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Abstract

Neutrosophy has been introduced some years ago by Florentin Smarandache as a
new branch of philosophy dealing with “the origin, nature and scope of neutral-
ities, as well as their interactions with different ideational spectra”. A variety of
new theories has been developed on the basic principles of neutrosophy: among
them is neutrosophic logics, a family of many-valued systems that can be regarded
as a generalization of fuzzy logics. In this paper we present a critical introduction
to neutrosophic logics, focusing on the problem of defining suitable neutrosophic
propositional connectives and discussing the relationship between neutrosophic log-
ics and other well-known frameworks for reasoning with uncertainty and vagueness,
such as (intuitionistic and interval-valued) fuzzy systems and Belnap’s logic.

Key words: neutrosophic logics, neutrosophy, many-valued logics, fuzzy logics,
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1 Introduction

Neutrosophy has been proposed by Smarandache [23] as a new branch of
philosophy, with ancient roots, dealing with “the origin, nature and scope of
neutralities, as well as their interactions with different ideational spectra”. The
fundamental thesis of neutrosophy is that every idea has not only a certain
degree of truth, as is generally assumed in many-valued logic contexts, but
also a falsity degree and an indeterminacy degree that have to be considered
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independently from each other. Smarandache seems to understand such “in-
determinacy” both in a subjective and an objective sense, i.e. as uncertainty
as well as imprecision, vagueness, error, doubtfulness etc.

Neutrosophy has laid the foundation for a whole family of new mathemati-
cal theories generalizing both their classical and fuzzy counterparts, such as
neutrosophic set theory, neutrosophic probability, neutrosophic statistics and
neutrosophic logic. In recent years neutrosophic algebraic structures have been
investigated (see for instance [16] and [17]), while the neutrosophic framework
has found practical applications in a variety of different fields, such as rela-
tional database systems, semantic web services [24], financial data set detec-
tion [18] and new economies growth and decline analysis [19].

It is clear that all of these proposals, promising as they are, still need to be
refined from a formal point of view. In this paper we will introduce and discuss
some basic features of neutrosophic logics, which is a family of many-valued
systems that can be regarded as a generalization of fuzzy logics; we will try to
point out its many appealing aspects as well as the most controversial ones.

2 From fuzzy to neutrosophic values

Since the introduction of fuzzy logic, many systems have been developed in
order to deal with approximate and uncertain reasoning: among the latest and
most general proposals is neutrosophic logic, introduced by Smarandache [23]
as a generalization of fuzzy logic and several related systems. We shall now
briefly review some of these systems in order to gradually introduce the basic
notions of neutrosophic logic.

In fuzzy logics the two-point set of classical truth values {0, 1} is replaced by
the real unit interval [0, 1]: each real value in [0, 1] is intended to represent a
different degree of truth, ranging from 0, corresponding to false in classical
logic, to 1, corresponding to true. The standard logical connectives are defined
as functions on [0, 1], such as x∧ y = min (x, y), x∨ y = max (x, y) and so on.

Given a sentence p whose truth degree is v (p) = t ∈ [0, 1], in fuzzy logic it
is implicitly assumed that it also has a falsity degree given by 1 − t. This
need not hold in general in the so-called intuitionistic fuzzy logic, a general-
ization of fuzzy logic introduced by Atanassov [4]. It should be noted that
Atanassov’s use of the term “intuitionistic” is at least misleading, since there
is no significant connection between the structure suggested by Atanassov and
intuitionistic mathematics and logic. This issue has been widely debated in
recent years (see for instance [8], [3] and [14]): to avoid future confusion in the
literature, a good compromise might be to maintain the acronym IFL (IFS
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for the corresponding fuzzy set theory), but interpreting it as “Incomplete” or
“Indefinite” Fuzzy Logic (Sets). We shall do so in the rest of this paper.

In IFL the falsity degree of each sentence is explicitly represented by a second
real value f ∈ [0, 1] so that the value of a sentence p is an ordered pair
v (p) = (t, f) with t+f ≤ 1. The main novelty of Atanassov’s approach is that
since one may have t + f < 1, a certain amount indeterminacy or incomplete
information is allowed. The main novelty of neutrosophic logic, as we shall
see, is that we do not even assume that the incompleteness or “indeterminacy
degree” is always given by 1− (t + f).

One may also consider the possibility that t+f > 1, so that inconsistent beliefs
are also allowed, that is a sentence may be regarded as both true and false at the
same time. In this way we obtain a family of paraconsistent logics which have
been investigated by Priest (see for instance [20], [21]) and by Ginsberg [13],
Fitting [11] and others within the framework of algebraic structures known as
bilattices. The best known among these systems is Belnap’s four-valued logic
[6], which is based on the following set of truth values: F = {0, 1} × {0, 1} =
{(0, 0), (0, 1), (1, 0), (1, 1)}.

We can interpret Belnap’s values in terms of the classical ones as follows: (1, 0)
corresponds to true, (0, 1) to false, (0, 0) to unknown (i. e. not known to be
either true or false) and (1, 1) to contradictory (i. e. known to be both true and
false). However, it should be noted that Belnap’s are “epistemic” truth values:
strictly speaking (1, 0) is not intended to mean “true” in the classical sense
but rather “at least true”. In other words, only positive information has been
received about a sentence, so its truth value may eventually become (1, 1) if
more information is obtained (likewise for (0, 1) that should be read as “at
least false”).

Kleene’s three-valued logic is also related to these systems: in fact it can be
regarded as a special case of Belnap’s logic where the set of truth values is
K = {(0, 0), (0, 1), (1, 0)} ⊂ F , with (0, 0) corresponding to undefined as in
the theory of partial functions.

While it is very debatable that the Kleene-Belnap logics are adequate to prop-
erly handle uncertainty and contradiction (see [9] for a critical discussion),
they are undoubtedly interesting systems that have proved useful in many
applications and deserve further investigation. In this context it is important
to note that Atanassov’s IFL and the Kleene-Belnap logics, though strictly
related from a formal point of view (as shown for instance in [1]), differ sig-
nificantly with regards to the interpretation of the truth values. In fact the
Kleene-Belnap systems can be considered as essentially based on a two-valued
framework, even if it is assumed that there may be truth value gaps and con-
tradictory information. On the other hand, Atanassov’s system, as well as
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neutrosophic logic (which is a generalization of IFL), share with the origi-
nal fuzzy logic the interpretation of the non classical truth values as different
degrees of truth (as opposed to degrees of certainty or information).

Another important issue when reasoning with uncertainty is whether to em-
ploy “crisp” truth values or intervals. In fact, many authors contend that
in most cases we may even be unable to determine the exact truth value
of a sentence, knowing only that it belongs to some interval [t1, t2] with
0 ≤ t1 ≤ t2 ≤ 1. This is the main idea behind the so called interval-valued
fuzzy sets (see for instance [5]) and may be regarded as a further stage in the
process of fuzzification.

Combining interval-values with paraconsistency, we may consider not just one
interval but an ordered pair of intervals for each sentence, representing respec-
tively its truth and falsity degree: in this way we obtain a simplified form of
interval neutrosophic logic [24].

We are now ready to give Smarandache’s original definition of the neutrosophic
set of truth values.

Let N be a set defined as follows: N = {(T, I, F ) : T, I, F ⊆ [0, 1]}. A neu-
trosophic valuation is a mapping from the set of propositional formulas to N ,
that is for each sentence p we have v (p) = (T, I, F ). So to each sentence is
assigned an ordered triple representing its truth degree, indeterminacy degree
and falsity degree. Intuitively, the set I ⊆ [0, 1] may represent not only in-
determinacy but also vagueness, uncertainty, imprecision, error etc. Note also
that T, I, F , called the neutrosophic components, are subsets of [0, 1] and not
necessarily intervals, so that we may be able to handle information coming
from different, possibly conflicting sources.

For instance, suppose we consult two experts, the first saying that the truth
degree of a sentence p is 0 ≤ t ≤ 0.3, the second saying it is 0.7 ≤ t ≤ 0.9.
We may represent this by taking as truth component of v (p) the set T =
{[0, 0.3] ∪ [0.7, 0.9]}, and of course we may proceed in the same way for the I
and F components.

As another example, consider a voting process where 5 voters out of 10 say
“yes” to some proposal p, 3 say “no” and 2 are undecided. We may represent
this as v (p) = (0.5, 0.2, 0.3). Or maybe we are even unable to determine the
exact number of the votes, knowing only that the “yes” are between 5 and 7,
the “no” between 1 and 3 and the undecided between 0 and 4, thus having
v (p) = ([0.5, 0.7] , [0, 0.4] , [0.1, 0.3]).

Before further examining the neutrosophic formalism, let us note that from
an intuitive point of view the interpretation of the neutrosophic components
poses non trivial problems, especially with regard to the indeterminacy degree,
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and how it can be independent of the truth and falsity degrees.

Smarandache and Schumann [22] seem to adopt a strong, objective interpreta-
tion: “In simple neutrosophic logic, where t, i, f are singletons, the tautologies
have the truth value 〈1, 0, 0〉, the contradictions the value 〈0, 1, 1〉. While for
a paradox, we have the truth value 〈1, 1, 1〉. Indeed, the paradox is the only
proposition true and false in the same time in the same world, and indeter-
minate as well” (p. 13). However, this does not seem quite convincing, since
intuitively it is not clear why for instance 〈0, 1, 1〉 should be a contradiction
more than 〈0, 0, 1〉 (see also section 4).

We would suggest a more cautious interpretation, i.e. to consider the indeter-
minacy degree as a measure of the reliability (conversely, the imprecision, error
etc.) of a certain source of information. In this way, a value like (1, 0, 0) may
be intepreted as “known to be true with absolute precision”, while (1, 1, 1)
would mean “known to be contradictory (or paradoxical) according to (two
or more) very unreliable sources”. A similar interpretation has been adopted
by Smarandache et al. [24], who employed the indeterminacy component to
evaluate the trustworthiness of semantic web services.

It is easy to see that the neutrosophic set of truth values can be regarded as a
generalization of all the previous ones: for instance if we set v (p) = (t, 0, 1− t)
for every sentence p we obtain the set of truth values corresponding to fuzzy
logic, if we set v (p) = (t, 1− t− f, f) with t+f ≤ 1 we get IFL and so on. We
may then define suitable propositional operators that generalize the standard
connectives of fuzzy logic, IFL etc.

3 Neutrosophic connectives

We shall now consider some possible definitions for the basic propositional
connectives of neutrosophic logic; we will concentrate on the simplest case,
that is when the neutrosophic components are real values instead of intervals
or subsets of the unit interval.

Negation. Three kinds of negation have been proposed for neutrosophic logic

so far. Given a sentence p and a neutrosophic valuation v such that v (p) =

(t, i, f) ∈ N , the truth value of ¬p may be defined as:

(N1) v (¬p) = (1− t, 1− i, 1− f) [23]

(N2) v (¬p) = (f, i, t) [2]

(N3) v (¬p) = (f, 1− i, t) [24]
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(N1), introduced by Smarandache [23], is a rather straightforward general-
ization of the most widely used negation in fuzzy logic. However, from the
standpoint of neutrosophic logic, it has the serious drawback that the truth
and falsity degree are not related to each other via the negation operator. Con-
sider for example a proposition p whose value is v (p) = (0, 1, 0): intuitively we
may say that we do not have any evidence for the truth or falsity of p, while we
have a high degree of indeterminacy. If we adopt (N1) we get v (¬p) = (1, 0, 1),
that is a sentence known with the greatest precision to be both true and false.
Therefore the negation of a sentence whose value is completely unknown be-
comes a paradoxical statement: this seems quite unintuitive.

We may avoid this difficulty adopting (N2) or (N3) instead, for then we get
respectively ¬ (0, 1, 0) = (0, 1, 0) and ¬ (0, 1, 0) = (0, 0, 0). It is not difficult
to see that (N3) also yields some unintuitive result: in fact, if v (p) = (1, 0, 0)
is supposed to mean that we know with the greatest precision that p is true,
then we should also know with the greatest precision that ¬p is false. But we
have ¬ (1, 0, 0) = (0, 1, 1), that is we correctly conclude that ¬p is false but
we also get an unjustified amount of indeterminacy.

We may also consider our voting example again. We have 10 voters, 5 of them
saying “yes” to some proposal p, 3 saying “no” and 2 being undecided: so
we write v (p) = (0.5, 0.2, 0.3). What about ¬p? Intuitively we may argue
that those who said “yes” to p would say “no” to ¬p, and conversely those
who said “no” to p would now say “yes to ¬p, while those who were undecided
about p would still be undecided about ¬p. Therefore we should have v (¬p) =
(0.3, 0.2, 0.5): but if we apply (N3) to determine the value of ¬p we get v (¬p) =
(0.3, 0.8, 0.5), as if we had now 16 voters instead of our original 10.

One may conclude that, from an intuitive point of view, (N2) seems to be the
best definition for a negation operator in neutrosophic logic. As Ashbacher
[2] points out, the intuition behind this choice is simply that the amount of
indeterminacy associated with a sentence should remain unchanged when we
apply the negation operator. We may also note that (N2) is a rather straight-
forward generalization of the Belnap negation, which exchanges the truth and
falsity components, while the negation of unknown is still unknown.

Conjunction and disjunction. Given two sentences p1, p2 and a neutro-

sophic valuation v such that v (p1) = (t1, i1, f1) ∈ N , and v (p2) = (t2, i2, f2) ∈

N , the truth value of the conjunction p1 ∧ p2 may be defined as:

(C1) v (p1 ∧ p2) = (t1 · t2, i1 · i2, f1 · f2) [23]

(C2) v (p1 ∧ p2) = (min (t1, t2) , min (i1, i2) , max (f1, f2)) [2]

(C3) v (p1 ∧ p2) = (min (t1, t2) , max (i1, i2) , max (f1, f2)) [2]
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Each one of these functions enjoys some basic properties of classical conjunc-

tion, i.e. is associative, commutative and admits a unit element, that is for all

x, y, z ∈ N :

1. (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity)

2. x ∧ y = y ∧ x (commutativity)

3. there is an e ∈ N such that e ∧ x = x ∧ e = x (identity)

(C1), introduced by Smarandache [23], is a generalization of the conjunction
used in product logic [15], where x · y denotes the usual product operation
between real numbers, but it apparently needs some refinement before being
applied to the neutrosophic framework. In particular, it is quite unintuitive
that the falsity degree should decrease when we apply the conjunction opera-
tor. In general, it seems clear that any connective that may be regarded as a
generalization of classical conjunction should not treat the truth, indetermi-
nacy and falsity components in the same way.

(C2) and (C3), introduced by Ashbacher [2], are both generalizations of the
conjunction used in Gödel logic [10], and unlike (C1) are also idempotent, that
is x ∧ x = x for all x ∈ N . If we restrict the set N to a bilattice (that is,
if we disregard the indeterminacy component), then (C2) and (C3) collapse
into the Belnap conjunction, that is the meet with respect to the “logical
lattice”. We may also note that if we adopt (C2) then we have, for instance,
(0, 1, 0) ∧ (1, 0, 0) = (0, 0, 0): that is (1, 0, 0) is not an identity. If we interpret
(1, 0, 0) as true, this may be an unwanted result because in fuzzy logic it is
usually required that 1 (corresponding to true in classical logic) be the unit
element of conjunction.

As in classical logic, ¬ and ∧ may be used as a basis to define disjunction

through De Morgan’s laws. If we combine negations (N2) and (N3) with con-

junctions (C2) and (C3) we obtain the following disjunction connectives:

(D1) v (p1 ∨ p2) = (max (t1, t2) , max (i1, i2) , min (f1, f2))

(D2) v (p1 ∨ p2) = (max (t1, t2) , min (i1, i2) , min (f1, f2))

Both (D1) and (D2) are associative, commutative, idempotent and admit
unit elements, which are respectively (0, 0, 1) and (0, 1, 1). (N2), (C3) and
(D1) have been used by Ashbacher [2] as the basic connectives for para-
consistent neutrosophic logic, whose underlying set of truth values is N =
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{
(t, i, f) ∈ [0, 1]3

}
. (N2), (C2) and (D2) have been employed by the same au-

thor for what he called (again, improperly) intuitionistic neutrosophic logic,

where N =
{

(t, i, f) ∈ [0, 1]3
}

with t + i + f ≤ 1.

If we adopt (N3), (C3) and (D2) we obtain a fragment of the so called interval
neutrosophic logic [24], but in order to develop the whole system we need to
introduce also an implication connective.

Implication. Given two sentences p1 and p2 and a neutrosophic valuation v

such that v (p1) = (t1, i1, f1) ∈ N and v (p2) = (t2, i2, f2) ∈ N , we may define

p1 → p2 in the following ways:

(I1) v (p1 → p2) = v (¬p1 ∨ p2)

(I2) v (p1 → p2) = (min (1, 1− t1 + t2) , max (0, i2 − i1) , max (0, f2 − f1))

(I1) is just the standard definition of classical logic, usually called an S-
implication in the fuzzy logics literature. S-implications are not widely em-
ployed in fuzzy systems because they are too weak, in the sense that even
basic tautologies such as p → p do not hold.

Consider for instance Ashbacher’s INL, whose basic connectives are (N2), (C2),
(D2) and (I1). We can easily see that this system has no tautologies, that
is there is no sentence p such that v (p) = (1, 0, 0) for every neutrosophic
valuation v.

(I2) can be regarded as a generalization of the implication connective used in
 Lukasiewicz logic (see for instance [7]), and unlike (I1) yields some tautolo-
gies like p → p. If we add (I2) to (N3), (C3) and (D2) we obtain interval
neutrosophic logic, which we shall describe in further detail in the following
section.

4 Neutrosophic systems

In order to be able to compare the neutrosophic truth values, we need to
define an order relation on the elements of N =

{
(t, i, f) ∈ [0, 1]3

}
. This may

not be a trivial matter since we have to consider each one of the neutrosophic
components.

For instance, suppose we want our order relation ≤N to reflect the degree

of truth associated with each element of N . An obvious choice would be to
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require that (t1, i1, f1) ≤N (t2, i2, f2) iff t1 ≤ t2 and f1 ≥ f2, but then we must

deal with the indeterminacy component too. So we may consider two possible

definitions:

1. (t1, i1, f1) ≤N1 (t2, i2, f2) iff t1 ≤ t2, f1 ≥ f2 and i1 ≤ i2

2. (t1, i1, f1) ≤N2 (t2, i2, f2) iff t1 ≤ t2, f1 ≥ f2 and i1 ≥ i2

It can be easily verified that ≤N1 and ≤N2 are well-defined partial order rela-
tions on N , but neither of them seems to have a clear intuitive interpretation.
Consider for instance ≤N2, which has been employed by Smarandache et al.
[24] for interval neutrosophic logic. The least and greatest elements with re-
spect to ≤N2 are (0, 1, 1) and (1, 0, 0). Now, if we want the negation operator
to exchange the least and greatest element w.r.t. our order relation (as is usual
in many-valued logics), that is if we want to have ¬ (0, 1, 1) = (1, 0, 0), we are
forced to adopt negation (N1) or (N3), which we have already criticized in the
previous section.

As to ≤N1, it seems to suffer from even greater drawbacks. In fact we have,
for instance, that (1, 0, 0) ≤N1 (1, 1, 0). This is quite unintuitive: it is hard
to see why our order relation should prefer a sentence known to be true but
with great indeterminacy (imprecision, error etc.) to a sentence which is just
known to be true with the greatest precision.

Ashbacher [2] defined several alternative orderings on N , but they do not
help much in this context because they are even harder to interpret in an
intuitive way. Perhaps a possible solution would be to simultaneously apply
more than one order relation on N , as has been done introducing the truth
and knowledge orderings on bilattices [13]. Then the next problem would be to
define connectives that provide a suitable relation between the two (or more)
orderings.

In order to define a consequence relation in neutrosophic logic we have to
choose a set D ⊂ N of truth-like values, which are usually called the designated
elements of N . Then we say that p implies q (p |= q) iff for every neutrosophic
valuation v, v (p) ∈ D implies v (q) ∈ D. A sentence p is a tautology (|= p)
iff v (p) ∈ D for every neutrosophic valuation v. If no such sentence exists,
we shall say that the system is purely inferential ; from a syntactical point of
view, this means that there can be no axioms but only rules of inference.

The simplest choice is to set D = {x} for some x ∈ N , e. g. D = {(1, 0, 0)},
but if we have defined a suitable order relation ≤N on N we may also set
D = {x ∈ N : y ≤N x} for some y ∈ N .

We are now going to examine two particularly interesting examples of neu-
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trosophic systems, due respectively to Ashbacher [2] and Smarandache et al.
[24].

Paraconsistent neutrosophic logic (PNL). The underlying set of truth

values is N =
{

(t, i, f) ∈ [0, 1]3
}

. The basic connectives are negation (N2)

and conjunction (C3). Disjunction (D1) is defined via De Morgan’s laws as
p ∨ q = ¬ (¬p ∧ ¬q), while implication (I1) is defined as p → q = ¬p ∨ q.
The only designated element is (1, 0, 0), so that we have p |= q iff for every
neutrosophic valuation v, v (p) = (1, 0, 0) implies v (q) = (1, 0, 0).

It is not difficult to see that PNL is purely inferential, i.e. has no tautologies.
For instance, if v (p) = v (q) = (1, 1, 1) then:

v (¬p) = v (¬q) = v (p ∧ q) = (1, 1, 1)

So there can be no sentence p such that v (p) = (1, 0, 0) for every neutro-
sophic valuation v. Therefore PNL has no axioms. Note also that the structure
〈N ,∧,∨〉 is not a lattice since the absorption laws do not hold.

We have already noted that Belnap’s logic [6] is related to the neutrosophic
systems: we are now going to show that in fact it can be regarded as a special
case of PNL.

The set of Belnap’s truth values is F = {(0, 0), (0, 1), (1, 0), (1, 1)}, with (1, 0)
as the only designated element, and the basic connectives are 〈¬,∧,∨〉, defined
by the following truth tables:

¬ (0,0) (0,1) (1,0) (1,1)

(0,0) (1,0) (0,1) (1,1)

∧ (0,0) (0,1) (1,0) (1,1) ∨ (0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,1) (0,0) (0,1) (0,0) (0,0) (0,0) (1,0) (1,0)

(0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,0) (0,1) (1,0) (1,1)

(1,0) (0,0) (0,1) (1,0) (1,1) (1,0) (1,0) (1,0) (1,0) (1,0)

(1,1) (0,1) (0,1) (1,1) (1,1) (1,1) (1,0) (1,1) (1,0) (1,1)

If we restrict the set N of neutrosophic truth values requiring that t, f ∈ {0, 1}
and i = 0 for all (t, i, f) ∈ N , we may verify that the connectives of PNL (N2),
(C3) and (D1) yield exactly Belnap’s truth tables.
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It follows that, given two sentences p and q, if p implies q in PNL, then the
same also holds in Belnap’s logic. Denoting by |=PNL and |=B respectively the
logical consequence relations in PNL and in Belnap’s logic, we have that:

if p |=PNL q then p |=B q (1)

It is possible to show that the converse is also true. In order to prove this
result, let us consider the following set of rules:

(R1)
p ∧ q

p
(R2)

p ∧ q

q
(R3)

p q

p ∧ q

(R4)
p

p ∨ q
(R5)

p ∨ q

q ∨ p
(R6)

p ∨ p

p

(R7)
p ∨ (q ∨ r)

(p ∨ q) ∨ r
(R8)

p ∨ (q ∧ r)

(p ∨ q) ∧ (p ∨ r)
(R9)

(p ∨ q) ∧ (p ∨ r)

p ∨ (q ∧ r)

(R10)
p ∨ q

¬¬p ∨ q
(R11)

¬ (p ∨ q) ∨ r

(¬p ∧ ¬q) ∨ r
(R12)

¬ (p ∧ q) ∨ r

(¬p ∨ ¬q) ∨ r

(R13)
¬¬p ∨ q

p ∨ q
(R14)

(¬p ∧ ¬q) ∨ r

¬ (p ∨ q) ∨ r
(R15)

(¬p ∨ ¬q) ∨ r

¬ (p ∧ q) ∨ r

We will write p ` q iff q can be derived from p using rules (R1)−(R15). It is
easy to check that this set of rules is sound with respect to the semantics of
PNL, that is, for all sentences p and q:

if p ` q then p |=PNL q (2)

Moreover, it has been shown (for instance by Font [12]) that rules (R1)−(R15)
are sound and complete with respect to the semantics of Belnap’s logic, that
is, for all sentences p and q:

p ` q if and only if p |=B q (3)

Combining (1), (2) and (3) we obtain:
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p |=PNL q if and only if p |=B q (4)

Therefore we see that, from an inferential point of view, PNL turns out to
be equivalent to Belnap’s logic. Clearly this shows an important limitation of
PNL, since it means that the neutrosophic set of truth values can be essentially
reduced to Belnap’s four-point set. In particular, the indeterminacy component
turns out to be “useless” within PNL. We may conclude that, if we want
to take advantage of all the neutrosophic components, the definitions of the
connectives of PNL need to be modified in some way. An obvious suggestion
would be to introduce an alternative implication connective, such as (I2): in
this way we would obtain a system very similar to interval neutrosophic logic,
which we are now going describe.

Interval neutrosophic logic (INL). As in PNL, the set of truth values is

N =
{

(t, i, f) ∈ [0, 1]3
}

. The basic connectives are negation (N3) and impli-

cation (I2). Disjunction (D2) and conjunction (C3) can be defined as:

p ∨ q = (p → q) → q

p ∧ q = ¬ (¬p ∨ ¬q)

As in PNL, the only designated element is (1, 0, 0), but unlike PNL, in INL
there are tautologies such as p → p.

Smarandache et al. [24] noted that, from an algebraic point of view, the struc-
ture 〈N ,∧,∨〉 is a distributive lattice. We may add that 〈N ,∧,∨〉 is bounded
and ¬ (x ∨ y) = ¬x ∧ ¬y for all x, y ∈ N , so that the following structure is a
De Morgan algebra:

〈N ,∧,∨, (1, 0, 0) , (0, 1, 1) ,¬〉

The lattice order on N is given by the latter order relation we have considered

at the beginning of this section, that is we have (t1, i1, f1) ≤N (t2, i2, f2) iff

t1 ≤ t2, f1 ≥ f2 and i1 ≥ i2. We may verify that conjunction (C3) is an N-

norm in the sense of Smarandache et al. [24], that is, for all x, y, z ∈ N :

1. (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity)

2. x ∧ y = y ∧ x (commutativity)

3. (1, 0, 0) ∧ x = x ∧ (1, 0, 0) = x (identity)

4. if x ≤N y then x ∧ z ≤N y ∧ z (monotonicity)
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Conversely, disjunction (D2) is an N-conorm, that is, for all x, y, z ∈ N :

1. (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity)

2. x ∨ y = y ∨ x (commutativity)

3. (0, 1, 1) ∨ x = x ∨ (0, 1, 1) = x (identity)

4. if x ≤N y then x ∨ z ≤N y ∨ z (monotonicity)

We may list some well known laws of classical logic that do not hold in INL:

1. p ∨ ¬p (excluded middle)

2. ¬ (p ∧ ¬p) (non contradiction)

3. (p → q) → (¬q → ¬p) (contraposition)

4. (p ∧ ¬p) → q (Pseudo Scotus)

We have already noted that (I2) can be regarded as a generalization of the
 Lukasiewicz implication connective. Indeed, if we restrict the set of neutro-
sophic truth values requiring that t + f + i = 1 and i = 0 for all (t, i, f) ∈ N ,
we may verify that the connectives of INL, (N3) and (I2), coincide with the
negation and implication of  Lukasiewicz infinite-valued logic.

Therefore, denoting by |=INL and |=L respectively the logical consequence re-
lations in INL and in  Lukasiewicz logic, we have that for arbitrary sentences
p and q:

if p |=INL q then p |=L q

In this case the converse does not hold. Consider the following axioms, where

p, q and r denote arbitrary sentences:

(A1) p → (q → p)

(A2) (p → q) → ((q → r) → (p → r))

(A3) ((p → q) → q) → ((q → p) → p)

(A4) (¬p → ¬q) → (q → p)

It has been shown (see for instance [7]) that (A1)−(A4), together with the
modus ponens rule, provide a sound and complete axiomatization of  Lukasiewicz
infinite-valued logic. While (A1)−(A3) are also valid in INL, (A4) is not. How-
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ever, we can introduce the following rule in INL:

¬p → ¬q

q → p

Smarandache et al. [24] have given a list of axioms and rules for INL assum-
ing 〈¬,∧,∨,→〉 as basic connectives, but no proof of completeness has been
published so far.

5 Conclusion and future work

Throughout the previous sections we have tried to show that the neutrosophic
formalism is a very general and appealing framework, both needing and de-
serving further investigation from a logical point of view. First of all, as we
have said, it would be very useful to define suitable order relations on the set
of neutrosophic truth values; the next step would be to introduce propositional
connectives that provide well founded and (if possible) intuitive relations be-
tween the two or more different orders.

Another central issue will be to define suitable syntactical consequence re-
lations and to prove completeness with respect to the various neutrosophic
semantics that have been considered in the literature, such as the semantics
of the other neutrosophic systems introduced by Ashbacher [2] besides PNL,
of interval neutrosophic logic etc.

And finally, the neutrosophic formalism might be further extended in many
directions. We have already mentioned the possibility to deal with modal con-
texts; temporal neutrosophic logics may also be considered, where the compo-
nents T , I, F are set-valued vector functions or operators depending on many
parameters such as space, time, etc. Another rather straightforward extension
would be to let T , I, F be subsets of some partially or linearly ordered lattice
L instead of the real unit interval [0, 1], or even to consider different lattices
L1, L2, L3 such that T ⊆ L1, I ⊆ L2 and F ⊆ L3.

Atanassov et al. [5] said about neutrosophy that “these ideas, once properly
formalized, will have a profound impact on our future dealings with impreci-
sion”. We share their opinion, and hope that this paper will encourage others
to pursue deeper investigations that may lead to such proper formalization.
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