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ABSTRACT reference or navigation coordinate frame. The initial
alignment is a critical process since it has a bearing on
Among the various techniques available to carry out the the later implementation of the INS to determine the
alignment process of a strapdown inertial navigation altitude as well as to compute velocity and position on
system, the most frequently used are gyrocompass and the course of the navigation process. So, the performance
Kalman filtering. In this paper we study three of these of an INS can only be as good as the accuracy to which it
methods: the classical gyrocompassing alignment, a is initially aligned.
low-order Kalman filter estimator and an open loop
misalignment estimation procedure. Those methods are Several techniques to accomplish alignment exist,
simulated and their numerical results are compared. including gyrocompassing and the use of Kalman
Then conclusions about properties of the methods are filtering. Among those techniques, three methods of self-
derived. alignment are simulated and compared in this paper: The

gyrocompass alignment, a low-order Kalman filter for the
misalignment estimation and an open loop estimation

LIST OF SYMBOLS procedure for the azimuth misalignment and the north

gyro drift.

Cp  Transformation matrix from body to navigational

frames. The three methods are applied to the alignment of an INS
Kp.KgKy  Down, East and North loop gains. whose model has 23 states (Aranda et al. 1994).
L Latitude.
g Gravity. The basic principle of gyrocompassing consists of
€p,€g,En Down, East and North misalignments. feeding the appropriate level gyros and azimuth gyro with
T Time constant. signals proportional to the accelerometers outputs or/and
®, Accelerometers drift. velocity error outputs (Britting 1971). Levelling is made
®;  Gyros drift. first and then the azimuth is obtained by
®;e  Earth rotation gyrocompassing.
gc o g:m ;;Eanh st The second method uses a Kalman filter for the

misalignment estimation (Grewall et al. 1991, Aranda et
al. 1994). However, a low-order Kalman filter yields
practically the same accuracy as the full order Kalman

ts Settling time.
t Rise time.

Superscripts and subscripts filter. The low-order estimator has the following state
" ] vector: (€x,Eg,Ep,By,Bp,xp). Where (En.Eg.Ep) are the
. Body coordinates frame. misalignment angles, (By,Bp) are the north and down
i Navigational coordinate frame. component of the gyros biases and xp is the down
Transpose. component of the accelerometers correlated noises.
p:e:N Components in the Down, East and North
directions.

Stieler and Winter (Stieler and Winter 1982) modifies the
classical gyrocompassing procedure. They open the loop
of the shunt integrator in the north-south channel and the
INTRODUCTION loop for the vertical alignment. At the same time, the
time constant of the levelling loop is reduced. A Kalman
filter estimates the azimuth misalignment €pQ2cosL and
the north gyro drift component. The signals for levelling
are used as measurement for the estimation procedure after

x>y 2 Components in the x, y and z directions.

Tihe aIignmen_t of a strapdown Inertial Navigation System
(INS) is defined as the determination of the angular
relatmnshlp between a vehicle-fixed set of axes and a
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they have been integrated up and divided by the elapsed
time.

In the three methods, the misalignment is modelled as a
small-angle rotation, since an initial estimate of the
transformation matrix is available. This initial estimate
can be obtained by an analytic coarse alignment method.

In the following sections, we present the main aspects of
the methods and simulation results with them, later on
conclusions are derived.

GYROCOMPASS

The gyrocompassing loop of a stationary inertial
platform is the electronic equivalent of a mechanical
gyrocompass. In a Strapdown System, alignment means
initialisation of the transformation matrix C; for
transforming the body-fixed measures into the
navigational frame. It is the software equivalent of
driving the misalignment angles to zero in a platform.

In this method, an estimation of the misalignment angles
€, Eg IS obtained from the measured acceleration vector
with a low pass filter, and the command rate vector is
generated by:

-Ky O
.. EN
0 _KD o

This command rate is fed into the transformation matrix
for integration.

An analog equivalent is:
éN E 0 “QSil’lL 0 KN 0 EN
£g QsinL 0 QcosL O -Kg | €&
é’D = 0 _‘QCOSL 0 0 _KD ED
X, -g/T 0 0 -1/ 0 X
i'}. L 0 g"tz 0 0 —lftz Xq
1 0 0 0 0
0 1 Ofjo, 0 0
N ma
+0 0 1o, |+| O 0 "]
E ms
0 0 O0fw, 0 1/t 5
D
[0 0 0 1/t, O

Where X, X, are states for the low pass filters, and Ty, T2
are the time constants of the corresponding states.

Neglecting the weak coupling between the levelling and
gyrocompassing loops, the following two decoupled
systems are obtained:
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£ 0 K € 1 I
Nl= N N o, +
X, —glt, =1/t | X o] & |

g 0 QcosL K¢ €]
£p |=|—QcosL 0 -Kp |[&p |+
X, gl 1,y 0 =1/1, |[ X2 |
1 0 0
+0 1 [ gs]+ 0 |,
w N
0o of *- |/,

If the accelerometers uncertainties are constant then the
north loop in steady state reduces to

en( )—-—l—m +lm
N EKN En g ag

From here it is derived that no distinction can be made
between the gyro drift North component and the
accelerometer drift East component. The North drift gyro
error can be reduced by shunting the Ky gain with an
integrator (Stieler and Winter 1982).

The dynamic response corresponds to that of a second
order system. The time constant is chosen to satisfy a
signal settling time and a noise covariance. The Ky gain
is chosen to provide adequate response rate and damping
ratio.

In the gyrocompassing loop the dynamic of the angles &g
and €p are given by the roots of the characteristic
equation (T=1;=Tp):

s[sz+i+-KE—g)+sﬂzcoszL+
e (eq.1)
eq.
;I
+[KDchosL+Q c:s L}=0

T

If we choose Kp so that Kpg/t << 1/QcosL then the

characteristic equation roots are next to the roots of the
K

equation a?.[s2 +%+Tﬁg). So, two conjugate complex

roots are near the roots of

s K
s2434"EE =
T

T

0 (eq.2)

and the real root is near s=0.

K and T, are chosen on the condition that €g and &n
evolve in similar way. Possible values are (Stieler an
Winter 1982): Kn=1/2g7 ; Kg=Kn ; Kp=1/(16gr2QcosL)-




Table | shows the settling time (t,) and the rise time (t,)
for both equations (eq. 1 and 2) with those gains.

Gyrocompassing becomes faster if levelling is made first,
and the azimuth is assumed constant during this time.
Figure | represents simulation results for a strapdown
system with the values of sensor errors given in table 2.
The chosen value for the time constant is T=4 sec.,
during the levelling time. The time for this mode of
operation is 60 sec. After that, the time constant is
changed to =30 sec. for gyrocompassing. After 10
minutes, the errors are similar to the previous case.

Eq. 2 .1
roots ts tr roots Eq ls [f
T=1sc. -0.5%j0.5] 9.2]2.54|| -0.5%j0.559] 9.2 2.4
real -0.0473
t=20sc. ||-0.016667%] 276| 76 || -0.016667+| 276| 76
j0.016667] j0.016736
real -1.6E-7
1=120sc || -4-17E-3%j|1104| 305|| -4.17E-3% j|1104| 305
4.17E-3 4.17E-3
Table 1: Roots of characteristic ecuation
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Figure 1: Roll, pitch and yaw errors. Gyrocompass
alignment with initial coarse alignment

A LOW-ORDER KALMAN FILTER AS
MISALIGNMENT ESTIMATOR

The alignment scheme employing the Kalman optimum
techniques involves many state variables to describe the
relative motion between the vehicle and the reference
axes. This imposes heavy computation burden on the
alignment process. In (Aranda et al. 1994), we studied a
low-_order Kalman filter, for the system we are
considering, having almost the same accuracy as the full
order one but with fewer state variables.

The ‘analysis and design of Kalman low-order filters
oluires the following steps (Kortim 1976): 1) Modelling
OF Inertial sensor errors. 2) Obtaining of alignment
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equations with sensor error shaping filters. 3)
Observability analysis. 4) Covariance analysis and error
budget table. 5) From the covariance analysis, low-order
filters are obtained. 6) Analysis of the proposed filter
under parameter uncertainties. 7) Monte Carlo
simulation.

1) Modelling of inertial sensor errors. Each Gyro is
modelled by a random bias, a rate white noise (angle
random walk), an angle quantization, a random ramp and
a first order Markov process (pink rate noise), with
measurement in angular increment (Aranda et al. 1990).
Each accelerometer is modelled by white, quantization and
correlated noises, with incremental velocity measurement.
Table 2 shows these errors.

Soohic] -
Q=15.041°/Hr=7.292E-5rad/sec; L=45°; g=9.84m/scc>
Accelerometer correlated noise time constant = 300 sec.

Espectral density:

White noise Correlated noise Cuantification noise
(d?,,) m¥sec’ {01.,‘) m*sect (c’,c) m?/sec?

Acc.l:  0.23E-6 0.23E-8 0.64E-8
Acc.2:  0.24E-6 0.24E-8 0.65E-8
Acc.3: 0.25E-6 0.25E-8 0.65E-8
Rate white noise (6%,,) Cuantification noise (0%)
Gyro 1:  0.304E-11rad%/sec; 0.16E-10rad?

Gyro 2: 0.303E-11rad%sec;
Gyro 3: 0.305E-11rad%sec;

Initial misalignment:

0.15E-10rad?
0.17E-10rad*

o’,, =0’ = 0.9E-5rad*;
o’ = 0.0lrad’
Accelerometer bias: 62 = 3.5E-7 m¥/sec*
Initial correlated noise: 2., = 3.45E-7 m%/sec*,
0%, = 3.6E-T m¥fsect; 0%,__y= 3.75E-T m¥/sec’;
Gyro bias: o?= 0.6E-11 rad¥/sec?

Table 2: Simulation parameters

2) For a strapdown system with the previous error
models, the misalignment error equations with the
shaping filters have a state vector with 23 components:
three states for the misalignment angles (gy, €g, €p), one
state to integrate the output of each sensor, three states to
model each accelerometer, two states to model each gyro.
However, this would not be economic, because some of
the terms may be taken into account whose influence on
the system behaviour is not significant, and some terms
may not be observable and there may be, therefore, an
estimator of lower order yielding the same accuracy as the
full-order Kalman filter.

3) The observable and unobservable parts of the system
can be separated, but the choice between them is not
unique since the transformations are innumerable (Jiang
and Lin 1992). The set of observable states are (Aranda et
al. 1994): the misalignment angle gN with the east bias




accelerometers’ components; the €g with north bias
accelerometer component; the €p with east bias
accelerometers and east drift gyros; the north and down
bias accelerometers’ components; the down
accelerometers noise integral component; the
accelerometers correlated noise; the gyro bias; the north
and east acceleration integral, the rate integral with the
integral of north, east and down gyro noise.

4) Covariance analysis and error budget table. Developing
an error budget involves determining the individual effects
of a single error source, or group of error sources (Gelb
1974). Table 3 shows the error budget. We can see that
the accelerometer errors have more influence on the final
estimate than the remaining sources of error.

Ey g €p
Noises | 100sc.] 300sc.] 100sc.] 300sc.] 100sc.] 300sc.
GyroN|[27% |19% | 0% 0% 2% 6%
GyroE|58% |57% | 0% 1% 17% | 50%
Gyro D | 0% 0% 0% 0% 10% | 16%
Acc. N | 8% 9% 93% |98% |90% |87%
Acc.E |97% |99% | 2% 0% 54% | 83%

Table 3: Error budget

5) From the covariance analysis, low-order filters are
obtained. After the observability and covariance analysis,
we arrive at a model with the following state vector: (€,
€g, €p, BN, Bp, Xp). Where (g, €g, £p) are misalignment
angles, (By, Bp) are north and down components of gyro
bias and xp, is the down component of the accelerometers’
correlated-noises.

6) Analysis of the proposed filter under parameter
uncertainties. To find the sensitive of the filter with
respect to some parameters’ uncertainties, only those

parameters are changed. The parameters changed are: Cy,

the accelerometer correlation time and the variances of the
noises of the sensors.

7) Finally, a Monte Carlo simulation is made (Aranda et
al. 1994).

The alignment means updating the transformation matrix
Cp by estimation of the misalignment error angles. The

Cp updating is made by a first order approximation
(Savage 1984):

Ch(ta) =(1-E(t)))Ca(ty)
Where 1 is the identity matrix and
0 -—-ep &gg
E'=|¢e, 0 -gy
—Eg Ey 0

That is equivalent to feeding the command rate into the
matrix integration algorithm in the gyrocompass method.
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Figure 2 shows the roll, pitch and yaw errors for a
simulation. Levelling (updating €y and &g only) is made
for 30 seconds, then the three angles are updated every
180 seconds.

A covariance analysis was performed with the following
results: After 180 seconds the €y standard deviation is
nearly to 8 mrad. Therefore, the azimuth errors are into
these bounds. Furthermore, after 120 seconds the variance
decreases slowly. Then, it needs more time to get less
eITor.

#10-03 oy #1003 g
18.00 44.00
13.00 1.50
8.000 19,00

yaw
.500
3.000
roll A
e B A TR
-2.00 p“dl 6.00
000 250 500 . 750 1.000 i.250

Figure 2: Roll, pitch and yaw errors. Alignment by a low
Kalman filter as misalignment estimator

THE OPEN LOOP ESTIMATION PROCEDU-
RE FOR AZIMUTH MISALIGNMENT AND
NORTH GYRO DRIFT

The procedure shown here is proposed in Stieler and
Winter 1982. The loops of the shunt integrator in the
north-south channel and for the vertical alignment are
opened. At the same time the time constant of the
levelling loop is reduced. The torque signals for levelling
the platform or the transformation matrix are used as
measurements for the Kalman filter after they have been .
integrated up and divided by the elapsed time.

This measurement gives the estimation for the gyro drift
north component and for €pQcosL. If measurements for
the Kalman filter are taken in time increments greater
than the longest period of the base motion, the modelling
of the base motion as required in a Kalman filter may be
neglected it can be assumed that each measurement is a
signal for the north gyro drift Dy or the azimuth
misalignment €pQcosL, contaminated by noise
dependent of sensor and readout quality and base motion
dynamics.

The characteristic equation can be show to be:

s(s2 +E+&)+Q2 cos? L(s+l)=0
T T T




So that the roots of this equation are near s=o and of

. . . s Kgg
those of the following polynomial: s? + > + —ES
-

In the steady state and with constant drift signal, the fed
signal is (gp(0) + ®, ) QcosL. The signal variance is
D

reduced by averaging.

As in the levelling loop, after the settling time (=101)
the measurement process and estimation of the states ,

D
and epQcosL starts. Assuming that both loops are
decoupled the filter is of first order.

The north gyro measurement is balanced from gyro north
drift estimation, a Cy is updated by means of the
estimation of gp,.

Figure 3 shows the azimuth simulation error; the roll and
pitch are as in figure 1. During 60 seconds the system is
levelled, after that the azimuth is estimated and the matrix
is updated each 60 seconds. In 4 minutes an error of 2.5
mrad is obtained.

w10-03 g
44.00
31.50
18.00
6.500
L yaw
_____ e B et
i it & Bl
-6.00
.000 .250 .S500 - 750 1.000 1.250
w10 ﬂ!m

Figure 3: Yaw error. Open loop estimation procedure for
azimuth misalignment

CONCLUSIONS

Three different methods for strapdown systems alignment
have been studied. Those methods were simulated and

from the numerical results we draw the following
conclusions:

Gyrocompassing has the lest computer time and load of
the three methods. However, the gains have to be chosen
as a Compromise between fast reaction, what requires
high gains, and noise sensitivity, what requires lower
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gains. In that way the selection of the gains has to be
made after a trial and error procedure.

The low-order Kalman filter has the higher computer time
and load. It is sufficient to implement a five order
Kalman filter after a correct tune of the noise levels to
obtain an almost identical accuracy as the full-order 23-
states Kalman filter considered.

The third method is a compromise between the other two
methods. Now the levelling loops use constant gains as
in the gyrocompassing but higher values of them are
chosen so that the levelling phase is speedily-up. A
Kalman filter of only two decouples states is used to
estimate north drift and the azimuth misalignment. The
Kalman filter parameters have to be chosen in a trial and
error procedure. After an optimum choice of the
parameters the accuracy of this method is quite similar to
that of the low-order Kalman filter. That makes the
method the most suite when a compromise accuracy and
computation is required.
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