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Abstract. Human-Robot Interaction (HRI) is a growing area of interest in Artificial Intelligence that aims to make interaction
with robots more natural. In this sense, numerous research studies on verbal and visual interactions with robots have appeared.
The present paper will focus on non-verbal communication and, more specifically, gestures related to speech, which is an open
question. With the aim of developing this part of Human-Robot Interaction or HRI, a new architecture is proposed for the assign-
ment of gestures to speech based on the analysis of semantic similarities. In this way, gestures will be intelligently selected using
Natural Language Processing (NLP) techniques. The conditions for gesture selection will be determined from an assessment of
the effectiveness of different language models in a lexical substitution task applied to gesture annotation. On the basis of this
analysis, the aim is to compare models based on expert knowledge and statistical models generated from lexical learning.
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1. Introduction1

Recent advances in different areas of computing, in-2

cluding machine learning, natural language processing3

and computer vision have made it possible to extend4

robotics to sectors more focused on human interaction,5

such as education and health. The automation of these6

services has increased demand for new human-robot7

interfaces that allow people to communicate directly8

with robots in a simple and fluid way [27]. These in-9

terfaces require the inclusion of non-verbal communi-10

cation aspects to achieve greater naturalness and speed11

of transmission [47]. To this end, it is important to in-12

corporate gestures in speech, which is one of the main13

challenges of mentioned process of human-robot com-14

munication.15

To date there is still no consensus as to what can16

be considered a gesture or what properties can be17
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used to categorize it into a taxonomy in robotics; in 18

fact, each author usually defines different types of ges- 19

tures according to the tasks they are going to per- 20

form [32]. Among the positions found, some authors 21

such as McNeill consider that gestures consist of spon- 22

taneous movements that are part of the communica- 23

tor’s thoughts [28], while others such as Kendon claim 24

that they are communicative actions with intentional- 25

ity [15]. In spite of these discrepancies, practically all 26

works found in the relevant literature distinguish be- 27

tween those types of gestures focused on interaction 28

with the environment – deictic and manipulation of ob- 29

jects – and those in synchrony with language – also 30

called co-verbal gestures. This paper focuses on a spe- 31

cific type of co-verbal gesture related to the content of 32

speech, also known as iconic gestures. 33

The most common approaches to synchronizing mo- 34

tions with speech are based on rules [45]. In their sim- 35

plest form, these approaches make use of trigger words 36

associated with each available gesture, so the system 37

assumes that if one of these words appears in speech, 38

then it must be responsible for executing the associ- 39

ated movement. Since the most commonly used meth- 40
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ods are based on exact matching between speech terms41

and words that represent gestures, they suffer from a42

lack of flexibility which limits the scope for improve-43

ment in human perception. The fact that a gesture is44

initiated only when some defined word is detected does45

not seem to simulate natural behaviour.46

In a preliminary study [1], a new methodology was47

proposed to associate co-verbal gestures (those in syn-48

chrony with language) with a text representing the49

speech of a robot. The main idea was to define the50

meaning of body expressions through relevant terms,51

giving the robot the ability to execute a motion by52

finding any word semantically related to those terms.53

In this way, co-verbal gestures are not only executed54

by precisely matching the terms of the definitions,55

but they are also activated after the detection of any56

word with a high degree of semantic similarity to those57

terms.58

The purpose of this paper is to extend the above59

study by introducing and evaluating different language60

models as part of the semantic similarity calcula-61

tion module within the proposed methodology, and62

to implement an architecture based on more concrete63

components along with it. This extension is intended64

to compare language models generated from lexical65

learning based on distributed semantics with language66

models based on semantic schemes prepared by ex-67

pert linguists. Both types of models represent alterna-68

tive approaches to the process of language acquisition:69

while the former configure the acquisition of the mean-70

ing of concepts through the different textual contexts71

in which they appear – in a similar way to how humans72

acquire the semantics of words within a language – the73

latter (semantic schemes based on lexical databases)74

contain meanings derived from a deep and complex75

manual process of synthesis. The comparative analysis76

of both approaches aims to infer which of the models77

best fit the selection of co-verbal gestures in the context78

of HRI. To this end, the following research questions79

are raised:80

– Is it more effective for a robot to inductively learn81

its own semantic representations from a large cor-82

pus that provides an example of the use of the83

language in question, or would the use of seman-84

tic structures created by expert linguists perform-85

ing a meticulous and detailed analysis of the con-86

cepts work better when trying to establish seman-87

tic similarities between terms?88

– Is the effort to create and maintain lexical databas-89

es or specialized ontologies necessarily restricted90

to one domain worthwhile in this context, or is91

it preferable to delve into unsupervised methods 92

based on processing large volumes of textual data 93

to find the meaning of words within a language? 94

2. Related work 95

Traditionally, the scientific community has focused 96

its efforts on investigating the recognition of gesticu- 97

lations, leaving the process of synthesis in the back- 98

ground. This has been reflected in a small number 99

of gesture interfaces in robotics, as well as in the 100

widespread use of the term “gesture” to refer to the ma- 101

nipulation of objects rather than to non-verbal commu- 102

nication [44]. In turn, gestural interfaces developed in 103

robotics tend to focus on collaborative [38,42] or deic- 104

tic [11] gestures, with the integration of co-verbal ges- 105

tures being a relatively unexplored field in this area. 106

The importance of co-verbal gestures lies in their 107

impact on the perception of meanings, since both 108

sound and body expressions are simultaneously assim- 109

ilated as a single package [35]. In fact, there are many 110

publications that include studies on the impact of these 111

body expressions on human perception [13]. 112

The absence of physical limitations in the devel- 113

opment of body expressions has allowed the synthe- 114

sis of co-verbal gestures to be a more recurrent line 115

of research in the virtual environment with avatars. 116

Some approaches do not contemplate semantic infor- 117

mation, but have focused on the use of prosody, sim- 118

plifying the task to the analysis of metrics extracted 119

from the form of speech [6,23]. The most widespread 120

approaches are those based on rules, which are gen- 121

erally founded on the establishment of mappings be- 122

tween gestures and sets of textual features from a bag 123

of words. Some examples of these approaches are the 124

GRETA agent [34], which uses gesture repositories, 125

and the MAX agent [18], which is based on speech- 126

gesture pairs. Both Lee and Marsella [22] and Tepper 127

et al. [49] associate lexical, syntactic and semantic in- 128

formation with motions, while Kipp et al. use proba- 129

bilistic rules [17]. The BEAT system [5] manages to 130

group body motions and speech, using a set of heuristic 131

rules according to different types of gestures. 132

Data-driven approaches have also become popu- 133

lar. Neff et al. [31] use manually annotated seman- 134

tic tags to train probabilistic models to perform body 135

expressions from new texts. In turn, Endrass et al. 136

apply a model based on a manually generated ges- 137

ture corpus [8]. The REA architecture uses lexical 138

data associated with movements to manage body ex- 139
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pressions through natural language generating models.140

Bergmann and Kopp [3] propose a mixed system based141

on rules and probabilistic models.142

As for the integration of co-verbal gestures in143

robotics, the proposed systems have thus far focused144

on the gestural part rather than the verbal part. There-145

fore, although more advanced techniques are presented146

for the execution of body motions – such as the gener-147

ation of dynamic trajectories – rule-based approaches148

are the most widespread when it comes to synchroniz-149

ing gestures with speech. The same as in the virtual150

environment, interfaces focusing on form of speech or151

prosody have been proposed; an example of this is the152

interface created by Salem et al. [44], which allows one153

to generate movements based on grammatical struc-154

ture.155

Among the approaches that apply iconic gestures,156

systems based on gesture repositories [20] and lexi-157

cons [19] stand out once again. Although other sys-158

tems pursue greater flexibility and abstraction in move-159

ments through behavioral representations, the linguis-160

tic aspect is still based on lexicons [43]. Tay et al. pro-161

pose a new interface for synchronizing language and162

movements generated in real time from behavior tem-163

plates and sentiment analysis techniques for intensi-164

fying movements [48]. On the other hand, Kim et al.165

use lexical structure to detect possible words with rel-166

evant meanings, which are then used in a database that167

associates motions with bags of words [16]. Finally,168

Ng-Thow-Hing et al. propose a new system that fil-169

ters words using Part-Of-Speech or POS tagging and170

relates them to a type of gesture and a grammatical171

model based on lexicons [33].172

The main objective of this paper is to extend the173

study of semantic similarity carried out in [1], as174

well as to use the proposed methodology to imple-175

ment an architecture that relates phrases and gestures176

with which to complement verbal communication in177

robotics through related body expressions. As in [33],178

the proposed methodology performs a word filter using179

a POS tagger, as well as assuming that body expres-180

sions are usually associated with certain words, and181

these keywords may be assigned to more than one ges-182

ture in different contexts. Therefore, if a gesture is con-183

sidered to be closely related to a series of words, that184

relationship could be extended to other similar words,185

making this process a problem of lexical substitution.186

In this way, a robot would be able to select the most187

semantically appropriate co-verbal gesture for a new188

input text.189

3. Architecture 190

As mentioned above, proposals to synthesize co- 191

verbal gestures into robotic interfaces are scarce [45]. 192

So far, the general trend has been the use of rule-based 193

methods along with other data-based approaches and 194

supervised learning. Both approaches rely on manual 195

annotations, either to define the corresponding rules or 196

to provide the annotated data needed to train the mod- 197

els. The need for annotations reduces the flexibility 198

of the systems in establishing the correspondences be- 199

tween motions and language, which translates into in- 200

ferior coverage; that is, the associations between ges- 201

tures and phrases are presented in a very limited num- 202

ber of cases when compared to what a robot could find 203

in a new text, in addition to being limited to a specific 204

semantic context. 205

The main difficulty in improving communication 206

through gesticulation lies in the immense number of 207

possibilities and meanings. For this reason, this paper 208

proposes an architecture which is adaptive to language. 209

This is intended to reduce manual annotation to the 210

characterization of concepts, increasing the coverage 211

of the system through the application of semantic sim- 212

ilarity. In this way, the system could make use of a 213

semantic model and a subsequent application of simi- 214

larity estimation functions to, given a phrase, find the 215

most relevant gesture among all the defined ones. 216

As we have found in the relevant literature, the sim- 217

plest way to characterize those concepts that are at- 218

tributed to the set of gestures available to the robot is 219

through a set of related terms. Although at first glance 220

it seems that this set of terms would share the same 221

function as the trigger words used in the most basic 222

approximations, it is not simply a matter of locating 223

the same words, but rather of being able to launch a 224

body motion from semantically related words not con- 225

tained in the set of related terms associated with the 226

motion. In that sense, any word would be a possible 227

candidate for a particular gesture in the absence of 228

any other that is more closely linked to its meaning. 229

For example, the meaning of a concept associated with 230

mountain could be represented by the terms “moun- 231

tain”, “summit” or “peak”, so that the interface would 232

respond with the corresponding gesture to words such 233

as “hill”, “slope” or “rock”; in this case, the last word 234

could no longer be linked to that gesture if another one 235

related to “stone” were defined, closer to its meaning. 236

Therefore, the greater the enrichment of gestures and 237

the catalogue of available body expressions, the better 238

the gestures will adapt to the message being conveyed 239

by speech. 240
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Fig. 1. Proposed achitecture for integrating iconic gestures into robotic interfaces.

Figure 1 shows the outline of the proposed architec-241

ture. This requires two entries: the text to be processed242

by the interface and the list of gestures with their def-243

initions. The output it generates is the text, automat-244

ically annotated with the motions it must execute on245

each line. The first and second layers are a particular-246

ization of the methodology proposed in [1], while the247

third layer has been proposed to adapt the results to248

the robot. The layers that make up the architecture are249

detailed below:250

– The first layer consists of a morphosyntactic ana-251

lyzer. It begins by dividing the text into sentences,252

to which the semantic analysis will be applied in-253

dependently in the subsequent layer. For each sen-254

tence, a tokenization and POS tagging process is255

performed by applying the FreeLing [36] tool to256

identify words and their grammatical categories.257

As the objective is to select iconic gestures, it258

has been decided to discard all those words with259

a smaller contribution to semantics, considering260

only nouns, verbs, adjectives and adverbs. This261

grammatical information will be maintained dur-262

ing the semantic analysis.263

– The second layer consists of a semantic analyzer264

that compares each relevant word in a sentence265

with each of the terms that define the meaning of266

gestures. This is the main component of the ar-267

chitecture. The current paper presents an experi-268

ment to extend the study of semantic similarity al-269

ready proposed in [1] through different measures270

and language models.271

– Finally, a third layer outside the methodology is272

proposed to adapt the set of gestures to the real273

conditions to which the robot is subject. This last274

layer acts as a filter, discarding the different ges-275

tures that have been pre-selected by the semantic276

analyzer. In addition, it adapts the output, mak- 277

ing it interpretable by the target robotic system (in 278

this case a NAO robot). The time it takes the robot 279

to pronounce the block limits the total execution 280

time. For this reason, it makes no sense to exe- 281

cute too many body expressions in the same sen- 282

tence when interacting, as this negatively affects 283

fluency of speech. The affinity between word and 284

gesture, execution times or repetitions are some 285

of the factors that are taken into account to rule 286

out gestures. 287

This paper has focused on optimizing the configura- 288

tion of the semantic analyzer. To this end, an experi- 289

ment has been undertaken to study models based on ex- 290

pert knowledge as opposed to models based on learn- 291

ing the lexicon from its use in language, while consid- 292

ering a possible combination of both. The estimation 293

will be carried out by the different models and families 294

of measures that are detailed in the following section. 295

4. Semantic approaches 296

The models used in this research present different 297

approaches to the language acquisition process. With 298

some, the contexts of the words are managed from ex- 299

amples, while others start from the exact definitions to 300

compare the meanings of the words. If we look closely 301

at human learning, at the first stage we begin to acquire 302

information about the concepts of a sentence without 303

getting to know its structure [40]. At school, a met- 304

alinguistic awareness is acquired that makes it possi- 305

ble to separate meaning from form. Finally, at a more 306

advanced stage of language acquisition, the multiple 307

meanings of words and the ambiguity that this entails, 308

acquire the notion of context. These processes can be 309
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approximated in robotic interfaces by establishing the310

semantic information of words through word represen-311

tations.312

It seems that models based on lexical learning have313

more properties in common with this first process of314

semantic learning of language by humans related to315

linguistic immersion, which is not based on any pre-316

vious knowledge. They take advantage of a massive317

amount of textual information by extracting their own318

relationships – less accurately but with more realistic319

levels of coverage. In this way, they manage similarity320

as well as proximity between the different contexts of321

two words. In contrast, models based on expert knowl-322

edge are generated through previous training in an aca-323

demic environment. The way these models manage in-324

formation is similar to the process a linguist would use325

to compare the meaning of words. They are the product326

of in-depth language analysis and further elaboration,327

so in principle they are expected to offer higher preci-328

sion values in decreasing coverage – bearing in mind329

the manual limitation of design – and efficiency.330

4.1. Expert knowledge-based models331

Traditionally, the most widespread semantic repre-332

sentation has been addressed through the development333

of lexical databases for the organization of concepts.334

Expert knowledge-based models manage words as pre-335

cise entities with various interpretations and well-336

defined relationships. Their architecture requires very337

expensive elaboration, so it does not facilitate the in-338

clusion of new terms. Because of this rigid structure,339

quantifying relationships is a complex process with a340

high computational cost [4].341

Since Collins and Quillian [7] proposed the use of342

semantic networks as knowledge stores in the 1970s,343

a large number of linguistic ontologies have emerged.344

One of the most popular and complete is WordNet [9].345

Fellbaum – its creator – describes WordNet as a se-346

mantic dictionary structured in the form of a network347

(Fig. 2). Concepts are organized into sets of synonyms348

or synsets associated with each other through a hierar-349

chical structure, the depth of which is linked to speci-350

ficity. Some of these relationships are synonymies, hy-351

peronymy or homonyms.352

Different measures have been designed to estimate353

similarity between two concepts in lexical databases.354

Meng et al. [29] review the most popular ones, group-355

ing them into 3 different families according to the prin-356

ciples on which they are based:357

Fig. 2. General architecture for models based on expert knowledge.

– Path. They quantify similarity by the minimum 358

number of separation nodes. In this paper we 359

are going to use the measure proposed by Lea- 360

cock and Chodorow [21] (LCH) and Wu and Pal- 361

mer [51] (WUP), in addition to Path length [29]. 362

– Information Content or IC. This is independent of 363

the number of nodes that separate the terms. The 364

measure proposed by Resnik [41] (RES), Jiang 365

and Conrath [14] (JCR) and Lin et al. [26] (LIN) 366

will be used. 367

– Features. They measure the overlapping between 368

the terms of the glosses of two concepts. The 369

measure proposed by Banerjee and Pedersen [2] 370

(Adapted Lesk), Patwardhan [37] (Gloss Vector 371

and Gloss Vector Pairwise), and Hirst and St- 372

Onge [12] (HSO) will be applied to the experi- 373

mentation. 374

4.2. Models based on lexical learning 375

In the 1960s, Harris presented the distributional hy- 376

pothesis [10], positing that words that appear in sim- 377

ilar contexts tend to represent similar meanings. This 378

hypothesis, together with the idea that complex se- 379

mantic entities can be composed from simpler con- 380

stituents, has motivated the appearance of models that 381

take advantage of the distribution of information in ex- 382

tensive corpora to generate vectors representing words 383

or short phrases. For instance, topic segmentation 384

is addressed through the similarity between vectored 385

phrases in [50]. To generate the semantic space that 386

these vectors form incurs a high computational cost; 387

however, the impulse of deep learning stemming from 388

new computational capabilities has led to the expan- 389

sion of these models, thereby reaching unprecedented 390

levels of efficiency. 391
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Fig. 3. General architecture for models based on lexical learning.

Most research has focused on word co-occurrence392

models, known as word embeddings. Pennington et393

al. consider that there are two families: those based394

on global matrix factorization methods such as LSI,395

LDA, pLSI or sLDA, and models based on local con-396

text window methods such as skip-gram or CBOW.397

Among the most popular are Mikolov’s Word2Vec [30],398

or Pennington’s global log-bilinear regression model399

called GloVe [39]. Levy and Goldberg [25] propose400

a model based on positive pointwise mutual informa-401

tion or PPMI matrices (PPMIM). The same authors402

try to generalize the skip-gram model by introduc-403

ing negative examples (Dep-Based model) [24]. Fi-404

nally, Salle et al. [46] presents two models also en-405

riched with negative examples: one trained with Com-406

mon Crawl1 (LexVec1), and the other trained with407

Wikipedia2 (LexVec2).408

All these models transform words into vector rep-409

resentations and their relationships into mathematical410

operations; thus, cosine similarity quantifies the degree411

of similarity between all contexts that share two words.412

Figure 3 is a three-dimensional representation of one413

of these vector spaces.414

5. Experimentation415

The aim of the experimentation is to determine the416

best way to group gestures and words based on sim-417

1http://commoncrawl.org/.
2http://wikipedia.org/.

ilarity values. To this end, a set of conditions and re- 418

strictions has been evaluated directly on the processing 419

of the semantic analyzer’s data of the second layer, at 420

the same time as the different semantic models already 421

mentioned have been compared. 422

Since the ultimate goal is to improve human per- 423

ception during robot interaction, making fewer anima- 424

tions that are actually related to the content of speech is 425

preferable to increasing the number of unrelated body 426

expressions. Therefore, all the results have been evalu- 427

ated in terms of F-measure, with a greater weighting of 428

Precision instead of Recall. Specifically, β with a value 429

of 0.3 has been set. 430

5.1. Input data 431

The data needed for experimentation could have 432

been generated by manual annotation of gestures in 433

different texts; however, two semi-automatically gen- 434

erated datasets have been used to simulate each seman- 435

tic analyzer input in order to avoid context-specific de- 436

pendencies and to simplify the data acquisition pro- 437

cess. On the one hand, the most frequent words in lan- 438

guage for each grammatical category have been iden- 439

tified from the Corpus of Contemporary American En- 440

glish (COCA),3 and have been used as if they were ges- 441

tural concepts, to construct a list of sixty gestures. On 442

the other hand, several lexicons of synonyms and re- 443

lated terms such as Thesaurus.4 have been used, to se- 444

lect twenty words related to each of the gestures un- 445

der manual supervision. This generates the set of rel- 446

evant words that should be detected in an input text. 447

Since some of the words used have different meanings, 448

several of the gestures used relate to the same word. 449

This means that some gestures must be associated with 450

more than 20 words out of a total of 1200. 451

Both datasets allow the simplified simulation of the 452

two inputs of the semantic analyzer, and thus compare 453

the set of measures and models already mentioned to 454

determine the best optimization criteria of this compo- 455

nent. 456

5.2. Semantic analyzer scenarios 457

In total, three different, consecutively proposed sce- 458

narios have been considered. In each scenario, the 459

ten measures of similarity mentioned above have been 460

studied on the basis of the lexical data WordNet, and 461

the cosine similarity on the six word embedding mod- 462

els. 463

3http://corpus.byu.edu/coca/.
4http://thesaurus.com.
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Fig. 4. Multiple assignment with Cosine Similarity. Variation of the F0.3, precision and Recall as a function of the threshold.

Table 1
Results for the single assignment method without considering gram-
matical categories

Global
Model Family Measure Precision Recall F0.3

Word2Vec Geometric Cos 0.42 0.36 0.41
LexVec2 Geometric Cos 0.35 0.31 0.35
Dep-based Geometric Cos 0.33 0.29 0.33
PPMIM Geometric Cos 0.33 0.29 0.33
LexVec1 Geometric Cos 0.33 0.28 0.32
GloVe Geometric Cos 0.29 0.25 0.29
WordNet Feature Adapted lesk 0.30 0.26 0.30
WordNet Feature HSO 0.30 0.26 0.29
WordNet Feature Gloss vector 0.27 0.23 0.26
WordNet Feature Gloss vector (pw) 0.16 0.14 0.16
WordNet Path WUP 0.22 0.19 0.21
WordNet Path LCH 0.20 0.17 0.20
WordNet Path Path length 0.20 0.17 0.20
WordNet IC JCR 0.19 0.17 0.19
WordNet IC LIN 0.19 0.17 0.19
WordNet IC RES 0.18 0.16 0.18

5.2.1. First scenario464

In the first scenario, semantic evaluation of all the465

relevant words with respect to each of the gestures is466

proposed. When determining which gestures are asso-467

ciated with each word, the option of using a multiple468

assignment is considered first, since the existence of469

different contexts actually makes it a multi-label clas-470

sification problem. Therefore, the possibility of using a471

threshold to determine which similarity values should472

constitute the association of a gesture is considered.473

Precision indicates the percentage of correct gesture474

associations among all associations performed, while475

Recall represents the percentage of correct gesture as-476

sociations among the more than 1200 possible associa-477

tions. In order to examine the effectiveness of the mod- 478

els in selecting these associations by multiple assign- 479

ment, Precision and Recall are assessed against differ- 480

ent overall similarity thresholds. Figure 4 shows one 481

of these graphs, specifically the performance of the 482

Word2Vec model, which includes information on the 483

mean of the similarity values of the correct and incor- 484

rect associations. If a threshold is set at high similar- 485

ity values, high Precision and almost no Recall are ob- 486

served, which means that, perforce, few words will be 487

associated, despite establishing a good correspondence 488

with the gestures. On the other hand, with a low value 489

threshold, there will be a greater number of associa- 490

tions, many of which are unrelated. In any case, in view 491

of the results, it does not seem advisable to set any 492

threshold for multiple association, since the maximum 493

value of F0.3 that the model is capable of reaching is 494

0.35. 495

Based on this limitation, a single assignment method 496

is proposed with the selection criteria of the one with 497

the highest similarity value. This condition seems to be 498

better suited to the problem, as shown in Table 1, which 499

gives a value of 0.41 for F0.3 at best. In general, the 500

highest values are presented by using both cosine sim- 501

ilarity on word embedding models and feature-based 502

measures on WordNet. 503

5.2.2. Second scenario 504

In the second scenario, an analysis by categories is 505

proposed, in such a way that a word is only evaluated 506

against those terms that belong to the same grammati- 507

cal category. This is a method of avoiding associations 508

between words and terms from different fields. In addi- 509
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Table 2
Separation by categories. P and R symbols represent Precision and Recall metrics, respectively

Global Nouns Verbs Adjectives Adverbs

Model Family Measure P R F0.3 P R F0.3 P R F0.3 P R F0.3 P R F0.3

Word2Vec Geometric Cos 0.50 0.44 0.50 0.70 0.62 0.69 0.45 0.39 0.45 0.5 0.42 0.50 0.36 0.31 0.36
GloVe Geometric Cos 0.44 0.38 0.44 0.64 0.57 0.63 0.38 0.33 0.37 0.49 0.40 0.48 0.27 0.23 0.27
LexVec2 Geometric Cos 0.42 0.36 0.42 0.60 0.53 0.59 0.35 0.31 0.35 0.47 0.38 0.46 0.26 0.22 0.25
LexVec1 Geometric Cos 0.39 0.34 0.39 0.58 0.52 0.58 0.31 0.27 0.30 0.4 0.33 0.39 0.26 0.22 0.26
Dep-based Geometric Cos 0.38 0.33 0.37 0.56 0.50 0.55 0.33 0.29 0.33 0.41 0.33 0.40 0.20 0.17 0.20
PPMIM Geometric Cos 0.38 0.33 0.38 0.54 0.48 0.54 0.33 0.28 0.32 0.43 0.35 0.42 0.23 0.19 0.22
WordNet Feature Gloss vector 0.38 0.33 0.37 0.31 0.28 0.31 0.40 0.34 0.39 0.51 0.42 0.51 0.31 0.27 0.31
WordNet Feature Adapted lesk 0.34 0.29 0.33 0.30 0.27 0.30 0.34 0.30 0.34 0.49 0.40 0.49 0.23 0.20 0.23
WordNet Feature HSO 0.32 0.28 0.31 0.35 0.31 0.34 0.34 0.29 0.33 0.48 0.39 0.47 0.14 0.12 0.13
WordNet Feature Gloss vector (pw) 0.25 0.22 0.25 0.26 0.23 0.26 0.26 0.23 0.26 0.22 0.18 0.22 0.27 0.23 0.26
WordNet Path WUP 0.23 0.20 0.23 0.40 0.36 0.40 0.38 0.33 0.38 0.07 0.06 0.07 0.07 0.06 0.07
WordNet Path LCH 0.22 0.19 0.22 0.39 0.35 0.39 0.33 0.29 0.33 0.07 0.06 0.07 0.07 0.06 0.07
WordNet Path Path length 0.22 0.19 0.22 0.39 0.35 0.39 0.33 0.29 0.33 0.07 0.06 0.07 0.07 0.06 0.07
WordNet IC LIN 0.22 0.19 0.21 0.36 0.33 0.36 0.35 0.31 0.35 0.07 0.06 0.07 0.07 0.06 0.07
WordNet IC JCR 0.21 0.18 0.21 0.36 0.32 0.36 0.34 0.29 0.33 0.07 0.06 0.07 0.07 0.06 0.07
WordNet IC RES 0.21 0.18 0.20 0.31 0.28 0.31 0.36 0.32 0.36 0.07 0.06 0.07 0.07 0.06 0.07

tion, this separation enables an individual assessment510

of the measures on each category. Precision, Recall and511

F0.3 values can be seen in Table 2, which shows higher512

overall values than in the previous scenario.513

It is interesting to observe the behavior of the dif-514

ferent measures used in the estimation of similarity. In515

general, measures based on IC and Path reach simi-516

lar values and do not appear to perform well on ad-517

jectives and adverbs. In contrast, feature-based mea-518

sures behave more robustly, maintaining higher values519

in all categories and resulting in higher overall val-520

ues. In particular, they are very efficient at calculating521

similarities between adjectives, reaching a F0.3 value522

of 0.51. Word embeddings also have a more homoge-523

neous function and better characterize the semantics524

between nouns, since the 0.69 of F0.3 is practically525

double the average value of the other measures. Specif-526

ically, cosine similarity and the Word2Vec model out-527

perform all other measures and models in all categories528

except adjectives.529

The huge difference between the values of F0.3530

achieved in nouns and adverbs, which rose from 0.69531

to 0.36 in the best cases, could be explained by the fact532

that concepts and their semantics are better reflected533

by nouns, while adverbs represent the circumstantial534

scope to a greater extent. On the other hand, there is535

also a slight increase in the F0.3 values of adjectives536

with respect to verbs, perhaps due to greater seman-537

tic specificity of adjectives, facilitated by their inherent538

polarity, as opposed to the greater ambiguity of verbs.539

Because of the lower occurrence of adverbs in lan-540

guage, as well as the low number of existing synonyms,541

one might think that the poorer results obtained with542

adverbs are partly due to the distribution of data; that 543

is, an over-representation of adverbs has led to the def- 544

inition of associations in the goldstandard with non- 545

existent semantic similarities. For this reason, a third 546

scenario is proposed by readjusting the evaluation col- 547

lection for each grammatical category with a decrease 548

in the number of adverbs. A brief glance at the corpus 549

COCA allows us to estimate the frequency of adjec- 550

tives and adverbs in general-purpose texts at 6%, while 551

nouns and verbs account for 21% of the corpus. 552

5.2.3. Third scenario 553

The third and final scenario contemplates a redistri- 554

bution of data according to the different frequencies 555

of grammatical categories in language, as well as the 556

combination of different measures. The results in Ta- 557

ble 3 show a slight increase in F0.3 in all categories. In 558

short, there is a significant but smaller than expected 559

increase in the F0.3 value of adverbs, which would val- 560

idate both arguments: over-representation and low con- 561

tribution of adverbs to semantics. 562

Since the Gloss Vector measure and cosine simi- 563

larity are based on similar principles and handle the 564

same range of values, a number of combinations have 565

been evaluated. Observing that the percentage of over- 566

lap between the results of the different measures and 567

models is approximately 70%, a direct combination is 568

now proposed by choosing the measure with the high- 569

est similarity value in each comparison between term 570

and word. The combination that gives the best results 571

(Word2Vec + Comb2 + Comb3 in Table 3) reaches 572

0.59 F0.3. This combination consists of using only 573

Word2Vec with nouns, cosine similarity of Word2Vec 574
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Table 3
Redistribution of data according to each grammatical category. Symbols P and R represent Precision and Recall metrics, respectively

Global Nouns Verbs Adjectives Adverbs

Model Family Measure P R F0.3 P R F0.3 P R F0.3 P R F0.3 P R F0.3

Word2Vec Geometric Cos 0.53 0.43 0.52 0.69 0.65 0.69 0.46 0.42 0.46 0.50 0.42 0.50 0.40 0.34 0.39
LexVec2 Geometric Cos 0.51 0.42 0.50 0.63 0.59 0.63 0.46 0.41 0.46 0.50 0.45 0.50 0.39 0.33 0.38
Glove Geometric Cos 0.48 0.39 0.47 0.62 0.59 0.63 0.39 0.35 0.37 0.50 0.42 0.50 0.32 0.29 0.31
LexVec1 Geometric Cos 0.47 0.39 0.46 0.62 0.59 0.62 0.38 0.34 0.37 0.44 0.39 0.44 0.38 0.33 0.37
Dep-based Geometric Cos 0.46 0.38 0.45 0.58 0.55 0.58 0.44 0.40 0.44 0.45 0.40 0.44 0.30 0.25 0.29
PPMIM Geometric Cos 0.47 0.38 0.46 0.57 0.54 0.57 0.42 0.37 0.41 0.47 0.41 0.46 0.35 0.30 0.35
WordNet Feature Gloss vector 0.40 0.33 0.39 0.29 0.27 0.28 0.45 0.41 0.45 0.51 0.43 0.51 0.36 0.31 0.36
WordNet Feature Adapted lesk 0.38 0.31 0.37 0.31 0.30 0.31 0.38 0.34 0.39 0.50 0.43 0.51 0.30 0.26 0.29
WordNet Feature HSO 0.35 0.29 0.35 0.31 0.30 0.33 0.40 0.37 0.39 0.47 0.40 0.48 0.20 0.18 0.17
WordNet Feature Gloss vector (pw) 0.27 0.22 0.26 0.25 0.24 0.26 0.29 0.26 0.26 0.22 0.19 0.22 0.33 0.28 0.33
WordNet Path WUP 0.25 0.20 0.24 0.35 0.33 0.37 0.43 0.39 0.43 0.08 0.07 0.07 0.08 0.07 0.08
WordNet Path Path length 0.23 0.19 0.23 0.34 0.32 0.36 0.38 0.34 0.37 0.08 0.07 0.07 0.08 0.07 0.08
WordNet Path LCH 0.23 0.19 0.23 0.34 0.32 0.36 0.38 0.34 0.37 0.08 0.07 0.07 0.08 0.07 0.08
WordNet IC LIN 0.23 0.19 0.23 0.33 0.31 0.35 0.40 0.36 0.4 0.08 0.07 0.07 0.08 0.07 0.08
WordNet IC RES 0.23 0.19 0.23 0.31 0.29 0.33 0.41 0.37 0.41 0.08 0.07 0.07 0.08 0.07 0.08
WordNet IC JCR 0.22 0.18 0.22 0.32 0.30 0.34 0.37 0.33 0.37 0.08 0.07 0.07 0.08 0.07 0.08

Comb1 – Cos (Word2Vec) || Cos (Lexvec2) 0.55 0.45 0.54 0.69 0.65 0.69 0.49 0.44 0.49 0.54 0.48 0.54 0.42 0.36 0.41
Comb2 – Cos (Word2Vec) || Gloss Vector 0.54 0.44 0.53 0.53 0.50 0.52 0.55 0.49 0.54 0.61 0.54 0.60 0.47 0.41 0.47
Comb3 – Cos (Lexvec2) || Gloss Vector 0.53 0.43 0.52 0.52 0.49 0.52 0.52 0.47 0.51 0.57 0.51 0.60 0.51 0.44 0.50
Word2Vec + Comb2 + Comb3 0.60 0.49 0.59 0.69 0.65 0.69 0.54 0.49 0.54 0.61 0.54 0.60 0.51 0.44 0.50

Table 4
Dialog of the story annotated with gestures

Sentence Word Term defining the gesture Cosine similarity value
Teo was a little fearful. Fearful Frightened 0.70
He was afraid of witches. . . Witches Magic 0.36
. . . aliens and clowns. Clowns Circus 0.47
If he plays with a ball. . . Ball Kick 0.59
. . . he feared it could hit in the eyes. Eyes Head 0.38
His dog scared him, so his mother caress it for him. Dog Cat 0.68
He was afraid of stars and even birds. Birds Fly 0.39
At breakfast he believed that heating milk into the microwave. . . – – –
. . . may occur an explosion Explosion Bomb 0.66
He was feared certain types of music. . . Music Guitar 0.53
. . . and lightning Lightning Flash 0.37
But one day. . . Day Night 0.64
Teo went into a mysterious shop and. . . – – –
. . . bought a terrible mask. Mask Sword 0.36
For a time, he no longer feared monsters. . . Monsters Monster 0.63
. . . and noise while wearing it. Noise Light 0.31
Until the day. . . Day Night 0.64
. . . that Teo was frightened when he saw his reflection. . . Reflection Contemplation 0.56
. . . in a mirror. Mirror Camera 0.42
Teo then cut the mask. . . Mask Sword 0.36
. . . into one hundred and thirty little pieces. – – –
Teo, what are you doing? -his mother exclaimed. – – –
There is nothing to fear Fear Frighten 0.35
-said Teo- I’m now Batman! – – –
The bravest one! – – –

versus Gloss Vector for verbs and adjectives, and co-575

sine similarity of Lexvec2 versus Gloss Vector for ad-576

verbs.577

Finally, it is proposed to use a minimum similar-578

ity threshold to avoid associations with low correlation579

values. Figure 5 shows the overall variation of F0.3 for580

each grammatical category as a function of the thresh- 581

old for the best combination already mentioned. By se- 582

lecting thresholds 0.2, 0.3, 0.35 and 0.5 the F0.3 values 583

0.68, 0.54, 0.64 and 0.67 are reached for nouns, verbs, 584

adjectives and adverbs respectively, achieving an over- 585

all F0.3 value of 0.63. 586
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Fig. 5. Minimum threshold for association. Variation of measure F0.3 for each grammatical category.

6. Results587

The experiment concludes that the optimal config-588

uration for the semantic analyzer would be to evalu-589

ate the similarity between terms and words under the590

following conditions:591

– Single assignment. The proposed architecture ma-592

nages the assignment of a single gesture per word,593

selecting the one that presents the highest values594

of semantic similarity.595

– Restriction by grammatical categories. As exper-596

imentation has shown, it is advisable to restrict597

comparisons so that only the similarity between598

a word and terms corresponding to a gesture that599

are of the same grammatical category is evalu-600

ated.601

– Combination of measures. The best combina-602

tion is to use cosine similarity in the Word2Vec603

model to compare nouns, cosine similarity in the604

Word2Vec model versus the Gloss Vector measure605

to evaluate verbs and adjectives, and cosine simi-606

larity in the Lexvec2 model versus the Gloss Vec-607

tor measure to estimate the correspondence be-608

tween adverbs. The combination of two different609

measures is resolved by selecting the maximum610

value.611

– Minimum threshold. A threshold is applied for612

each grammatical category to discard all those613

similarities that do not reach that value, thus614

avoiding the assignment of less related gestures.615

Therefore, a robotic interface that aims to integrate616

iconic gestures under this architecture should first have617

a list of pre-configured gestures along with their defi-618

nitions in the form of relevant sets of terms. Next, the619

speech to be used would have to be analyzed with a620

tokenizer and a POS tagger, redirecting the output to621

the semantic analyzer specified above. This component622

would attempt to associate the animations most closely 623

related to speech words among all the gestures defined 624

in the list. Finally, a series of rules defined by the pro- 625

grammer would be followed to rule out gestures that 626

are candidates for the same sentence. For example, one 627

could select the body motions with the highest simi- 628

larity value per phrase, with a greater weighting of the 629

value of gestures related to nouns and adjectives ver- 630

sus verbs and adverbs. It would also be advisable to 631

penalize gestures that have been performed previously. 632

7. Discussion 633

Initially, it was expected that expert knowledge- 634

based models would apply similarity estimates much 635

better, due to their greater precision in handling se- 636

mantics. Despite this, and contrary to forecasts, experi- 637

mentation shows that both models have similar effects. 638

Therefore, in response to the first research question 639

raised in this paper, it is necessary to look at efficiency. 640

The cost of calculating similarity on the basis of the 641

models already generated is undoubtedly higher in the 642

methods for lexical databases. The latter require nav- 643

igation techniques in graphs for this estimation, while 644

it is a simple geometrical operation for representations 645

generated through the corpus. Although it is true that 646

feature-based measures may be independent of the lo- 647

cation of concepts, due to limited resources they end up 648

needing the properties of neighboring nodes. In short, 649

from the point of view of efficiency rather than effec- 650

tiveness, the use of models based on lexical learning 651

seems more feasible. 652

The attractive qualities of unsupervised methods 653

that define meanings from large volumes of textual 654

data have become apparent. However, the greater com- 655

plexity during the estimation of similarities of lex- 656
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ical databases could cast doubt on their computa-657

tional cost-effectiveness. Nevertheless, experimenta-658

tion shows that a significant percentage of the simi-659

larities calculated by these methods differ from mod-660

els based on lexical learning. In addition, lexicons661

group words by meaning, unlike unsupervised methods662

that encode those meanings in one-hot representations,663

with the ambiguity that comes with it. In our opinion,664

a combination of both approaches is the best option for665

comparing linguistic meanings, so it is worthwhile to666

maintain and use both of them.667

As for the proposed architecture, the different com-668

ponents have been developed on a Nao robot for im-669

plementation. On the one hand, a set of gestures pro-670

vided by the manufacturer has been used in the anima-671

tions library. As already mentioned, FreeLing has been672

used as a morphosyntactic analyzer, isolating words673

and categorizing them, and semantic comparisons have674

been applied using the models described between those675

words and the set of gestures. Finally, the whole pro-676

cess of writing down a story has been applied. The677

complete video5 can be found at the address at the bot-678

tom of the page.679

It should be noted that the values obtained during ex-680

perimentation correspond to an evaluation of the study681

of the estimation of semantic similarity carried out at682

the level of gestural association. However, as already683

mentioned, what is really pursued in this paper is the684

perception of naturalness and fluidity in Human-Robot685

Interaction. The robot is not expected to perform all686

the possible gestures associated with a sentence as the687

speech pronunciation times are a constraint to the exe-688

cution times. Therefore, this perception would have to689

be evaluated in the output of the proposed architecture.690

Considering the difficulty of carrying out a quanti-691

tative evaluation of the complete architecture, the rela-692

tionships between the gestures and the phrases of the693

story are shown in the Table 4 so that the reader can694

directly evaluate the gestures recorded in the story.695

As it is a system based on models that are adaptive to696

language, the gestures associated with a sentence can697

be more or less related depending on the number of698

gestures that are established and the quality of related699

terms that define their meaning, or, in other words,700

their enrichment. In this sense, the words of speech will701

be adapted to the available gestures. The greater the702

number of gestures, the greater the likelihood of find-703

ing stronger associations for the words. Similarly, the704

5https://youtu.be/itslGVDCSlU.

better the choice of terms that will define the gestures, 705

the more accurate the system will be in finding related 706

words. 707

In our example, “sword” is one of the terms that de- 708

fines the animation related to the concept of sword. As 709

can be seen in the video, there is no gesture closer to 710

the meaning of mask, and although there is a more dis- 711

tant semantic relationship, it is strong enough to ex- 712

ceed the established threshold. Another similar exam- 713

ple is the association between the term “noise” and the 714

gesture related to the concept of glare. 715

There are proposals for WordNet in multiple lan- 716

guages, such as MultiWordNet, as well as numerous 717

word embeddings in other languages. This allows the 718

proposed architecture to be multilingual. A demo in 719

Spanish is available on the website of this project.6 720

8. Conclusions and future work 721

In a future where robots are expected to play a key 722

role in society, it is critical to facilitate interactions be- 723

tween robots and humans. This motivation has led to 724

the application of semantic similarity techniques in the 725

present article, which we believe have yielded promis- 726

ing results. For this reason, we believe that a greater in- 727

clusion of natural language processing in the HRI field 728

is a prerequisite for its future evolution. 729

As regards the experimentation carried out, two 730

types of word representation models have been stud- 731

ied: those based on expert knowledge that offer a bet- 732

ter defined structure despite the maintenance costs in- 733

volved, and those based on lexical learning, which han- 734

dle ambiguity but achieve greater efficiency and lex- 735

ical wealth. Although experimentation concludes that 736

in the proposed gestural framework both models are 737

quantitatively similar in Precision and Recall, their op- 738

posite nature leads to entirely different behaviors. A 739

more in-depth examination of results shows that a ma- 740

jority do not overlap, so both types of models can fit 741

together. 742

The semantic analysis component that is included in 743

the proposed gestural interaction architecture is deter- 744

mined with this combination of models. Implantation 745

in a Nao robot has enabled the video attached to the 746

article to be produced and we consider it a good re- 747

flection of the range of possibilities offered by seman- 748

tic analysis for the integration of co-verbal gestures. In 749

6http://www.ia.uned.es/delapaz/tfm_NAONLP.html.

http://www.ia.uned.es/delapaz/tfm_NAONLP.html
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spite of this, we are aware that this architecture is a first750

approximation and there is still much work to be done751

to improve the calculation of correspondences and the752

set of heuristic rules to discard pre-selected gestures.753

Although the focus thus far has been on semantics, it754

would be interesting to try combining the semantic an-755

alyzer with one component of sentiment analysis and756

another of rhetorical techniques, in the same architec-757

ture. In this way, sentiment analysis could, for exam-758

ple, detect different degrees of effusiveness. With the759

analysis of rhetoric, on the other hand, the relation-760

ships between different nuclei of the phrases could be761

used to associate rhetorical gestures as expressions of762

causality or enumeration.763
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