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ABSTRACT Educational robotics has proven its positive impact on the performances and attitudes of
students. However, the educational environments that employ them rarely provide teachers with relevant
information that can be used to make an effective monitoring of the student learning progress. To overcome
these limitations, in this paper we present IDEE (Integrated Didactic Educational Environment), an educa-
tional environment for physics, that uses EV3 LEGO Mindstorms R© educational kit as robotic component.
To provide support to teachers, IDEE includes a dashboard that provides them with information about the
students’ learning process. This analysis is done by means of an Additive Factor Model (AFM). That is a
well-known technique in the educational data mining research area. However, it has been usually employed
to carry out analysis about students’ performance data outside the system. This can be a burden for the
teacher who, in most cases, is not an expert in data analysis. Our goal in this paper is to show how the
coefficients of AFM provide valuable information to the teacher without requiring any deep expertise in
data analysis. In addition, we show an improved version of the AFM that provides a deeper understanding
about the students’ learning process.

INDEX TERMS Educational technology, computer aided instruction, computer applications, adaptive
systems, STEM.

I. INTRODUCTION
New developments in educational robotics are making pos-
sible for teachers to bring technology into the classroom
more than ever before, in particular in the fields of Science,
Technology, Engineering, and Mathematics (STEM) [1], [2].
In fact, nowadays there is an ever-increasing interest in educa-
tional robotics. Experiences like the one reported in [3] show
the great interest that robotics raises in students. Educational
robotics offers interesting teaching and learning opportuni-
ties at various levels and school subjects [2], [4]–[7] mainly
to acquire skills on programming [8], robotics or elec-
tronic engineering. For example, in [9] the authors present
a robot-visual programming environment interface to let
K-12 students construct their own programs to manipulate
certain robot components. In [10], the authors present how
a small autonomous robot is used to motivate students in
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an electronic engineering laboratory. In [11], the authors
compare a robotics curriculum by using both commercial
and open software and hardware. In addition, educational
robotics has also an important role as a motivational com-
ponent [12], [13]. Constructivism and constructionism are
two main theories behind educational robotics. Following
the Papert paradigm of constructionism [14], students should
construct their knowledge under the guidance of the teacher.
Papert believed that to encourage students’ active learning,
besides the theoretical content, it is required to provide prac-
tical exercises and up-to-date tools in laboratories. This is
especially true in scientific subjects, such as physics.

Although several studies report the positive results
obtained from experimental courses [15], [16], educational
robotics still remains an extracurricular activity usually iso-
lated from the official curriculum [17]. This is in part due to
the belief that students try to solve the task in robotics classes
with a guess-and-check technique by using the feedback
of the digital technology [18]. To employ robotics tools in
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learning environments for educational use, it is needed to
support teachers in the students’ learning assessment by pro-
viding relevant information about the students’ learning out-
comes [19], [20]. The assessment of the students should not
be limited to grading them as it should bemore informative by
identifying the subjects where they excel or find difficulties.

To support the learning assessment, educational data min-
ing research area [21] offers several methods to analyze data
collected from learning environments to better understand
the learning outcomes or the engagement of the students.
Nevertheless, since educational robotics is not yet embedded
in learning environments, teachers do not get an analysis of
the learning process of their students while using the robotics
system.

In this paper we present IDEE (Integrated Didactic Edu-
cational Environment), a learning environment for physics
focused on the concepts that students must acquire by fol-
lowing the official regulations.1 IDEE [22], [23] can be used
to carry out laboratory activities with a robotic kit and to
work on the mandatory concepts that students have to acquire
in a physics class in secondary education. To support teach-
ers, IDEE tracks students’ interaction data and provides a
dashboard that allows the teachers to analyze and assess the
progresses and difficulties of the class group. Specifically,
our aim is to identify those students who have difficulties on
certain concepts or to detect which concepts are too difficult
or trivial to learn. To this end, we have used Additive Fac-
tor Model (AFM) [24]. AFM is an effective model of the
student performance. The right interpretation of the model
coefficients helps in identifying the students that are actively
learning and the skills that result more difficult to learn. Our
goal in this paper is to show how the coefficients of the AFM
along with the learning curves and the interactive graphs may
offer valuable information to the teachers about the learning
performance of the students.

The rest of the paper is organized as follows. In the next
section, we describe some related work on the use of edu-
cational robotics emphasizing the need to support teach-
ers while using in class educational environments that use
robotics. In section III, we make an overview of IDEE, and
how it allows to develop and present the contents of a regular
curricular programme. In section IVmore details on the AFM
model are given and how teachers are supported in IDEE.
Finally, in section V we present our conclusions and lines for
future work.

II. RELATED WORK
With the rapid development of computer technologies,
the importance of acquiring computational skills has been
widely recognized in recent education [25].

In fact, a major trend, in the research area on design
of educational applications, is the development of learning
programming environments with the goal of making the

1In 2006 the European Parliament recommended a teaching method based
on competences that structures the didactic programming according to learn-
ing units.

programming tasks more friendly and pleasing to beginner
students [26]. In this context, Scratch [27] was released with
the goal of providing to novice students an environment to
learn programming. In order to help students in programming
with Scratch, some learning environments track students’
interactions to provide hints when needed. This is the case of
iSnap [28]. iSnap is an educational environment that tracks
students’ interactions to provide hints to students when pro-
gramming with Scratch.

With the proliferation of robotics tools, the new version
of Scratch, Scratch3, includes interfaces to program different
robotic tools, such as, Lego EV3 Mindstorm R©. The increas-
ing interest to encourage children in programming tasks
has led to several initiatives. A major example is the Open
Roberta Fraunhofer IAIS lab [29], which looks to engage
children by the use of different robots.

Besides programming teaching, educational robotics is
being used also in other subjects. For example, in [30] educa-
tional robotics is used to support teaching of native language.
The authors propose two activities with Lego Minstorms
EV3 that can be performed by the teacher. In [17] the authors,
propose the use of Bee-Bots in a course unit on road safety.

Educational robotics has been used also in sciences educa-
tion. For example, an educational social robot has been used
to motivate students in reading science texts [31]. In [32]
the authors propose the use of a MARRtino robot to teach
Newtonian concepts. In [33] students are asked to build and
use a rescuer robot to apply knowledge on electricity. All
these approaches evaluate the impact of using educational
robotics by comparing the level of knowledge of the students
before and after the robotics experience.

Nevertheless, due to the unpredictable nature of a class
that uses robots where students may interact in different
ways [34], there are only few proposals to support teach-
ers [35]. Effective use of educational robotics in class requires
learning environments that take into account the character-
istics of the students, the specific learning objectives and
the assessment procedures that will best measure and guide
learning.

Educational data can be analyzed in order to get useful
insights to assess the learning process and to support both
teachers and students. Educational data mining research area
has employed techniques mainly from machine learning area
in order to analyze educational data [36]. The goal of many
of these applications is to predict students behavior [35]. For
example, in [37] the authors show how machine learning
techniques can be used to early predict the student success in
a block-based programming environment. In [38] the authors
propose an approach to early predict students’ difficulties in
open-ended programming tasks. In [39] the authors analyze
the students’ interactions with massive open online courses
with the aim to predict students’ motivation.

Data mining techniques can be also used to describe how
the learning process develops [21]. The goal is to give teach-
ers information to improve materials or to reinforce certain
concepts in the course. For example, in [40] the authors apply
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clustering techniques to group students with similar inter-
action patterns. The clusters are shown to the teacher who
can provide some recommendations about additional material
only to certain groups. Supervised learning techniques have
also been employed to predict student’s outcomes and to
provide teachers with a dashboard to inspect those predictive
models [41]. In [39] several machine learning techniques are
used to help teachers to detect unmotivated students at their
early stages in order to timely provide support to them.

However, educational environments that use robotics do
not usually track student interactions. When used in the
classroom, the teacher usually can only assess the final work
done by the student without any information on his learn-
ing process, but he cannot trace the causes of the results.
An exception may be the work described in [42]. There,
the authors describe a learning environment that helps the
teacher to supervise coding activities and to detect the right
moments for intervention to help the students. This is done
by computing a set of rules derived by using decision trees
applied to interaction data.

Thus, it is necessary to include new tools to track and
model students’ progress in learning environments that use
robotics.

IDEE is a learning environment created to be used in
class by the teacher to explain physics content by employing
robotics for certain activities. All the student’s interactions
with the environment are tracked and stored in a database.
To analyze this data we use AFM [24]. AFM has been widely
employed to support the assessment of the level of assim-
ilation of the contents of the course by the students [43].
AFM is generally applied within the framework available at
PSLC-Datashop [44] and it requires a certain amount of back-
ground knowledge about the techniques involved. A great
majority of teachers have not such background knowledge
and thus we have implemented AFM as a component in
IDEE to allow teachers to perform their own analysis of the
activities using robotics. In addition, to ease the use of the
dashboard, in IDEE we also provide learning curves [45]
and interactive graphs that can be helpful for the teacher to
understand the AFM parameters.

III. IDEE: INTEGRATED DIDACTIC EDUCATIONAL
ENVIRONMENT
A. OVERVIEW
IDEE is a learning environment that provides a frame-
work to study learning units in physics through the use of
robotics [23].

Each experience in IDEE analyzes a physical phenomenon.
The students study the phenomenon as true scientists by
following the steps of Galileo Galilei’s scientificmethod: first
they observe the phenomenon, then they collect experimental
data that will lead them to formulate hypotheses that will
finally be validated by a mathematical law [23].

In IDEE, students have to manipulate robotics as labo-
ratory artifacts in order to test their hypothesis about the
solution of each learning activity. Students can visualize their

FIGURE 1. The robot designed for the inclined plane experiment in IDEE.

proposed solutions as often as they wish while observing the
behavior of the robot.

Currently, IDEE contains 4 experiences: Uniform rectilin-
ear motion, uniformly accelerated motion, inclined plane and
free fall.

For each experience different types of activities are
defined:

• Introduction to the robot: the objective of this activity is
to allow students to know how the robot works. To do
this, students have to connect the different sensors and
motors to the robot. As an example, in Figure 1 we show
the robot used in the experience of the inclined plane.

• Laboratory: in this activity, students have to use a set
of blocks to program an action of the robot, for exam-
ple, drop a ball on an inclined plane or make a car
travel a distance in the uniformly accelerated motion
experiment. In these activities the robot returns certain
data such as the time spent by the ball to roll down the
inclined plane. Students gather and enter this data in
IDEE.

• Test: a test is defined to make students reflect on the
physics concepts involved in the experiment.

• Final problem: it is a problem that students may solve
without the use of the robot. This final problem allows
the theoretical analysis of the phenomenon.

While solving a problem, IDEE automatically evaluates the
solution provided by the student. Figure 2 depicts a screen-
shot of IDEE learning environment and an evaluation of a
provided solution, given by IDEE.

B. IDEE ARCHITECTURE
The architecture of IDEE is shown in Figure 3 and it is based
on:

• Django2: it is a framework that allows the creation and
management of Python web applications. It handles the
user management and the interaction with the database.

2https://www.djangoproject.com
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FIGURE 2. General interface of IDEE. Each learning activity in IDEE is
composed by the following elements: the statement of the activity,
the blocks that will be necessary to build the solution and the feedback
button. In the overlay image it is shown the solution given to the student
(the correct and incorrect answers and the graph that results from the
solutions).

FIGURE 3. The architecture of IDEE.

• Blockly: it is an open source visual programming envi-
ronment3 developed by Google. It is used to allow the
students to implement programs during the learning
activities. It has been chosen because its ease of use.

• Scratch Plug-in: it allows the communication between
the Blockly program and the Lego EV3 robot through a
bluetooth connection.

• Dash4: it is used to develop the teacher dashboard.
• PostgreSQL database: it is used to store and retrieve the
data recorded during the activities.

IDEE uses the EV3 LEGO Mindstorms R© educational kit
as the robotic component. This kit has been widely employed
in educational settings [46] due to its versatility, popularity
among students and its diverse features including sensors,
motors and a programmable device that controls the move-
ment and reaction of the robot [47].

Students and teachers interact with IDEE through a
web-based interface. Besides a menu that allows them to

3https://developers.google.com/blockly/
4http://www.dash-project.org

navigate through the different activities (problems or tests),
the interface provides the activity statement and a working
area. In IDEE students work on the activity and manipulate
the robot by using the programming editor that is based
on drag-and-drop blocks and developed with Blockly (some
blocks for communicating with the robot have been imple-
mented specially for IDEE). The program in Blockly is inter-
nally converted into JavaScript and interpreted by IDEE.
When students finish the problem, they submit the solution
and the interaction data is stored in the database. All the data
collected during the activities, as well as the answers to tests
and problems related with them and with the involved skills
are stored in the PostgreSQL database.

The dashboard developed with Dash allows teachers to
actively monitor the collected data (see section IV-B). Dash
allows the creation of interactive views of the data together
with statistical graphs and tests.

C. STUDENTS’ KNOWLEDGE TRACING IN IDEE
The learning activities offered in IDEE work on a series of
skills that embody the knowledge that students must acquire.
Student actions are coded as correct or incorrect and catego-
rized in terms of the skills needed to perform the contents of
the learning unit.

In Table 1 we show some examples of the skills defined for
the learning unit of the kinematic study of movement.

Activities in IDEE work on different skills, but not all
of the involved skills have the same relevance. Thus, when
creating an activity we have to define a score parameter for
each skill that represents the level of knowledge that the skill
contributes to (Wi).5 Table 2 shows some of the activities
defined in IDEE in two different experiences (inclined plane
and uniform rectilinear movement), the skills involved and
their corresponding scores.

IDEE tracks the students’ interaction data by storing it
in the database. In particular, IDEE stores, in a table called
profile table, the relationship between the activity (the field
element_id), the skill (the field skill_id) and the
knowledge level that the student acquires in that skill. We call
this last field accumulated score. The accumulated score
determines the degree in which each skill is achieved by
the students when they do the activity and it is obtained for
each skill and for each student taking into account the score
parameter introduced before.

When a student gives a correct answer, IDEE determines
the value of the accumulated score for each skill in the
following manner:

• if the activity is a test, the accumulated score is equal to
the score of the skill in the activity.

• If the activity is a problem or a laboratory exercise,
the accumulated score (ASij) for skill i and student j is

5These vales are defined by the teacher according to the didactic program-
ming of the learning unit.
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TABLE 1. Skills included in IDEE to achieve the contents of the didactical programming of the learning unit of kinematic study of movement.

TABLE 2. Example of skills involved in several activities in IDEE. The degree of completion (or score parameter) of each skill when performing certain
activity is shown in parenthesis. (URM :Uniform Rectilinear Movement).

calculated as in equation (1):

ASij =
nj
Nj
∗Wi (1)

where nj is the number of correct answers given by the
student j in the activity, Nj is the number of total answers
in the activity and Wi is the score parameter of skill i in the
activity.

For example, let’s consider a student working in the labo-
ratory of the inclined plane; the student has to calculate the
time of fall of a ball on an inclined plane considering different
lengths. The laboratory of the inclined plane is related to dif-
ferent skills: skill_12 with score 10 (W12 = 10); skill_3 with
score 8 (W3 = 8) and skill_8 with score 5 (W8 = 5). In this
activity, the students have to answer four different questions
(one for each value of the length of the inclined plane). In the
student’s response shown in Figure 4 there are: two exact
answers (shown in green), a wrong one (shown in red) and
one with incorrect units (shown in blue); in this case (nj = 2
andNj = 4), the accumulated score should take 2/4 as a factor
to be multiplied by the scores of the student on the different
skills in the activity. In Figure 4, we show the values for the
accumulated score that are stored in the profile table for this
particular example.

In addition, to support student’s learning, IDEE presents
different versions of the same final activity problem. Thus,

FIGURE 4. An example of a student’s answers and its tracking in the
database of IDEE.

each version depends on the level of knowledge of each
student. This level is obtained taking into account the aver-
age of accumulated scores (AvgScore) of the students in the
activities on which he worked.

Thus, a student j with a high level of knowledge
(AvgScorej > 0.8) will not be offered any additional support.
A student with a medium level of knowledge (0.5 < AvgScorej
≤ 0.8) will be guided in the logical steps necessary to solve
the problem (logical help). Finally a student with a low level
of knowledge (AvgScorej < 0.5) will also be supported on
the mathematical formula necessary to solve the problem
(mathematical help). These thresholds have been defined by
taking into account the intervals of grades usually considered
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FIGURE 5. The working area for a student with a low knowledge level
and the hints that are provided.

at schools (below a grade of 5 it is considered that the student
needs to improve, between 5 and 8 it is considered that the
student has a good level of knowledge and above 8 the student
is considered to excel).

As an example, Figure 5 depicts the working area in IDEE
for a student with a low level of knowledge.

IV. STUDENTS’ INTERACTIONS ANALYSIS
In IDEE students’ interactions analysis is done by means
of AFM (Additive Factor Model) [24]. Our goal is to show
how the coefficients obtained in AFM can provide useful
information to a teacher. In this section we do an overview
of AFM and describe the experiences carried out with IDEE
and the results obtained.

A. OVERVIEW OF ADDITIVE FACTOR MODEL
The goal of AFM is to represent the probability that a student
correctly answers on an activity by taking into account those
in which the student has been working on before. The AFM is
a statistical algorithm for modeling learning and performance
that uses multiple logistic regression with student-success
(0 or 1) as the dependent variable and with an independent
variable for each opportunity interaction (i.e. the number of
attempts of each student on each skill) [48]. The AFM is
based on a binary Q-matrix that represents the iterations of
each student with each skill while performing the activity.
Below we show a simplified example of the Q-matrix used
by AFM for one student:

skill_1 skill_2
activity_1 1 1
activity_2 1 0
activity_3 1 1


We can see that the student has worked on skill_1 in all the

activities and on skill_2 in activity_1 and activity_3.
Formally, given a group of N students, a set of K skills and

a set of J activities or items, in AFM, the probability that a
student i ∈ {1 . . .N } gives a correct answer in an activity,
is expressed by equation (2).

p = P(Yij = 1|αi, β, γ )

= f (αi +
K∑
k=1

βk ∗ qjk +
K∑
k=1

γk ∗ qjk ∗ Tik )

f (x) =
1

(1+ e−x)
(2)

where: p is the probability of student’s success on an exercise;
Yij is the binary response of student i to activity j; qjk is the
binary indicator that activity j uses skill k; αi is the student
intercept that represents the student’s knowledge; βk is the
skill intercept for skill k which represents the difficulty of the
skill; γk is the skill slope that represents how quickly skill k
can be assimilated and Tik is the number of times the student
i has worked on skill k .

Thus, in AFM model, the probability of success depends
on the ability of student i (αi), the easiness of skill k (βk )
and the learning rate for skill k (γk ). The students intercept
parameter is used for each student (the initial knowledge
of each student is different). The skill intercept parameter
is used for each skill (some skills are better known than
others) and the skill slope depends on the skill but does not
depend on the student (some skills are easier to learn than
others).

B. ADDITIVE FACTOR MODEL IN IDEE
In educational data mining area, Q-matrices like the ones
used in AFM have been widely employed to analyze
data coming from intelligent tutoring systems. Neverthe-
less, up to our knowledge this analysis is done using
PSLC-Datashop [44]. There, researchers can upload their
dataset and their Q-matrices and analyze their educational
data. It can be a burden for the teacher who, in most cases,
is not an expert in data analysis. Our goal in IDEE is to
provide a dashboard to let teacher analyzes the students’
performance by means of AFMwithout any knowledge about
the techniques involved in those analyses. To this end we
have also focused on visualizations that can be useful for the
teacher in interpreting what is happening in the classroom
context.

To implement AFM in IDEE, we have used the machine
learning Python library scikit-learn.6 In particular, IDEE
applies a logistic regression classifier included in the
StatsModels Python library [49]. To obtain the coefficients of
the logistic regression, we have employed Generalized linear
model (GLM) [49]. To display the interactive data visualiza-
tions we have used the library dash_core_component in
Dashboard.7

In particular, in IDEE the teacher’s module contains what
follows:

1) Indicators of the learning process: a table with the
AFM coefficients α, β and γ mentioned in section IV-
A. These coefficients are obtained applying GLM
(binomial familiy) to students’ interaction data. The
coefficient α shows the students’ abilities in the skills
and it is graphically represented in IDEE using a Polar
graph. Accordingly, the coefficient βk represents the
easiness of skill k . The highest value for βk implies
a lower initial difficulty for skill k; the highest value
of the coefficient γk indicates how fast students learn

6https://scikit-learn.org/
7https://dash.plot.ly/dash
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FIGURE 6. Screenshot of the teacher’s module in IDEE. It can be seen that the teacher can access different information
using the available menu: indicators of learning (1); learning curves (2) or graphs with the accumulated score of students
on the different skills (3) and student’s interaction table (4).

FIGURE 7. Screenshot of the teacher’s module which shows the learning
curve for skill_12. In this skill, the students seem to improve their
learning since the number of errors declines and the curve is smooth and
decreasing.

skill k . In IDEE, for each skill k , significative values for
coefficients βk and γk are shown to the teacher (those
with p-value < 0.05).

2) Learning curves: learning curves plot performance ver-
sus opportunities to practice [45]. Thus they show the
number of errors in an activity for each attempt by all
the students. In IDEE, learning curves are shown to the
teachers for each skill.

3) Graphs: teacher can see also a graph showing the accu-
mulated score for each student and each skill.

4) Student’s interaction table: a table with the activities
carried out by a selected student, the time that this
student has spent in the activities and the mistakes he
made in the different activities.

We can see in Figure 6 a screenshot of the teacher’s module
in IDEE.

FIGURE 8. Graphical analysis of the student intercept parameter α with a
Polar Graph. With red points it is shown students who presented learning
difficulties on the skills analyzed, with green points the students that no
present difficulties. Students are identified by their IDs but teachers has
access to a list with the correspondence between IDs and students’
names.

C. RESULTS
IDEE has been used in a physics class in the Gredos Las
Suertes School8 with 30 students aged between 16 and 17 and
supervised by a teacher of mathematics and physics of sec-
ondary education. The goal of the experience with IDEE is to
help students to understand the concepts of the learning unit
of kinematic study of movement through experimentation.
Prior to working with IDEE, students theoretically dealt with
the topic in class with their physics teacher. In addition,
students’ knowledge on the subject is assessed to ensure that
they are prepared to take advantage of the experiences in
the laboratory. The experience lasted two hours; each student

8An official permission from the Gredos Las Suertes school was obtained
to carry out the experience.
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FIGURE 9. Screenshot of the teacher’s module that shows the accumulated score of each student for a particular skill.

TABLE 3. Indicators of the learning process.

worked with his/her computer and carried out the laboratory
activities in a group of three students.

IDEE processes the data stored from this experience and
fill in a derived table, made of 570 entries. Each entry is
composed by the student_id, the skill he/she is working and
the number of attempts in each skill he/she has previously
done. This is the table used to apply AFM.

The goal in this experience was to teach the learning unit of
kinematic study of movement (the competence, the contents
and the nine skills covered are listed in Table 1).
The four activities created in IDEE are all aimed at under-

standing this learning unit.
IDEE analyzes the data with a logistic regression whose

significant results are summarized in Table 3a and in Table 3b.
The interpretation of the table results can be made consider-
ing the definition of the AFM described in section IV-A.

From the results in Table 3a, in the column skill inter-
cept (β), it can be highlighted some learning deficiencies:
• Students have difficulties when they work on activities
that require the physical concept of reference system;
skill_2 (‘‘Reference system’’) with β = −4.23.

• Students present initial difficulties when they use
robotics tools in IDEE; skill_12 (‘‘Knowledge in
robotics’’) with β = −4.16.

The initial difficulties on the use of the robotic tools,
highlighted by themodel, appears consistent with the fact that
it was the first time the students were using IDEE.

In the same Table 3a, the column slope γ allows to analyze
the evolution students have when interacting with the system.
Thus:
• in skill_2, the parameter γ = 3.2 shows that students
learn quickly.
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FIGURE 10. The student has worked on skill_12 six times in two problems activities and all the answers
have been incorrect (they are all marked in red).

• In skill_12, the paramenter γ = 0.84 shows an improve-
ment but it is slower. The result would be better if the
students were already exposed to the use of the system.

In addition, according to the results shown in Table 3b,
the analysis of the parameter α evinces a group of 6 students
with learning difficulties on the skills analyzed marked in
bold in the table and two students who showed no difficulties
(user_id_1514 and user_id_1529).

By using the dashboard implemented in IDEE, the teacher
is able to understand all these results without being an expert
in educational data mining. Notice that our goal is not to accu-
rately predict the students’ success but to show the teachers
which skills seem too difficult or too easy and which students
seem to be experiencing problems in the activities. As it has
been described in section IV-B, in IDEE the statistical results
of the analysis are graphically displayed to the teacher by
means of learning curves and interactive graphs.

The main goal of the learning curves in IDEE is to let
the teacher focus on the progress or the difficulties of the
class group in those skills that are considered relevant. As an
example, we give a possible set of steps that the teacher may
follow to understand the situation of his/her class. Looking
at Figure 7, teacher can see the learning curve displaying
the first 6 attempts for all the students in the skill_12 (this
skill is significant both considering β12 and γ12 as shown
in Table 3a). The students show a high initial difficulty (high
number of errors). During the activities the number of errors
declines, so the curve is smooth and decreasing. Thus in this
skill students improve in their learning.

From the graph in Figure 8, the teacher can see with a
graphycal representation of Table 3b that a group of 6 students
presented learning difficulties (red points) on the significative

FIGURE 11. Example of the Q-matrix used by AFM.

skills and two students who presented no difficulties (green
points). Both the table and the graph are available in the
dashboard. In addition, looking at Figure 9, the teacher can
inspect accumulated scores for skill_12 of those students
with difficulties. Students with IDs 1509, 1510, 1511 and
1515 have a low value for accumulated score while students
with IDs 1507 and 1532 do not have value for accumulated
score. By selecting these students in the student’s interaction
table, in Figure 10, the teacher can see that the student with ID
1507 has not worked but the student with ID 1532 has worked
but he has never given correct answers.With this information,
teachersmay decide to offer additional help or supervisemore
closely certain students.

This type of analysis turns out to be more effective for the
teacher than a test to verify the skills acquired during the
activities, indeed a test gives no information to the teacher
about the learning process of the students and therefore about
their difficulties [16].

D. DEEPER UNDERSTANDING OF STUDENTS’ LEARNING
PROCESS
As we have seen in the subsections above and in equation (2),
AFM only considers the student’s interactions on different
skills to understand student’s learning process. In this section
we make a deeper analysis of the recorded data and we try
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FIGURE 12. Example of the Q-matrix used by eAFM (the column Type can take two
different values: 0 and 1 that indicates if the activity is a problem or a test
respectively).

TABLE 4. Example of interactions of two different students with three
activities. The columns skill_1 and skill_2 show the value of the score of
each skill in the activities. The columns student_1 and student_2 show if
each particular student has worked or not with each activity.

to understand if other components, such as the type of activ-
ities that students were interacting with (test and problems),
or the type of contents they were exposed to (using the score
parameter of the skills), can add more insights on the student
learning process.

To this end, in the AFM equation (3) we have included
two new parameters: A is the type of activity the student is
working on (namely type) and Wj is the score parameter (i.e.
the weight of the different skills on the activity).

So, given a group of N students, a set of K skills and a
set of J activities or items, in this enhanced AFM (eAFM),
the probability that a student i ∈ {1 . . .N } gives a correct
answer in an exercise, is expressed by equation (3):

p = P(Yij = 1|αi, β, γ )

= f (αi + γ ∗ 1A(j)+
K∑
k=1

βk ∗ qjk ∗Wk

+

K∑
k=1

γk ∗ qjk ∗ Tik )

f (x) =
1

(1+ e−x)
(3)

where A ⊂ J is the set of tests defined for the activities in
IDEE and Wk is the score of skill k . Thus 1A(j) is 1 if j ∈
A (i.e. if j is a test) and 0 otherwise. With this new model,
the parameter γ denotes the difficulty of the type of exercise
(problem or test).

Table 4 shows an example of how two different students
have worked on three different activities.

With the traditional AFM we should have the same
Q-matrix for student_1 and student_2, therefore the model
will determine the same learning for the two students (see
Figure 11). With eAFM we have the Q-matrix shown
in Figure 12. In this case, student_1, gave a correct answer
in activity_1. Notice that the value of score parameter of
skill_1 for activity_1 is 1. In this same activity, student_2 did

TABLE 5. Comparison in terms of BIC, AIC and RMSE between AFM and
eAFM.

not answer correctly, but he was right in activity_3. Neverthe-
less the value of score parameter for skill_1 in activity_3 is
0.3. So on skill_1 the two students have a different learning.

The eAFM takes into account that student_1 has a differ-
ent amount of learning from student_2 (something that was
omitted with the previous model).

To check if this eAFM could be used to provide learning
indicators as done in section IV-C, we have employed GLM
using this new Q-matrix.

The type parameter is significant with γ = 1.95, this
value indicates that the tests are on average easier than the
problems. In fact, with the eAFM the significance of the user
with ID 1529 is lost. This new analysis is in agreement with
the data since this student does not show difficulties.

The eAFM model has been compared with the previous
AFM in terms of the AIC (Akaike Information Criterion),
the BIC (Bayesian Information Criterion) and the RMSE
(Root Mean-Squared Error) with cross validation [50], [51].
In the Table 5 we show the results obtained. A decrease by
10 points (or more) in AIC is deemed to be a reasonable
indicator of a better more suitable model according to prior
practice [52]. However, further experimentation is needed to
get a more solid evidence.

V. CONCLUSION AND FUTURE WORK
Usually, educational robotics has been employed in extracur-
ricular activities isolated from classrooms. Providing support
to teachers in educational robotics environments is crucial
to promote the use of robotics in classrooms. In this paper
we present IDEE, an educational environment that provides
learning activities that uses robotics. In addition, we show
how teachers can be supported in IDEE through the use
of AFM, a well-known technique to represent the learning
process in learning environments.

We show that the application of AFM may be useful for
a teacher who uses data from experiences in physics classes
that include theory, problems and laboratories. The results
display valuable information about learning process. In our
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work, the reliability of the estimation of the coefficients is a
crucial aspect for model inference.

We also propose the eAFM whose results, presented in
section IV-D, are encouraging. The score and the type of
activity seem valid variables to allow amore accurate analysis
of the students’ learning process. As future line of work,
we plan to keep working on the eAFM. We would like to test
if a better assessment of the learning progress of the students
can be obtained by taking into account the learning path of
the students.
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