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Abstract: This paper collects the authors experience about the tuning of PID controllers
in the frequency domain and suggests solutions to several of the outlined problems. The
paper presents: (1) a tuning methodology of non-interactive PID controllers by phase or
gain margin, whose advantages becomes evident when a process model is available, and
(2) a formulation of the combined tuning by phase and gain margin, in which priority is
given to the phase margin. The graphic interpretation of the combined tuning shows
great difficulties for the numeric methods and it can be used to establish a strategy on
how to relax gain margin with the purpose of finding a solution. Copyright © 2000
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1. INTRODUCTION

The tuning of PID controllers in the frequency
domain is a topic of great interest in the academic
environment as well as in the industry field.
Traditionally there has been a great difference
between the academic and the industrial focus,
because in the first case the tuning is solved under
the hypothesis that the frequency response of the
process is known, while in the second only a partial
knowledge of such response is had. Nowadays this
difference is smaller and smaller, because it is
observed that in most of the cases a process model is
used, and therefore the frequency response can be
known. This type of tuning has given good results
when applying it to processes of the refineries of the
REPSOL group, through the tool SINTOLAB
(Morilla, et al., 1996), because a total knowledge of
the process model is had and the choice of the
frequency design is made in an automatic or
semiautomatic way.

This paper collects the experience of authors in the
tuning of PID controllers in the frequency domain
and it suggests solutions to several of the outlined
problems. The possibility of combining two
specifications (the phase margin and the gain margin)
in the tuning is also looked at. This problem has been
approached recently by Ho, et al. (1995), (1997) and
(1998), Shafiei, and Shenton (1997), Fung, et al.
(1998), Wang, and Shao (1999) but only for
particular models or controllers. All the proposals are
approached from the controller's point of view,
without making any excessively restrictive

hypotheses on the process model that limits the
application of the proposed solutions.

In section 2 the general tuning method proposed by
Astrom, and Hagglund (1995) is presented, how this
formulation can be used for tuning by phase margin
or gain margin, and the tuning combined by phase
and gain margin is approached. At the end of section
2, a critical revision of main problems arising in the
tuning of the PID controllers in the frequency domain
follows. In sections 3 and 4 specific solutions to
some of these problems are proposed and tested with
a non minimum phase process. Finally the paper is
completed with the conclusions in section 5.

2. PID TUNING OF CONTROLLERS IN THE
FREQUENCY DOMAIN

Astrom and Higglund (1995) have proposed a
method for tuning PID controllers in the frequency
domain which is a generalisation of the Ziegler-
Nichols tuning rules, Figure 1. For PID non-
interactive algorithms, described by the transfer
function

1 1
G(9)=K, (Hﬁ”"s) M
the determination of its parameters is summarised in
the following expressions:
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Where: o is the design frequency; r, and ¢, are the
module and the phase of point A; r, and ¢, are the
module and the phase of point B. And « is the ratio
between the derivative Tp and the integral T, time
constants. The value of o should be specified to
obtain a solution of among all the possible ones.
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Fig.l. Nyquist diagram where the PID controller
have been tuned to move the point A to B.

2.1 Tuning by phase or gain margin.

The Astrém and Hagglund's method (1995) includes
as a particular case the tuning by phase margin.
When a phase margin ¢,, is specified, the following
conditions are imposed to point B: r,=1, ¢,=0,,. This
kind of tuning has already been considered by
Astrom, and Hagglund (1984), but not starting at an
arbitrary point A but from the ultimate point of the
Nyquist diagram that is on the real axis (r=1/K,,
$.=0). Astrom and Higglund's (1995) method can
also be used to tuning the PID controller by a gain
margin A, The following conditions are imposed to
point B: r,=1/Ap, ¢,=0°. It can be shown that the gain
margin tuning proposed by Astrom, and Higglund
(1984) is a particular case on the general procedure,
starting at the ultimate point.

2.2 Combined tuning by phase and gain margin.

While in expressions (2), (3) and (4) no condition is
imposed to point B, and therefore to the behaviour of
the closed loop system, in the tuning by phase or gain
margin a condition of relative stability is imposed.
But a specification ¢,.>0 does not guarantee that the
resulting ¢y, is positive and that therefore the system
is stable. In the same way, a specification A,>1 does
not guarantee that the resulting system is stable. The
only way of guaranteeing the stability is to combine
both specifications (¢,,>0 and A, >1).

The combined tuning by of phase (¢,,) and gain (A,,)
margin can be interpreted as it is shown in Figure 2,
as the movement of two points of the Nyquist
diagram from positions A and D to positions B
(=1, ®=06,) and E (r=1/A, ©=0). If both
specifications have been reached with the same

control parameters, it is because the points A and D
verify the following two expressions:
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Being: ,, r, and ¢, the frequency, the magnitude and
the phase of point A, wy, ry and ¢4 the frequency, the
magnitude and the phase of point D. Therefore the
tuning by phase and gain margin will be possible if a
couple of frequencies w, and wy exist in such a way
that the two previous expressions are verified. The
control parameters can be determined later on,
making use of the tuning expressions for phase
margin with w.=w, as design frequency.
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Fig. 2. Example of a PID controller tuning by phase
and gain margin.
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Fig. 3. Example of PID tuning by phase margin and
gain margin in the parametric control plane.

The tuning with specifications of phase and gain
margin can also be interpreted in the Kp-K, plane, in
a similar way to that proposed by Shafiei, and
Shenton (1997). The continuous curve in Figure 3
represents the set of control parameters with which it
is possible to obtain a specific phase margin and the
dashed curve represents the set of control parameters
with which it is possible to obtain a specific gain
margin. The intersection of the two curves represents
the set of control parameters with which it is possible
to get both specifications at the same time. The



intersection point will have associated the frequency
, in the curve of the phase margin and the frequency
@y in the curve of the gain margin.

2.3 Interesting problems.

The tuning by phase or gain margin is not completely
solved with a simple calculation of the control
parameters. Before arriving to this situation it has
been necessary to solve other problems as: the
election of points A and B, the type of controller and
the ratio between Tp and T;. In section 3 specific
solutions to some of these problems are proposed
when a linear process model is available.

The combined tuning by phase and gain margin, that
only can be approached when a process model is
available, neither is reduced to solve a system of two
non-linear equations. Before arriving to this situation
it has been necessary to solve other problems as: the
election of points B and E in Figure 3, the type of
controller and the ratio between Tp and T;. But on the
way several questions immediately arise: under
which conditions in the specifications is there a
solution to the equations?, is the solution unique?,
how to find 1t?, if a solution with some certain
specifications is not found which specification ¢,, or
A, should relax first? The section 4 try to answer
these questions, sometimes in a general way and
others for specific cases.

3. THE SPACE OF SOLUTIONS FOR TUNING
BY PHASE OR GAIN MARGIN

If a process model is known, the point A can be any
point of the Nyquist diagram. Then will be the
controller (PI, PD, PID) that imposes an angular
condition to points B in order to make the tuning
possible. The rotation, of value ¢.~=¢-0,, should be
bounded between the minimum and the maximum
phase that the controller can contributes, see Figure
4. Otherwise when the point B has been selected, the
point A cannot be selected arbitrarily. This problem
can be divided in two: a) which is the range of the
possible frequencies design? b) what value inside that
range should be chosen as frequency design? These
will be analyzed in the next two sections.
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Fig. 4. Domains (dark zones) of the possible points B
when point A has been arbitrarily chosen.

3.1 Determination of the range for the design
[frequency @.

The possible points A are only those points of the
process frequency response that fulfills the angular
condition. They define a range of frequencies for
which the calculation of the control parameters is
possible. In other words, . should fulfill the
condition

o < (0y- 180° - arg(Gy(jo))) < ¢ (N
whereg™ and ¢™* depend of the controller. In

Figure 5 an example is shown. In this example it has
been considered that point B corresponds to a
specification of phase margin equal to 45°, or any
other point of the bisector of the third quadrant, and
the controller is PID type.
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Fig. 5. Determination on the Nyquist diagram of the
range for the design frequency.

3.2 @. determination.

As the bandwidth of the system in closed loop is
directly related with the design frequency, must the
following question be asked: why not choosing the
maximum possible frequency? One of the reasons
might be that the bigger the design frequency is the
riskier it is to destabilize the system. Another reason
is that in the case of a PI controller, the value of o™

would lead us to an infinite value of the integral time,
that is to say, to a controller with just a proportional
action. In the case of a PD controller, it would lead us
to a controller with just one derivative action. And
finally in the case of a PID controller, we would have
a controller with the maximum derivative action.

In this section it is intended to use an auxiliary
criteria jointly with the specification (phase or gain
margin) for the automatic election of the design
frequency. This approach is not the only possible
one, but it is followed by other authors (Astrém, and
Hiagglund, 1995; Shafiei, and Shenton, 1997). For PI
and PID controllers it is intended to choose the
design frequency that allows to get a maximum
integral gain (K; =K;/T;). Figure 6 shows an example
of some K, graphs versus . obtained when a



specification of phase margin equal to 45° (r,=1,
®,=45) and the controller is PID with different values
for a, included the PI case (0=0). It is observed a
maximum in all cases, which can be valid to choose
the design frequency.
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Fig. 6. Integral gain as function of the design
frequency.

3.3 Example: Application to a non minimum phase
system.

The previous proposals have been successfully
applied to a big number of processes considered in
the bibliography on PID controllers. As an example
of this, the application to a non minimum phase
system is presented. It has been used by Ho, et al.
(1995) to prove their design methods and tuning
formulas. The transfer function of this model is

1 - s (10)
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Fig. 7. Range and possible values for the design
frequencies.

Figure 7 shows the relative situation of several
design frequencies regarding the range Jm.™" m."™[
for a PID controller for phase margin equal to 45°
when 12p=0.1. The lower curve corresponds to the
. frequencies, obtained for a PI controller with the
objective of maximising K, The immediately
superior one corresponds to the """ frequencies,
obtained for a PID controller when imposing
Tp/T=0.1. The w, curve corresponds to the ultimate
frequencies that do not depend on the type of
controller which is used. It is observed that starting

from p=3, there is even very little difference between
the election of PI or PID controllers.

Table 1 Parameters and characteristics in the
situations of Figure 8.

u  Controller Kp T To ®p Aa oy IE

02 Pl 1.17 214 0 0357 260 1.12 1.82
02 PID 192 281 028 077 334 163 147
2 P1 0.59 2350 0 031 146 063 422
2 PID 071 279 028 034 146 073 394
p=0.2 , ¢,=45°
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Fig. 8. Responses of the non minimum phase process
with PI and PID tuning by phase margin.

Figure 8 shows the time responses for two process
(u=0.2 and 2) and two controllers (PI, PID) with
specification of phase margin equal to 45°. The
control parameters used are shown in Table 1,
together with the characteristics of the frequency
response. It is observed that the PI and PID responses
differ from each other, as it could be expected from
Figure 7. The results are goods even when the
difficulty of control increases (u=2). In Figure 8 the
results with the tuned control parameters starting
from the ultimate frequency are not included because
they give place to greater integral time constants than
the other tunings, with the corresponding increase of
the error integral for load changes. And because,
starting from p=2, situations of unstability (negative
gain margin) take place.

4. THE SPACE OF SOLUTIONS FOR TUNING
BY PHASE AND GAIN MARGIN.

If a numeric or graphic method is going to be used in
the resolution of equations (5) and (6), it is
convenient to have bounded the solution space, that
is to say, the space of possible couples (w,,0y) that
can be a solution. Is this possible? The answer is
affirmative. As the tuning proposed is a combination
of tuning by phase and gain margin, the possible
couples of frequencies w, and wy that verify (5) and
(6) belong respectively to the possible ranges Jw,™"
w,™[ for the specified phase margin and Jw,™"
;™[ for phase margin equal to zero. This
delimitation of the problem in the frequency domain



presents the following advantages: 1*) As the phase
is generally monotonous decreasing with the
frequency, it will be fulfilled that
O, <<, <wy™. 2™) A change in the
specified phase margin will modify the range for w,,
but a change in the gain margin will not affect to the
range @y. 3™) A change in the value of o, except for
the change of PI to PID control does not modify the

ranges for w, and w,.
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Fig. 9. Analysis of tuning by ¢,,=60° and several gain
margins for the non-minimum phase process
(u=1) with PID control and o =0.25.
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Fig. 10. Analysis of tuning by ¢,=60° and several
gain margins for the process described by
G(s)=e™/(s+1) with PI control.

As an example, Figure 9 shows graphically the
solutions of equations (5) and (6), in several
situations, characterised by the same phase margin
and different gain margin. The couples (w,,wy) that
are solutions of the second equation (6) are located in
a single curve of the plane. The curve defines two
regions in the space of solutions. The couple of
curves which are a solution of the first equation (5)
define three regions in the space of solutions: either
horizontal regions as is the case for A,=3, or vertical
regions as is the case for A,=1.5. On the other hand,
if the controller is PI or PD, all the solutions to the
equation (5) will belong to a curve. This curve will
be located above the bisector of the space of interest

when the maximum of the term on the left is smaller
than that on the right and vice versa. That is what has
caused the different curves solution of the first
equation in Figure 10.

4.1 Solution to the system of equations.

A detailed graphic analysis of the equations (5) and
(6) allows to affirm that:

e The equations may have a clear solution. For
example in Figure 9, for A,=3 or A,=1.5, the
curves solution intersect in a specific point.

* The equations may have a solution in a range of
frequencies. For example in Figure 9, for A,=4,
the curves solution are very close in a wide area.

® There are always solutions near the left lower
extreme and sometimes near the right upper
extreme of the space of solutions. But these
solutions should not be wused, since they
correspond to not very usual situations, where a
proportional, integral or derivative action
dominates over the other ones. If a numeric
method is used a great probability of falling in
these local minima exists.

* The equations might not have a solution, except
for some of the extremes. For example in Figure
10, for A,=1.25. In these cases the numeric
method would go to the relative minimum, but
the graphic method allows to state a strategy on
which specification should be relaxed to find a
solution.

Although the analysed cases do not contemplate the
whole complete casuistry, it can be concluded that
the resolution of (5) and (6) is not trivial, at least in a
numeric way, but needs a graphic analysis. This
analysis should be carried out in the space of
frequencies that results from combining the ranges
for phase and gain margin tuning.

4.2 Example: Application to the non minimum phase
system.

The non minimum phase process with pu=1 has been
also used by Ho, et al. (1995) to check their tuning
formulas by phase and gain margin. They need a
second order system with dead time, so they are
forced to use one intermediate model with two time
constants. However, this intermediate model are not
necessary to apply the methodology described in this
paper. The three values (4.0, 3.0 and 1.5) of A, in
Figure 9 have been chosen after analysing Figure 11,
that shows the possible gain margins in function of
the possible design frequencies for the tuning by
phase margin equal to 60°.

Figure 12 shows the time responses for the same
process (U=1) and three situations in the controller
(PID1. PID2, PID3) tuned with the same
specification of phase margin equal to 60° but
different specifications of gain margin: 4.0, 3.0 and
1.5 respectively. The control parameters used



together with the characteristics of the frequency
response, are shown in Table 2.
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Fig. 11. Possible gain margins for the non minimum
phase process (u=1) with PID control and
T/T=0.25 for ¢,=60°.

Table 2 Parameters and characteristics in the
situations of Figure 12 and when applying the

formulas of Ho, et al. (1995).

ou=60"  Ke Ti To L

@ As o IE
PIDI 043 177 044 600 024 40 088 4.12

PID2 076 239 060 600 033 30 119 314

PID3 140 396 100 600 068 15 168 283
PIDHI 050 19 049 609 025 392 098 392
PIDHZ 0.66 200 050 535 033 303 1.00 3.03
PIDH3 082 -781 LI13

p=1, gp=60"
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Fig, 12. Responses for the non minimum phase
process with different PID controllers.

The situations PIDHI1, PIDH2 and PIDH3 when the
parameters are tuned by the formulas of Ho et al.
(1995) are also included in Table 2. The PIDH3
situation give place to a negative value of the integral
time constant that can be interpreted as if ¢,,=60° and
A,=1.5 cannot be obtained; however the general
method does give a solution in this situation. It is
observed that the specifications are obtained with the
PID1, PID2 and PID3 tunings, since the general
method is an exact method, while with the formulas
of Ho, et al. (1995) some characteristics close to the
specifications are obtained, because of the formulas
are approximate and in this case an intermediate
model is also needed.

5. CONCLUSIONS

This paper shows that the PID controllers tuning in
the frequency domain is not an easy task. A
methodology for the tuning non-interactive PID

controllers by phase or gain margin has been
presented. The advantages of using this methodology
become evident when a process model is available.
And since restrictive hypothesis on the process model
are never made, the result is that the methodology is
applicable to a great variety of processes: with or
without a dead time, with a dominant time constant,
with a dominant dead time, with or without an
integrator, with minimum or non-minimum phase
responses, with overdamped or underdamped
responses, etc...

A formulation of the combined tuning by phase and
gain margin, in which priority is given to the phase
margin, is also presented. The graphic interpretation
shows great difficulties for the numeric methods and
it can be used to establish a strategy on how to relax
gain margin with the purpose of finding a solution.
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