previously regis-

tered by means of an affine transformation using the three-

stage method described in [29]. There, the first stage is

used to segment the blood vessels in both types of images.

Then, the segmentation information is employed to obtain

an approximate registration based on template matching.

Note that, in the original dataset, the FA images have a

wider field of view than the one corresponding to the

OCTA images (see Fig. 1). Lastly, an evolutionary algo-

rithm is applied to refine the previous rough alignment and

obtain an affine registration. On the other hand, Fseg and

Mseg correspond to the FA and OCTA vessel segmentation

images, respectively. These segmentation images are

obtained from the output of the first stage of the method

described above (see [29] for more information), being

Mseg the result of applying the corresponding affine trans-

formation to the OCTA vessel segmentation image. Due to

the weakly unsupervised nature of the proposed method,

we assume that the convolutional neural network will be

able to learn to extract landmarks from the vessel infor-

mation, even when this segmentation is noisy or does not

contain all the vessel pixels of the input image pair. In fact,

the masks obtained by the utilized segmentation method

mainly contain information of the main vessels and, in

addition, may include noise.

Inspired by the VoxelMorph architecture, the CNN used

here is an auto-encoder. The model is based on a U-Net

[33], which consists of encoding and decoding layers with

connections between different levels (skip connections).

The network receives a single input formed by the con-

catenation of the FA and OCTA image pair, generating a 2-

channel input image of size H �W � 2, where H and W

are the height and width of the images, respectively. The

encoder and decoder are made up of convolutions that

allow the network to capture the common characteristics to

the pair of input images, which will be used to estimate the

Fig. 2 Overview of the proposed multimodal image registration method. The training mode allows the convolutional neural network (CNN) to

learn its weights. The inference mode allows the CNN to register a given pair of input images. See Sect. 3.2 for more details
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SVF. In turn, the integration of SVF will allow the method

to obtain the final DF. The convolution layers are made up

of a kernel size of 3� 3, stride equal to 1, and padding is

used so that the output has the same size as the input. The

number of filters used in each layer varies, as can be seen in

Fig. 3. After each convolution stage, the nonlinear activa-

tion function LeakyReLU is used with a coefficient value

of 0.2. In the encoding stage, max pooling layers, with a

kernel size of 2� 2 and stride equal to 2, are applied to

reduce the image size by half. At the time of minimum

size, we work with image sizes of 1/16 of the original size,

that is, 20� 20 pixels. Likewise, during the decoding

stage, this process is done in reverse, increasing the size of

the images in each layer (upsampling) until the original

size is restored. Note that, during every step of the

decoding path, a concatenation with the correspondingly

cropped feature map from the encoding path is made (see

dashed arrows in Fig. 3).

Although different representations could be applied for

the DF, as mentioned in Sect. 3.2.1, we choose to work

with a diffeomorphic transformation, using a previous SVF

representation. For the implementation of the diffeomor-

phic integration layer, we used the same approximation

used in [12]. Specifically, the DF is defined through the

following ordinary differential equation:

owðtÞ

ot
¼ vðwðtÞÞ; ð4Þ

where wð0Þ ¼ I is the identity transformation and t is the

time. Then, the SVF (represented by v) is conveniently

integrated over t ¼ ½0; 1�, using scaling and squaring as the

integration method [34], to obtain the final DF, that is,

wð1Þ. The only parameter required in this process is the so-

called number of integration steps that represents the

number of scaling-squaring steps to do in the integration

process.

The purpose of the spatial transformation layer is to

apply the DF, which was estimated by the integration layer,

to M and Mseg in order to evaluate the differences between

the pairs (F;wðMÞ) and (Fseg;wðMsegÞ). We implement the

same methodology followed in [13] to backpropagate

errors during optimization, which uses a differentiable

operation based on spatial transformer networks [35] to

compute wðMÞ and wðMsegÞ. In addition, since for each

pixel p it is not guaranteed that the transformed pixel p0 ¼
pþ rðpÞ corresponds to an integer position, a linear

interpolation of the image values is done using the neigh-

borhood of p0:

wðMiðpÞÞ ¼
X

q2Nðp0Þ
MiðqÞ

Y

d2fx;yg
1� jp0d � qdj
� �

0

@

1

A; ð5Þ

where Mi 2 fM;Msegg, Nðp0Þ represents the four neigh-

boring pixels of p0 and the product subscript d iterates over

the two directions of X.
In relation to the loss function, the metrics used to

measure the similarity between the pairs (F, M) and

ðFseg;MsegÞ were the local-normalized cross-correlation

and the Dice coefficient, respectively. Although other

similarity measures are frequently used in the related lit-

erature to compare grayscale images, such as the mean

absolute error, root mean square error, mutual information,

and correlation, among others, we have selected correlation

because, in addition to its accuracy and reliability [36], it

has two important properties: it is normalized in the

interval ½�1; 1� and it is independent of any offset or linear

transformation in the set of pixel values to match. Specif-

ically, the local-normalized cross-correlation (LNCC) is

calculated by:

LNCCðA;BÞ ¼ 1

jXj
X

p2X

ZNCCðWAðpÞ;WBðpÞÞ; ð6Þ

where j � j expresses the cardinality of a set, A and B are

images of equal size, X � R2 is the domain of both images,

WAðpÞ and WBðpÞ are, respectively, subwindows of A and

B around the pixel p and size n� n (we used n ¼ 15), and

ZNCCð�; �Þ is the zero-normalized cross-correlation func-

tion that is defined as:

ZNCCðWA;WBÞ

¼
P

pi
WAðpiÞ �WA

� �
WBðpiÞ �WB

� �

P
pi

WAðpiÞ �WA

� �2h i1=2 P
pi

WBðpiÞ �WB

� �2h i1=2 ;

ð7Þ

being WA and WB the average intensity of all pixels in

subwindows A and B, respectively, WAðpiÞ and WBðpiÞ are
the value of the i-th pixel in the subwindows A and B,

respectively, and pi is the index of summation, which is

defined for each pixel contained in WA or WB, as appro-

priate. Note that Eq. (7) is different from the one used in

Fig. 3 Overview of the U-Net architecture. The orange boxes

represent the convolutional layers with the number of filters used in

each case. The red boxes represent the max pooling (encoder) and

upsampling (decoder) layers. Each dashed arrow represents a skip

connection, that is, a concatenation with the correspondingly cropped

feature map from the encoding path. The number under the boxes

indicates the size of the images with respect to the original input size
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the VoxelMorph original version [13], where the numerator

and denominator were squared. We decided to use the

original definition of ZNCC to penalize values corre-

sponding to negative correlations.

On the other hand, the Dice coefficient (DC) can be

viewed as a similarity measure over sets. It ranges between

0 and 1 (the higher the DC value, the greater the similar-

ity), and it is used a lot in medical domains to compare

binary segmentation algorithm outputs against ground-truth

masks. Alternatively, Jaccard index (JI) could have been

used instead, but the performances of both indexes are

similar because they are positively correlated: given a DC

value, the respective JI value can be calculated and vice

versa. Concretely, let A and B be two binary images, then

DC is defined as:

DC(A,B) ¼ 2TP

2TPþ FPþ FN
; ð8Þ

being TP, FP, and FN the true positives, false positives, and

false negatives, respectively.

Finally, as is done in [12, 32], we use the output of the

integration module, v, to apply a regularization mechanism

oriented to obtain a smooth w, anticipating that the DF

obtained by the integration layer may not be purely dif-

feomorphic. Specifically, a diffusion regularizer on the 2-

norm of gradient of v is used:

fregðwÞ ¼
X

p2X
rvðpÞk k2; ð9Þ

where p represents the coordinates of each pixel in X.
Therefore, considering the above definitions for fsim and

freg, Eq. (3) is finally instantiated as:

Floss ¼� cDCðFseg;wðMsegÞÞ þ ð1� cÞLNCCðF;wðMÞÞ
� �

þ k
X

p2X
rvðpÞk k2:

ð10Þ

Note that high values of DC and correlation mean a better

registration. Therefore, the signs for the terms associated

with the DC and LNCC are negative because we are con-

sidering a minimization problem.

4 Experiments and results

We present below the different experiments made to

evaluate the performance of the proposed architecture

when it is applied to the FA and OCTA image registration

problem. Before the presentation of results, we also

describe some implementation details and the metrics used

to evaluate our method.

4.1 Implementation details

As mentioned in Sect. 3.2.2, the previous affine registration

of each pair of FA and OCTA images and the FA an

OCTA vessel segmented images were obtained using the

method proposed in [29]. However, this method fails in the

affine alignment of two pairs of images (both correspond-

ing to pathological eyes, containing 3� 3 OCTA images

with and without artifacts). Therefore, the available set of

affinely registered image pairs contains 170 of the 172

pairs belonging to the original dataset. All these images

were finally rescaled to the size of the input of the network,

that is, H �W was set to 320� 320 pixels. Additionally, in

order not to provide artifact noisy information in the CNN

training process, we left out the pairs of images containing

artifacts (27/170). The performance of the trained model in

this type of image is discussed in Sect. 4.3.

Due to the not very high number of training image pairs

without artifacts (170� 27 ¼ 143), 5-fold cross-validation

and data augmentation were applied. Specifically, in each

CNN training epoch, a random rigid or affine transforma-

tion was applied to each pair of original training images,

including pairs of grayscale and vessel segmentation ima-

ges. In this way, the original training images were never

seen by the network at any time, since it is very unlikely

that any of the randomly generated transformations corre-

sponds to the identity matrix. The batch size used in each

training and the total number of epochs were set equal to 10

and 200, respectively. An Adam optimizer was used with

the following configuration: b1 ¼ 0:9, b2 ¼ 0:999, and

learning rate equal to 10�4. In relation to the number of

integration steps used in the integration layer, we observed

that the method performance increased when the value of

this parameter also did; finally, a value equal to 10 was

used since we did not notice improvements above this

threshold.

The implemented Python code was an adaptation of the

original VoxelMorph code [37], where the particularities of

our approach were included. All the experiments were run

on a computer with a Nvidia Tesla V100 16GB GPU.

4.2 Evaluation metrics

When working with multimodal image registration prob-

lems, it is non-trivial to evaluate the quality of the obtained

registration. In a first approximation, we should measure

the degree of alignment of the common information (blood

vessels in our case) between Fseg (FA vessel image) and

wðMsegÞ (transformed OCTA vessel image). Here, we

propose to use the DC (see Eq. (8)) to evaluate that degree

of alignment. It is important to highlight that, even if the

alignment obtained were perfect, it would be practically
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impossible to obtain a DC ¼ 1. This is because the vessel

mask pair, automatically obtained from each pair of ima-

ges, rarely contain the same information. For example, the

presence of noise in the grayscale images can be trans-

mitted to the masks or the amount of vessel information

displayed by each grayscale image pair can be different. In

fact, the OCTA image usually shows more vessels than the

FA image because the resolution of the former is greater

than the one of the latter.

However, the metric described above is not enough

since we should also check that the non-common infor-

mation of the OCTA image is not altered after carrying out

the transformation. Otherwise, we could lose the back-

ground information of the OCTA image modality. In order

to measure the invariance degree of this type of informa-

tion, we propose to evaluate ZNCCðM;wðMÞÞ, beingM the

OCTA image (see Eq. (7)). Note that, in our case, the

quantity of common information (vessel pixels) is much

less than the one associated with the complementary

information (image background). Therefore, a large value

of ZNCC will imply, approximately, a strong similarity

between the background information of the OCTA image

and its transformed image. In the end, since we want to

achieve both goals (alignment of the common information

and conservation of the non-common information), we will

have to simultaneously handle these two metrics during the

evaluation of the method.

The smoothness of the deformation field is also evalu-

ated, making use of its Jacobian matrix,

JwðpÞ ¼ rwðpÞ 2 R2�2, which allows us to analyze

important information about the behavior of w around each

pixel p. From a general point of view, a continuously

differentiable function f : Rn ! Rn is invertible near a

point p if the Jacobian determinant at p, jJfðpÞj, is nonzero.
Furthermore, if jJfðpÞj[ 0, then f preserves orientation

near p (f expands volumes). Conversely, if jJfðpÞj\0, then

f reverses orientation (f shrinks volumes). Therefore, in our

case, counting the number of pixels whose transformation

matrix Jacobian determinant is non-positive, jJwj� 0, we

will get a measure about how diffeomorphic the obtained

transformation is: the transformation will be diffeomorphic

if all the pixels satisfy that jJwj[ 0). Otherwise, the higher

the number of pixels with jJwj � 0, the less smooth the DF

will be.

Table 2 Tuning

hyperparameters: mean and

standard deviation of the Dice

coefficient, DC(FAseg,

wðOCTAsegÞ), zero-normalized

cross-correlation,

ZNCC(OCTA,wðOCTAÞ), and
number of pixel (percentage in

parentheses) where jJwj� 0,

using 5-fold cross-validation for

different configurations of the

hyperparameters c (compromise

between segmentation and

grayscale information) and k
(weight of the regularization)

c k DC ZNCC jJwj� 0 ð%Þ

0.00 1 0.6724 ± 0.0151 0.8209 ± 0.0121 0.00 ± 0.00 (0.00)

0.1 0.6666 ± 0.0150 0.7381 ± 0.0121 0.15 ± 0.06 (0.00)

0.01 0.6615 ± 0.0140 0.6919 ± 0.0136 20.06 ± 7.90 (0.01)

0.001 0.6582 ± 0.0139 0.6712 ± 0.0115 88.85 ± 24.83 (0.08)

0 0.6569 ± 0.0144 0.6681 ± 0.0106 114.50 ± 30.07 (0.11)

0.25 1 0.6856 ± 0.0158 0.8228 ± 0.0079 0.00 ± 0.00 (0.00)

0.1 0.6957 ± 0.0151 0.7587 ± 0.0082 0.05 ± 0.05 (0.00)

0.01 0.6982 ± 0.0146 0.7022 ± 0.0077 11.39 ± 2.32 (0.01)

0.001 0.6970 ± 0.0147 0.6825 ± 0.0052 68.66 ± 11.08 (0.06)

0 0.6970 ± 0.0146 0.6778 ± 0.0048 99.17 ± 16.39 (0.09)

0.50 1 0.6962 ± 0.0174 0.8291 ± 0.0070 0.00 ± 0.00 (0.00)

0.1 0.7113 ± 0.0162 0.7525 ± 0.0076 0.04 ± 0.06 (0.00)

0.01 0.7178 ± 0.0154 0.6951 ± 0.0075 7.13 ± 2.06 (0.00)

0.001 0.7182 ± 0.0151 0.6695 ± 0.0104 80.69 ± 17.17 (0.07)

0 0.7178 ± 0.0151 0.6658 ± 0.0108 126.41 ± 25.07 (0.12)

0.75 1 0.7026 ± 0.0165 0.8322 ± 0.0068 0.00 ± 0.00 (0.00)

0.1 0.7275 ± 0.0175 0.7484 ± 0.0026 0.00 ± 0.00 (0.00)

0.01 0.7359 ± 0.0169 0.6792 ± 0.0064 4.42 ± 1.35 (0.00)

0.001 0.7358 ± 0.0157 0.6509 ± 0.0081 127.06 ± 23.84 (0.12)

0 0.7350 ± 0.0155 0.6437 ± 0.0085 280.78 ± 45.05 (0.27)

1.00 1 0.7094 ± 0.0172 0.8381 ± 0.0039 0.00 ± 0.00 (0.00)

0.1 0.7368 ± 0.0179 0.7120 ± 0.0070 0.00 ± 0.00 (0.00)

0.01 0.7450 ± 0.0170 0.6303 ± 0.0076 3.64 ± 1.52 (0.00)

0.001 0.7463 ± 0.0162 0.6090 ± 0.0051 294.00 ± 41.17 (0.28)

0 0.7454 ± 0.0157 0.6007 ± 0.0059 1145.04 ± 174.63 (1.11)
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4.3 Results and discussion

In this section, we show and discuss the results obtained in

different experiments. The first of them analyzes the best

configuration of the hyperparameters associated with our

method. In the second and third experiments, we study how

the registration method performs when images with and

without artifacts are used, respectively. Finally, in the last

experiment, a comparison with other registration methods

is made.

4.3.1 Tuning hyperparameters

First of all, we investigate the dependence of our method

on its main hyperparameters (k and c). The idea is to

analyze the influence of the regularization term and the

compromise using segmentation and grayscale similarity

information during the training process. Concretely, when

c ¼ 1, the similarity between vessel mask pairs is only used

in the loss function, that is, the similarity between grays-

cale image pairs is not considered; contrarily, when c ¼ 0,

just the opposite happens. The rest of intermediate values

represent different cases between these two extreme sce-

narios. In a similar way, a variation in the k value from 0 to

1 allows us to study the influence of the regularization term

in the learning process. Table 2 shows the results of this

experiment. Each row of the table contains the result of

evaluating the method for each hyperparameter configura-

tion (c and k), using data augmentation and 5-fold cross-

validation, as mentioned in Sect. 4.1. Given that we are

using 5-fold cross-validation, we provide the mean and

standard deviation of each evaluation metric considering

the results of the five cross-validation sub-models. The

results of Table 2, without considering standard deviation

values, are also graphically represented in Fig. 4. Specifi-

cally, 3D- and 2D-color plots are used for extrapolating the

rest of the DC, ZNCC, and jJwj� 0 values when c and k
vary in the interval [0, 1].

We can start by looking at the global behavior of the k
parameter. From Table 2 and Fig. 4, it is easy to see that

the DC and ZNCC values are negatively and positively

correlated, respectively, with the k values. This behavior

reveals that when the regularization mechanism becomes

more important, it interferes with the alignment of the

common information, but favors the conservation of the

background information in the transformed image. On the

other hand, the number of pixels where jJwj� 0 is nega-

tively correlated with the k values. This result was

Fig. 4 Tuning hyperparameters: first and second rows show 3D and

2D color plots, respectively, which extrapolate the data shown in

Table 2 for the Dice coefficient (first column), zero-normalized cross-

correlation (second column), and number of pixels whose Jacobian

determinant is non-positive (third column) (color figure online)
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expected since the regularization term becomes more

important when k increases.

Having analyzed the behavior of k, we now include the

parameter c in the discussion. Now, the idea is to establish

the most promising region for our registration method. In

principle, we will bias the choice of the best configuration

by analyzing the value of DC, since this is the metric that

best reflects the degree of alignment between the common

information of each pair of images. Thus, considering any

value of k and holding it fixed, the best result is always

obtained for c ¼ 1. Therefore, we can conclude that, during

the training process, it is necessary to include in the loss

function the similarity between the vessel mask pairs but

not the explicit similarity between the grayscale image

pairs. More specifically, the configuration c ¼ 1 and k ¼
0:001 is the one that provides the best DC result (0.7463).

However, this configuration has an undesirable effect,

which is observed in Fig. 5: comparing the first and second

columns, we can see that the background information in the

transformed OCTA image is considerably altered (many

artifacts are visible). This behavior is explained by the low

ZNCC value (0.609) associated with the mentioned con-

figuration. However, given that the ZNCC value increases

as k does, the disappearance of noise and artifacts in

wðOCTAÞ should run parallel to this trend. Therefore, we

must find a compromise between the DC and ZNCC. By

looking at the respective 2D color plots (see Fig. 4), we

obtain the solution: the region where the intensity is high in

both plots corresponds to c	 0:75 and k	 0:1. This result

is also consistent with the 2D Jacobian determinant color

plot (see Fig. 4), where the transformation is guaranteed to

be diffeomorphic in the mentioned region. The experi-

mental evidence that reinforces this argument is shown in

the third column of Fig. 5, where the configuration c ¼ 1

and k ¼ 1 is used. We can see how the noise and artifacts

disappear in the transformed OCTA image when compared

with the second column and, equally, how the background

information is conserved when compared with the first

column.

It is also interesting to analyze the region where c ¼ 0

and k 2 ½0; 1�, which corresponds to an unsupervised

training of the CNN. This case corresponds to an approach

based on UE2ER, that is, the original framework of Vox-

elMorph. Now, we should consider k[ 0:1 because,

otherwise, the transformation starts to be non-diffeomor-

phic, that is, the number of pixels with jJwj � 0 becomes

greater than zero (see Table 2). Therefore, focusing on the

region of interest, c ¼ 0 and k[ 0:1 (see Fig. 4), a high

preservation of the background information in the trans-

formed image is expected (high ZNCC values), but at the

cost of a moderate degree of vessel alignment (intermediate

DC values).

Fig. 5 Different examples showing the effect of the value k
(assuming c ¼ 1) in the transformed OCTA image background

information. In each row, the first column shows the input OCTA

image, and the second and third columns display the result of

applying our deformation map to its respective OCTA image using a

configuration ðk; cÞ equal to (0.001, 1) and (1, 1), respectively

Neural Computing and Applications (2023) 35:14779–14797 14789

123



The worst scenario corresponds to the region in which

c	 0:75 and k� 0:001. In this case, the low weight of the

regularization term produces a transformation with many

points where jJwj� 0, that is, a transformation that is neither

diffeomorphic nor smooth. Additionally, although the DC

values in this region are relatively high (anticipating good

vessel alignment), the presence of a noisy background in

the transformed OCTA image is predicted by the low

ZNCC values.

Considering the previous discussion, we can conclude

that the best configuration of our registration method is the

one corresponding to c ¼ 1 and k ¼ 1, where a good

compromise exists between common information align-

ment and background information preservation in the

transformed OCTA image, also guaranteeing a diffeo-

morphic transformation. Therefore, from here on, this will

be the configuration used in the remaining experiments.

4.3.2 Using OCTA images without artefacts

In a second experiment, we select the best hyperparameter

configuration, train the model with the entire augmented

dataset used in the previous experiment (no cross-valida-

tion is used here), and finally, the learned model is evalu-

ated using the set of original image pairs without artifacts.

Note that, according to the data augmentation process

described in Sect. 4.1, this last set of image pairs is not

explicitly seen by the CNN during the training stage. Here,

the idea is to use the DC value as a reference to compare

the registrations obtained with our method with the affine

registrations for each pair of images. Figure 6 shows the

results of this comparison. We can see that, in all the cases,

our deformable registration improves all the affine regis-

tration results. Concretely, 97:1% (68/70) and 98:6% (72/

73) of cases containing 3� 3 and 6� 6 OCTA images,

respectively, have a DC	 0:5. Contrarily, these percent-

ages drop to 75:7% (53/70) and 87:7% (64/73) for the 3�
3 and 6� 6 affine registration results, respectively. The

Fig. 6 Comparison of registration results using the affine and our

deformable transformation in each pair of images without artifacts.

The degree of alignment is expressed in values of the Dice coefficient:

a pairs of FA and 3� 3 OCTA images and b pairs of FA and 6� 6

OCTA images. The information about healthy or pathological eyes is

also shown (color figure online)
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means and standard deviations of the DC values, consid-

ering the 3� 3 and 6� 6 zoom levels, were 0:69
 0:11

and 0:74
 0:08, respectively, which shows that the

behavior of our method is slightly better for the 6� 6 zoom

level. Likewise, for the baseline case, these figures were

0:55
 0:10 and 0:62
 0:09, respectively, showing that

our method obtains an average increase of 0.14 and 0.12,

respectively. That is, the improvement is slightly higher for

the 3� 3 zoom level.

The three pairs of images with DC values inferior to 0.5

are associated with pathological cases. However, they did

not obtain a bad registration, as shown in Fig. 7. The

problem in these three extreme scenarios lies in the pres-

ence of a lot of noise and the low number of vessels that

appear in each pair of images, especially in the FA images,

where the vessels are barely visible or blurred. In this

context, the number of landmarks inferred by the network

will be reduced and, in addition, some of them will be

noisy, thus hindering the registration process. Despite

obtaining DC values below 0.5 in all three cases, the reg-

istration results are acceptable and, in any case, each of

them has a DC value which is higher than the one measured

for the affine case (see Fig. 6a and 6b). Finally, Figs. 8 and

9 show some registration examples in less extreme sce-

narios, visually comparing the output obtained by our

method and the baseline registration (affine case). Specif-

ically, Fig. 8 highlights the visualization of the vessel

overlap degree and Fig. 9 the vessel continuity degree.

4.3.3 Using OCTA images with artefacts

In a last experiment, we apply the subset of image pairs

containing OCTA images with artifacts (see Fig. 1) to the

model learned in the second experiment. Note that this

subset neither took part in the CNN training nor in the data

augmentation process. Although, before the registration

process, it would be desirable to have a preprocessing stage

to eliminate this kind of artifacts, we directly test our

registration method in this hard scenario. Figure 10 shows

a comparison between the degree of alignment obtained

with our method and the affine registration for each pair of

images. We can see that, in all the cases, our deformable

registration improves the results obtained by the rigid

transformation. Specifically, 57:1% (8/14) and 92:3% (12/

13) of the pairs containing 3� 3 and 6� 6 OCTA images,

respectively, have a DC	 0:5 with our registration method.

Fig. 7 Registration results obtained by our method in three extreme

scenarios. The columns, from left to right, contain the pair of OCTA

and FA images, their respective pair of vessel masks, and the final

registration. The first and second rows correspond to the pairs of

images with the worst and second worst DC values in Fig. 6a,

respectively, and, the last row, to the pair of images with the worst

DC value in Fig. 6b. The magenta and green colors correspond to FA

and OCTA image information, respectively, and the white color

appears when common information overlaps (color figure online)
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Nevertheless, with the affine transformation, only 7:1% (1/

14) and 15:4% (2/13) of the pairs reach the mentioned

threshold when 3� 3 and 6� 6 OCTA images are

involved, respectively. In addition, Fig. 11 shows two

registration examples comparing both types of transfor-

mations. It is easy to observe how our deformable defor-

mation outperforms the affine transformation. This

improvement also includes a correction of the discontinuity

of all those vessels that were ‘‘broken’’ due to the presence

of artifacts.

4.3.4 Comparison with other methods

Finally, Table 3 summarizes the comparison of our method

with the unsupervised VoxelMorph version and other

classical deformable registration approaches. In relation to

the latter, we have tried two methods denominated B-spline

and diffeomorphic demons [38] from the popular and well-

known SimpleITK registration framework [39]. The former

is a deformable registration technique based on deformable

B-splines [40], and the latter is a non-parametric diffeo-

morphic image registration algorithm based on the Thir-

ion’s demons algorithm [41]. Specifically, Table 3 shows

the average values and respective standard deviation

obtained for the DC, ZNCC, number of pixels where

jJwj� 0, and registration time per pair of images, using the

subset of image pairs without artifacts.

In order to establish whether the differences between our

method and each of the methods shown in Table 3 are

statistically significant, we performed two different

hypothesis tests: the parametric z-test and the nonpara-

metric Wilcoxon Rank Sum (WRS) test. The former

assumes normality in the pair of distributions being com-

pared, while the latter does not. The p-values obtained with

both tests, when comparing our method with each of those

shown in Table 3, were always less than 0.05 (for both DC

and ZNCC), indicating that the null hypothesis (means are

equal for z-test, and medians are equal for WRS-test) can

be rejected with a significance level of 5%. Additionally,

the notched box plots shown in Fig. 12 allow us to verify

how the width of the notch around the median and asso-

ciated with our method does not overlap with any of the

notches of the other methods, providing evidence of a

statistically significant difference between the medians [42]

and supporting the results obtained with the WRS-test.

Therefore, we can conclude that the differences shown in

favor of our method have a high statistical significance.

Fig. 8 Registration examples in pairs of images without artifacts

using a visualization based on colors. First and second rows show the

vessel overlap degree in the affine and our deformable registration,

respectively. The magenta and green colors correspond to FA and

OCTA image information, respectively, and the white color appears

when common information overlaps. The yellow arrows indicate

some (but not all) areas of the affine registration where the degree of

alignment is improved in its respective deformable registration (color

figure online)
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5 Conclusions

In this work, we have proposed a deformable registration

methodology that is applied to register FA and superficial

plexus OCTA images. Our architecture is strongly inspired

by VoxelMorph, a state-of-the-art unsupervised deep

learning framework for deformable registration of uni-

modal images. However, unlike VoxelMorph, our

methodology is oriented to multimodal registration, and it

is based on weakly supervised deep learning. In compar-

ison with the unsupervised version, we provide evidence on

how the use of common information in the CNN training

Fig. 9 Registration examples in pairs of images without artifacts

using a checkerboard visualization. We can compare the vessel

continuity degree obtained with the affine (first row) and our

deformable (second row) transformation. The yellow arrows indicate

some (but not all) areas of the affine registration where the degree of

alignment is improved in their respective deformable registrations

(color figure online)

Fig. 10 Comparison of registration results using the affine and our

deformable transformation in each pair of images with artifacts. The

degree of alignment is expressed in values of the Dice coefficient:

a pairs of FA and 3� 3 OCTA images and b pairs of FA and 6� 6

OCTA images. The information about healthy or pathological eyes is

also shown (color figure online)
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process is key to improve the alignment. Specifically, this

common information corresponds to an approximation to

the segmentation of the main vessel network, which might

include noise or not contain all vessel pixels. Note that, in

daily clinical practice, it is difficult, if not impossible, to

obtain accurate ground truth, hence the importance of using

a weakly supervised approach. We also conclude that the

regularization mechanism has an important role in avoiding

the alteration of the background information (non-common

information) of the transformed image.

The experiments carried out have been evaluated in a set

of 143 pairs of OCTA and FA images, including healthy

Fig. 11 Registration examples with pairs of images with artifacts

using a visualization based on colors. In each row, the first and second

columns show the pairs of FA and OCTA input images, respectively;

the third and fourth columns display the affine and deformable

registration results, respectively. The magenta and green colors

correspond to FA and OCTA image information, respectively, and the

white color appears when common information overlaps. In order to

expand the alignment details, the scale in the last two columns is

double the size of the one used in the first two. The yellow arrows

indicate some (but not all) areas of the affine registration where the

degree of alignment is improved in its respective deformable

registration (color figure online)

Table 3 Comparison of the performance of our method with other

classical deformable registration methods. The evaluation metrics

used are the average values and respective standard deviations

obtained for the Dice coefficient, DC(FAseg,wðOCTAsegÞ), zero-

normalized cross-correlation, ZNCC(OCTA,wðOCTAÞ), number of

pixels (percentage in parentheses) whose Jacobian determinant is non-

positive (jJwj� 0), and time taken for registering a pair of images. The

boldfaced label denotes the method with the best results

Method DC ZNCC jJwj� 0 ð%Þ Time (s)

Baseline (Affine) 0.5842 ± 0.0999 – – –

B-spline 0.6136 ± 0.1031 0.7631 ± 0.1150 4.58 ± 54.66 (0.00) 4.08 ± 2.79

Diff-Demons 0.6568 ± 0.0986 0.7872 ± 0.0353 40.93 ± 79.46 (0.04) 1.03 ± 0.04

VoxelMorpha 0.6726 ± 0.0942 0.7974 ± 0.0472 0.00 ± 0.00 (0.00) 0.12 ± 0.00

Our method 0.7166 ± 0.0964 0.8211 ± 0.0403 0.00 ± 0.00 (0.00) 0.12 ± 0.00

aUnsupervised VoxelMorph version
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and pathological patients. In all cases, our registration

method outperformed the unsupervised VoxelMorph ver-

sion and other classical methods, both rigid (affine) and

deformable, considering different evaluation metrics:

degree of alignment of the common information, invari-

ance of the non-common information after applying the

transformation, smoothness of the deformation, and com-

putational cost. The learned model was also used in a more

severe scenario where the OCTA images, involved in the

27 pairs of images to register, present artifacts. This is a

type of noise that appears frequently in OCTA images

obtained in daily clinical practice. Here, the results

obtained with our method continue to improve those

obtained by the affine transformation, and it is even

observed that, in the transformed OCTA image, the vessel

discontinuity, produced by the presence of the artifacts,

tends to be corrected. This behavior adds evidence of the

robustness of our method.

In future lines of work, our method could be applied to

pairs of images belonging to other retinal imaging tech-

niques, such as those already mentioned in the introduction

and different from the FA and OCTA modalities. As

another option, new CNN architectures could be studied

and tested in our approach, with the aim of further

improving registration or facilitating the initial required

alignment of regions of interest that are highly misaligned.

For example, when faced with the problem of registering

pairs of OCTA and FA images, the initial approximate

registration required in our method was not trivial: the area

covered by the FA image is significantly larger than the one

corresponding to the OCTA image, and so we do not start

from an ideal situation in which the pair of images is quasi-

aligned.
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