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ABSTRACT 

 

Self-driving cars (a.k.a. Autonomous Vehicles) have many 

challenges to tackle before having them fully deployed in our 

roads and cities. A critical one, which has been somehow 

neglected till recently, is to consider the driver in the system-

user loop of vehicle performance. The purpose here is to 

tackle some of the current pending challenges involved in 

scaling up the level of autonomy of these systems. We have 

designed two user-vehicle experiences in two different sites 

with a common methodology that serves as an umbrella to 

collect all features required to model the driver-user. These 

two sites allow us to contrast and fine-tune this modelling 

issue. The approach consists in following a Learning 

Apprentice approach, where both the user behaviour and the 

system behaviour are learned and improved in a symbiotic 

ecosystem. This paper focuses on discussing the advantages 

of this approach and the main issues that require further 

research. 

 
INTRODUCTION 

 

Autonomous vehicles (AV) have been available for over 34 

years already (Pomerleau, 1988). However, the main question 

remains open, why they have not been fully deployed up to 

now. We argue that this is because research and developments 

have neglected a critical factor, the human factor. Admittedly, 

this factor has been largely studied regarding pedestrians 

(CCAM, 2021), i.e., outside the vehicle. But there is little 

research done on the human factor within the vehicle (Puertas-

Ramirez et al., 2021). We contend that the inclusion of the 

driver in the system-user loop of vehicle performance is one 

of the key challenges to tackle before having AV fully 

deployed in our roads and cities. 

There exists a significant gap in AV between the decisions 

made by the in-vehicle intelligent systems and what is needed 

to support autonomous functioning and better cater to user 

needs. This gap becomes even more challenging as the 

decision-making capability of the vehicle increases without 

considering each unique user's needs. To address this gap 

between the intelligent system and the driver/passenger, this 

work proposes a break-down methodology to reduce the gap 

in each case by providing a new adaptive symbiosis based on 

personalizing human-vehicle interaction. The goal is to 

increase the user's performance and satisfaction, as well as the 

system's level of autonomous functioning and adequacy to 

cater to user and context changing needs within the given 

situation. 

 

Our modelling approach involves semi-supervised learning 

(van Engelen et al., 1992) and Learning Apprentice Systems 

(Dent et al.,1992), where both user-behaviour and system-

behaviour are learned and modelled in a symbiotic ecosystem. 

Learning apprentice systems support computational models of 

human learning from examples and feedback. These systems 

have proven their applicability in a wide range of scenarios, 

such as Intelligence Tutoring Systems (MacLellan et al., 

1992) and Calendar Apprentice Systems (Dent et al., 1992).  

We explore the advantages of this approach and discuss the 

key issues that require further research. By incorporating the 

driver into the autonomous system, we aim to overcome the 

existing limitations and enhance the scalability of autonomous 

vehicle autonomy.  

In our previous work (Puertas-Ramirez et al., 2021), we 

argued that the human driver still plays a critical role in self-

driving cars by taking over the control of the vehicle if 

prompted. For example, drivers are required to detect and 

react in case of autonomous vehicle malfunctions. In 

autonomous vehicles, the driver's cognitive load is reduced, 

but the vehicle still expects the driver to maintain awareness 

in case of failure. 

To assure safety during autonomous operation, the user state 

should be continuously measured, which is intended to 

support a "Fallback Ready State" (FRS) (Puertas-Ramirez et 

al., 2021). Our initial objective with this research is to measure 

the key elements and features involved in modelling the user-

system and system-user interaction that have a real impact on 

user-system performance. To this we have developed the 

infrastructure required to deal with two real experiences of 

AV in two different sites and circumstances. This paves the 

way to define and clarify the main issues involved in a 

trustable user-centric methodology in autonomous vehicles. 

In (Puertas-Ramirez et al., 2021) we clarified the importance 

of each instantaneous user-vehicle state (UVS) inside 

autonomous vehicles and the frontier of each human-vehicle 

interaction from low to high levels of automation. We argued 

that personalizing human-vehicle interaction is more than just 
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managing the Take Over Requests (TORs), wherein the 

vehicle prompts the driver to assume control. Understanding 

the real behaviour of both the system and the user is the 

critical issue to be break-down in an adaptive symbiosis 

between the user and the autonomous vehicle. We must 

understand the bidirectional communication between them, 

considering that each autonomous vehicle and each individual 

user is a specific case in a continuous and endless interaction 

paradigm. 

 

Therefore, this paper aims to achieve four objectives related 

to the adaptive modelling of the autonomous vehicle 

ecosystem based on user experiences. These objectives will 

advance the global objective, which is an intelligent and 

autonomous collaboration between the user and the system. 

● Obj. 1: The first objective is to capture data in 

diverse driving scenarios where user action is 

essential to tailor the response of the system in a non-

intrusive way for the user. This objective is critical 

in enabling the system to learn and adapt to different 

driving scenarios, ensuring that it can respond 

appropriately to both user actions and needs, and 

driving conditions supervised by the autonomous 

system. 

● Obj. 2: The second objective is to create models that 

are adapted to each person's needs, tasks, and 

context, with the ability to generalise to unseen users 

using semi-supervised approaches to cope with the 

labelling bottleneck. The development of 

personalized models is necessary to ensure that the 

system can adapt to the unique driving styles and 

habits of each individual user, which can vary 

significantly depending on the person's experience, 

preferences, and situational context. 

● Obj. 3: The third objective is to apply the 

developments in real driving environments of user-

system interaction, ensuring the adequacy and 

adaptation of the models to changes in scenarios and 

over time, thus increasing the range of actions in 

which the system, in each context, responds 

autonomously. This objective is aimed at ensuring 

that the system can respond effectively and 

efficiently to changes in driving scenarios and adapt 

to the evolving needs and preferences of the user. 

● Obj. 4: Finally, the fourth objective is to design 

indicators that facilitate the generation of a 

responsive framework to the person's state in various 

traffic contexts, thus dealing with their mental and 

operational factors by considering behavioural and 

mental-affective response variables. The 

development of indicators that can capture the user's 

mental and operational factors is essential in 

ensuring that the system can respond to the user's 

needs in a comprehensive way, considering the user's 

mental and emotional state, as well as their driving 

behaviour. 

 

In summary, the paper aims to develop a system that can adapt 

to each user's needs and context while driving, with the 

ultimate goal of improving safety and efficiency on the road. 

The paper is structured into several sections, starting with a 

review of related work in the field, followed by a description 

of the proposed methodology. The configuration of the 

experiences in what we consider the first modelling results is 

then discussed, along with the evolution of autonomous 

vehicles and how to advance in automation levels. Finally, the 

paper concludes with the future work. 

 
RELATED WORK 

 
To date autonomous vehicles have been successful reaching 

the level 5 of autonomy only in highly controlled 

environments where everything (excluding the user) is 

modelled as accurately as possible (J.Wang et al., 2021). To 

advance the level of autonomy in real driving conditions this 

methodology tackles the problem of developing a dynamic 

autonomous system which is able to pass through autonomy 

levels 3 and 4. Our working assumption is that current 

autonomous systems have problems in scaling up the level of 

autonomy because they do not take advantage of considering 

the human driver in the loop to adequately react to unexpected 

events or Take Over Requests (TORs). Currently, when 

something unexpected happens in SAE levels 3 and 4 (SAE-

International, 2018), the vehicle must decide whether to 

transfer the control to the human or not. Is right here where 

our approach addresses the problem in a distinctive way. 

In essence, we argue that to deal with that transition of control, 

from the system to the driver, the driver must be modelled so 

the autonomous system is endowed with the possibility of 

predicting the driver's behaviour in each situation. To collect 

all the required information involved, an in-depth modelling 

must be carried out. Our approach considers information from 

cameras and biometric user's data. Measuring physiological 

signals with non-invasive methods reliably remains a 

challenge. To this, there have been promising developments 

that propose non-contact microwave sensors to measure Heart 

rate and respiration (Bonyani et al., 2021). However, there is 

no proof to confirm that this approach is sufficiently accurate 

to deal with real driving conditions, which are those we are 

coping with in this research. 

The methodology also addresses the ethics of using intelligent 

systems in autonomous vehicles and the importance of 

building trust between the user and the vehicle. The user's 

trust in the vehicle has often been studied (Hunter et al., 2022), 

(Huang et al., 2022), (Lu et al., 2023), but we argue that the 

autonomous system should also model how much trust it has 

in the user at a particular situation, in a similar way in how its 

own system reliability could be computed (F.Wang et al., 

2022). An increased level of trust in the specific user would 

allow the vehicle to personalize the level of automation it 

provides. The open issue is how to model the user behaviour 

in a personalized human-vehicle interaction based on the 

user's experiences in dealing with the autonomous system in 

real driving conditions. 

 

To achieve the aforementioned objectives with an approach 

that tries to avoid bias derived from dealing with certain 

experimentation conditions, we collect data in two driving 

scenarios where user action is essential to tailor the response 

of the system in a non-intrusive way for the user. This data is 

used to create models adapted to each person's needs-tasks-

context with the ability to generalise to unseen users using 

semi-supervised approaches to cope with the labelling 

bottleneck. This work entails applying the developed models 

in real driving environments of formal user-system 
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interaction, ensuring the adequacy and adaptation of the 

models to changes in scenarios and over time, thus increasing 

the range of actions in which the system responds 

autonomously. Design indicators are obtained to facilitate the 

generation of a responsive framework to the person's state in 

various traffic contexts, dealing with their mental and 

operational factors by considering behavioural and mental-

affective response variables. The methodology includes a 

discussion on the evolution of autonomous vehicles and how 

to advance in automation levels. Finally, the study concludes 

with a presentation of the conclusions and future work. 

 
METHODOLOGY 

 
An innovative methodology, which integrates a multi-sensor 

approach with semi-supervised machine learning techniques, 

has been implemented across two driving scenarios. This 

methodology offers precise human-centric and on-board 

environment information for future driverless vehicles. In this 

methodology, real-world driving data is continuously 

collected from the driver/user in autonomous vehicles 

circulating at University of West of Scotland (UWS) and 

University Carlos III of Madrid (UC3M). This innovative 

approach allows for an in-depth comparison of devices, 

various driving conditions and level of automation, supporting 

a detailed assessment on when, why, and how the driver may 

handle Take Over Requests (TORs) in autonomous vehicles 

to increase their level of automation. 

In our methodology, real driving data is used to provide a 

more authentic experience for the driver/user in an 

autonomous vehicle. Figure 1 provides a summary of the key 

issues addressed in each stage of the proposed methodology 

applied to both driving scenarios at UWS and UC3M. This 

approach overcomes the limitations (Risto et al., 2014) of 

most common studies that rely on simulators (Hunter et al., 

2022).  

The first scenario at UWS consists of a Toyota Prius PHEV 

driven in real-world traffic situations with a Level 2 of 

autonomy and equipped with Adaptive Cruise Control (ACC), 

Automated Lane Centering (ALC), Forward Collision 

Warning (FCW), and Lane Departure Warning (LDW) 

systems. The autonomous functionality is achieved using 

OpenPilot software (Comma-ai-inc, 2022), which overrides 

the vehicle's original CAN messages and utilises custom CAN 

messages to control the actuators such as the steering wheel, 

brake, and throttle. 

The second scenario takes place at UC3M and consists of an 

autonomous vehicle prototype with level 5 automation, named 

iCab (Intelligent Campus AutomoBile) (Marin-Plaza et al., 

2019), which is driven in a campus-site situation, where there 

is an outdoor environment with pedestrians. This prototype is 

based on an electric golf cart, and the steering wheel has been 

removed to provide users with a genuine experience of a fully 

autonomous vehicle. In this scenario, the user can only 

activate the brake in case of an emergency. A linear motor 

actuator has been incorporated to apply friction and decelerate 

the autonomous vehicle. The software for managing the fully 

autonomous mode is based on ROS2 (Robot Operating 

System 2) (Stanford Artificial Intelligence Laboratory et al, 

2023) to ensure real-time connection and synchronisation 

among sensors. 

The core of this methodology is centred around algorithms 

that focus on human active modelling. Models adapted to each 

person's needs-tasks-contexts are created using semi-

supervised learning approaches to cope with the labelling 

bottleneck. These models need to utilise data from various 

sensing devices, which are continuously measuring the 

driver/user's state to ensure a "Fallback Ready State" (FRS). 

Furthermore, driving scenarios require active engagement, 

attention, and awareness from the user to detect and respond 

to real situations such as Take Over Requests (TORs) and 

system failures like brake malfunctions.  

 

 
Figure 1 Overall concept of the methodology applied at UWS & 

UC3M 

CONFIGURATION OF THE EXPERIENCES 

 
Experimentation Dataset from UWS 

 

A series of experiments were conducted to assess the driver's 

state of awareness and their TORs in autonomous vehicles. 

These experiments aimed to compare the driver's reactions 

with those of the autonomous system. Multiple data sources 

were utilised to gather comprehensive information: 

Visual Data: Two cameras were employed to capture RGB 

information, depth field of view, and Infra-Red (IR) imagery. 

Physiological Data: An Empatica E4 wristband was worn by 

the driver to monitor various physiological signals, including 

pulse, skin conductance (EDA), skin temperature, breath rate, 

heart rate, accelerometer, and gyroscope. 

Driver Behaviour Analysis: The Intel RealSense d435i 

camera was utilised to analyse the driver's full body and detect 

any movements or external influences, such as using a mobile 

device on the driver's lap.  

The experiments consisted of 16 consecutive scenarios 

specifically designed to assess the driver's state of awareness. 

Each scenario was compared against the reactions and 

warnings generated by the autonomous driving system. Prior 

to each series of experiences, a baseline measurement of the 

driver's physiological signals in a normal, calm, and relaxed 

state was taken. This baseline was obtained by measuring the 

signals during a 3-minute rest period before and after the 

series of experiences. 

The scenarios that have been conducted so far are as follows: 

(1) Lane Change: Head turned to the opposite side with hands 

on the steering wheel. 

(2) Lane Change: Head turned to the opposite side without 

hands on the steering wheel. 

(3) Head Up: Looking upwards, raising the head, and focusing 

on the road with hands on the steering wheel. 

(4) Head Up: Looking upwards, raising the head, and focusing 

on the road without hands on the steering wheel. 
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(5) Head Up: Looking upwards, raising the head, without 

focusing on the road with hands on the steering wheel. 

(6) Head Up: Looking upwards, raising the head, without 

focusing on the road and without hands on the steering wheel. 

(7) Head Down: Lowering the head while still looking at the 

road with hands on the steering wheel. 

(8) Head Down: Lowering the head while still looking at the 

road without hands on the steering wheel. 

(9) Head Down: Lowering the head without looking at the 

road with hands on the steering wheel. 

(10) Head Down: Lowering the head without looking at the 

road and without hands on the steering wheel. 

(11) Looking Road but Inattentive: Not actively observing the 

surroundings, with hands on the steering wheel. 

(12) Looking Road but Inattentive: Not actively observing the 

surroundings without hands on the steering wheel. 

(13) Reaction to Sudden Startle: Immediate response to 

unexpected events (e.g., noise, bump, flat tire) while 

inattentive, with hands on the steering wheel. 

(14) Reaction to Sudden Startle: Immediate response to 

unexpected events (e.g., noise, bump, flat tire) while 

inattentive, without hands on the steering wheel. 

(15) Reaction to Sudden Startle: Immediate response to 

unexpected events (e.g., noise, bump, flat tire) when in a state 

of awareness with hands on the steering wheel. 

(16) Reaction to Sudden Startle: Immediate response to 

unexpected events (e.g., noise, bump, flat tire) when in a state 

of awareness without hands on the steering wheel. 

 

Figure 2 shows a snapshot of some of the images recorded 

from the different cameras mentioned above, internal, and 

external, in the UWS autonomous vehicle in real driving 

conditions (Toyota Prius) 

 

 
Figure 2 Snapshot of human centred AV recording at UWS. From 

left to right: intel RealSense (Colour), OpenPilot (Interior), 

OpenPilot (Exterior) 

 

Experimentation Dataset from UC3M 

 

In the UC3M setting, we conducted our experiments using the 

iCab vehicle (Marin-Plaza et al., 2019), which is a level 5 

autonomous vehicle experimental platform. The iCab vehicle 

allows the "driver" to intervene and stop the vehicle in the 

event of an unexpected occurrence. To monitor the driver's 

behaviour, we designed a perception system that operates 

independently of the autonomous vehicle navigation system. 

The driver's perception system comprises three cameras: the 

Intel RealSense d435 (for analysing the full body of the 

driver), the Webcam Logitech Brio 4K (for detecting facial 

expressions), and the OAK-1 (for perceiving the front of the 

vehicle). Currently, we are collecting data from wearable 

devices to measure biometric data. The primary objective at 

this stage is to investigate whether physiological signals are 

truly necessary. Ultimately, we aim to provide a non-intrusive 

or minimally intrusive solution. 

Unlike the UWS public road environment, the UC3M 

experiments were conducted on public pedestrian streets 

within the university grounds. These streets allow for low 

vehicle speeds, thereby reducing the risk of collision-related 

damages. Our experimentation circuit is located within the 

UC3M "Escuela Politécnica Superior" campus, which has 

been fully modelled as part of previous research on fully 

automated taxi transport (Marin-Plaza et al., 2019). 

Depending on the level of pedestrian activity, the entire 

trajectory takes approximately 10-15 minutes. The presence 

of pedestrians and maintenance vehicles on the same path 

exposes us to frequent unexpected events. This setup enables 

us to observe how users react to real-life situations that may 

occur in other environments, providing a wide range of 

circumstances and valuable lessons. 

At the beginning and end of each series of scenarios within a 

given experimentation set, we measure the baseline user state. 

In some scenarios, the user performs specific tasks to simulate 

a Cognitive Distracted User. The scenarios being conducted 

in this study include: 

(1) Relaxed Drive through the whole circuit. 

(2) Reaction to a pedestrian walking straight at the vehicle. 

(3) Reaction to a pedestrian crossing with good visibility. 

(4) Reaction to a pedestrian crossing with poor visibility 

(requiring low reaction time). 

(5) Cognitive Distracted User: Reaction to a pedestrian 

walking straight at the vehicle. 

(6) Cognitive Distracted User: Reaction to a pedestrian 

crossing with good visibility. 

(7) Cognitive Distracted User: Reaction to a pedestrian 

crossing with poor visibility (requiring low reaction time). 

(8) Planned Automation Failure Drive: No warning. 

(9) Planned Automation Failure Drive: Cognitive Distracted 

User, no warning. 

 

Please note that additional scenarios may be included in future 

iterations of our experiments to further explore various 

aspects of autonomous driving and driver behaviour. 

 

Figure 3 shows a snapshot of some of the images recorded 

from the different cameras mentioned above in the UC3M 

autonomous vehicle in real driving conditions (iCAB) 

 

 
Figure 3 Snapshot of human centred AV recording at UC3M: Top-

left corner: Intel RealSense (infrared stream), Lower-left corner: 

Intel RealSense (depth stream), Top-right corner: Intel RealSense 

(colour stream), Lower-right corner (filtered colour stream) 
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HUMAN-CENTRIC SYMBIOTIC ARTIFICIAL 

INTELLIGENCE 

 
Our proposal is framed, among other AI related research, in 

the field of symbiotic interactions between humans and 

intelligent machines. Human-centric symbiotic artificial 

intelligence (HCSAI) refers to the design and development of 

AI systems that prioritise collaboration, cooperation, and 

mutual enhancement between humans and AI agents (O’Neill 

et al., 2023). In this section, we explore the concept of HCSAI, 

its underlying principles, and its potential impact on various 

domains. 

Understanding Human-Centric Symbiosis: At the core of 

HCSAI is the notion that AI systems should be designed to 

augment human capabilities, rather than replace or subjugate 

them. This symbiotic relationship emphasises the importance 

of collaboration and cooperation between humans and AI 

agents, with the goal of enhancing human decision-making, 

problem-solving, and overall well-being. By integrating AI 

technologies into human-centred systems, HCSAI aims to 

create an environment where humans and AI agents work 

together seamlessly, leveraging each other's strengths and 

compensating for their respective weaknesses. 

 

Key Principles of HCSAI: 

1. Mutual Empowerment: HCSAI focuses on 

empowering both humans and AI agents, enabling 

them to leverage their unique strengths to 

accomplish shared goals (Abedin et al., 2022). This 

principle emphasises the need for AI systems to 

enhance human capabilities rather than overshadow 

them, fostering a sense of agency and control for 

humans while leveraging AI's computational power. 

2. Transparency and Explainability: To establish trust 

and effective collaboration, HCSAI systems should 

provide transparent explanations of their reasoning 

and decision-making processes. Human users should 

have a clear understanding of how the AI agent 

operates and how it arrives at its conclusions. This 

transparency not only fosters trust but also allows 

humans to provide feedback, correct biases, and 

make informed decisions based on AI-generated 

insights (Datta et al., 2016). 

3. Adaptability and Context-Awareness: HCSAI 

systems should be adaptable to dynamic human 

needs and contexts. They should be able to learn and 

understand human preferences, adapt their behaviour 

accordingly, and proactively assist humans in 

achieving their goals. Context-awareness enables AI 

agents to interpret and respond appropriately to 

human emotions, intentions, and situational cues, 

facilitating more natural and effective interactions 

(Hasanov et al., 2019). 

4. Ethical Considerations: HCSAI puts a strong 

emphasis on ethical design and responsible AI 

deployment. Human well-being, privacy, fairness, 

and social impact should be prioritised in the 

development of HCSAI systems. Ethical 

considerations include addressing biases, ensuring 

transparency, protecting privacy, and mitigating 

potential negative consequences of AI-enabled 

decision-making (Jobin et al., 2019). 

Potential Applications of HCSAI: HCSAI has the potential to 

revolutionise various domains by augmenting human 

capabilities and enabling new modes of collaboration. Some 

potential application areas include: 

 

1. Healthcare: HCSAI can assist healthcare 

professionals in diagnosis, treatment planning, and 

patient monitoring. It can provide intelligent 

decision support, analyse vast amounts of medical 

data, and enhance patient-doctor communication 

(Waring et al., 2020). 

2. Education: HCSAI can support personalised learning 

experiences, adapt instructional content to individual 

needs, and provide intelligent tutoring systems that 

enhance student engagement and knowledge 

acquisition (Wayne et al., 2023). 

3. Smart Assistants: HCSAI can power intelligent 

virtual assistants that anticipate user needs, provide 

personalized recommendations, and assist with 

everyday tasks, improving productivity and 

convenience (Cila, 2022). 

4. Social Robotics: HCSAI can enable the development 

of socially intelligent robots that can understand and 

respond to human emotions, facilitate social 

interactions, and provide companionship for the 

elderly or individuals with special needs (Blut et al., 

2021). 

5. Communities for Health and Independent Living: 

This topic was the target of the Project CISVI (TSI-

020301-2008-21), which focused on fostering the 

inclusion into the society of people with cognitive 

and physical disabilities (Barrera et al., 2009). 

Empowering people with disabilities to meet the 

challenges for their independent life in terms of the 

new AI technologies is a pending issue that deserves 

further research and development. Research in 

Advanced Learning Technologies (ALT) could have 

a direct impact on the improvement of the quality of 

life (QoL) of disabled and non-disabled people. QoL 

represents the degree to which an individual can 

establish and sustain a viable self in the social world 

(Brown, 2003). However, technology is very often 

not ready to support the final user in this way. 

 

Conclusion: Human-centric symbiotic artificial intelligence 

represents a paradigm shift in AI design, prioritising the 

collaboration and cooperation between humans and AI agents. 

By adhering to principles such as mutual empowerment, 

transparency, adaptability, and ethical considerations, HCSAI 

systems can create synergistic relationships that amplify 

human abilities while addressing societal challenges. The 

potential applications of HCSAI are vast and span various 

domains, promising a future where humans and AI agents 

work together harmoniously to achieve shared goals and 

improve the human experience. 

 

CONCLUSIONS AND FUTURE WORK 

 

In this paper, we presented an innovative, human-centric 

modelling strategy designed to elevate vehicle autonomy. Our 

approach merges multi-sensor data collection with semi-

supervised machine learning algorithms, all centred around 

gauging the driver's state within autonomous vehicles. We 
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achieve this by fostering a symbiotic relationship between the 

performance capabilities of both the human driver and the 

autonomous system, thereby enhancing responses to high-risk 

scenarios. This approach entails personalizing the user-

vehicle interaction, where users/drivers need to be modelled 

while safely interacting with vehicles in different real driving 

circumstances, thereby fostering increased trust between the 

user/driver and the intelligent autonomous system. Our 

argument is that focusing on user-system and system-user 

learning through specific, individualised, and unique 

modelling is essential to enhance the performance of 

automatic systems. Such systems will then be capable of 

recommending accurate actions to manage sudden and ever-

changing difficulties that can arise in real-world situations, 

such as traffic scenarios. 

To observe and monitor the driver/user and their interaction 

with the autonomous vehicle, we propose collecting 

multimodal data through computer vision and wearable 

devices, which in our experimentation are integrated into two 

different autonomous vehicles, as described in the UWS and 

UC3M sections. This approach gives us the advantage of 

being able to determine, from a methodological point of view, 

which distinctive features have value in different events and 

contexts and which circumstances are more or less difficult to 

ascertain. In this way, we can weigh the true value of a 

particular sensor and characteristic in each situation and 

context.  

 

The ultimate goal is to gradually achieve higher levels of 

autonomy, potentially reaching level 5 (fully autonomous) 

based on the ongoing experimentation. These experiences are 

currently in progress, and we expect them to demonstrate the 

potential of the proposed methodology in improving the 

interaction between drivers/users and systems, thereby 

addressing some of the existing challenges in increasing the 

autonomy of future autonomous vehicle systems. 

In addition, starting from a semi-supervised approach we are 

exploring various machine learning techniques that can be 

used within a generic framework to learn how to create the 

ecosystem that we are devising here, where the symbiosis of 

collaboration between the user and the autonomous system 

can improve the performance of the final result, unique to the 

entire system. It is important to note that the generality of this 

framework is not solely supported by the experimentation 

presented in this paper. This modelling approach is already 

being implemented as part of a coordinated research project 

(HUManAId, ref: TED2021-129485B-C4), which 

encompasses three additional real-life scenarios that require 

user interaction with an intelligent system. We contend that to 

facilitate and expedite the adoption of intelligent systems in 

our daily lives, personalization is crucial, as it fosters mutual 

understanding and trust between the user-system and system-

user. 

 

In future work, we plan to continue refining our modelling 

approach and conducting experiments in various scenarios to 

further validate its effectiveness. Additionally, we will 

explore additional machine learning techniques and 

frameworks to enhance the performance and adaptability of 

autonomous systems. By addressing the challenges and 

leveraging the insights gained from our research, we aim to 

accelerate the integration of intelligent systems into society 

while ensuring a safe and trustworthy user experience. 
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