
An approach to Agent-Based modeling with Modelica

Victorino Sanza,∗, Federico Bergerob, Alfonso Urquiaa

aDpto. de Informática y Automática, UNED, Juan del Rosal, 16, 28040, Madrid, Spain
bFrench-Argentine International Center for Information and Systems Sciences
(CIFASIS-CONICET), 27 de Febrero 210 bis, S2000EZP, Rosario, Argentina

Abstract

Modelica is a free, general-purpose object-oriented equation-based modeling lan-

guage. It is mainly designed to describe systems using the physical modeling

approach. Our proposal to describe Agent-Based Models (ABMs) in Model-

ica is discussed in this manuscript. The contribution of the presented work

is twofold: firstly, to analyze the conceptual requirements to describe ABMs

in Modelica; and secondly, to develop a prototype implementation following

the previous analysis. Agents are described using a message passing communi-

cation mechanism previously proposed by the authors. Additional extensions

to this mechanism are proposed in order to describe agent interactions. The

environment, where the agents live, is described as a two-dimensional cellular

automaton. A new Modelica library, named ABMLib, developed to support this

functionality, is presented. A prototype implementation of the message passing

mechanism and ABMLib models has been performed to demonstrate the func-

tionality of the library as a proof-of-concept for this proposal. The library is

freely available at www.euclides.dia.uned.es/vsanz.

Keywords: Agent-based model, Modelica, hybrid systems

∗Corresponding author
Email addresses: vsanz@dia.uned.es (Victorino Sanz),

bergero@cifasis-conicet.gov.ar (Federico Bergero), aurquia@dia.uned.es (Alfonso
Urquia)

Preprint submitted to Simulation Modelling Practice and Theory December 15, 2017



1. Introduction

Agent-Based Models (ABMs) are discrete-event models composed of a vari-

able number of “living” objects, named agents, that behave following a pre-

defined set of rules (i.e., agent behavior), and interact among them and with

their environment (i.e., the physical space where the agents “live”) [1]. The in-5

dividual behavior of each agent is defined using simple rules, or algorithms, but

the simulation of the whole model may lead to complex and emergent behav-

iors. In this manuscript, the description of ABMs using the Modelica language

is discussed.

Modelica supports the description of mathematical models following the10

physical modeling paradigm [2]. Modelica models are described as a combi-

nation of acausal equations, algorithms and events, using the hybrid DAE for-

malism (cf. [3] for a detailed description of the formalism). The causality of the

model is automatically computed by means of symbolic manipulations of the

equations before generating the executable code [4].15

The description of ABMs in Modelica could be used to perform a qualitative

description of models, or parts of models, in contrast with the quantitative ap-

proach given by equation-based modeling [5]. ABMs can be used to represent

heterogeneous objects in the model (i.e., agents of the same type are used to

represent different individuals in the model with different characteristics or even20

different behavior) while equations are used to represent homogeneous quanti-

ties. Adaptive or learning behaviors can also be described in terms of ABMs.

In this way, the combination of ABMs with other Modelica models enhances

the functionality of the language and the description of more complex hybrid

systems.25

Other authors have made efforts to combine equation-based models and

ABMs. The LEADSTO language combines dynamic systems of equations with

ABMs [6]. Another approach has been to combine ABMs with System Dynam-

ics, using Anylogic, to describe health-care systems [7]. Humans are described

using agents, while System Dynamics is used to describe disease dynamics. A30

2



similar approach is used to simulate antibiotic resistance in hospital wards [8].

Intra-host dynamics (i.e., bacterial-level processes inside individuals) are de-

scribed using differential equations, while inter-host dynamics (i.e., relations

between humans) are described using ABMs. Also, Dymola and JADE have

been combined using a co-simulation approach to describe control for office35

spaces [9].

The proposal presented in this manuscript is to describe agents as individual

messages flowing between components of a flowchart diagram, which is analo-

gous to a coupled DEVS model [10]. Agent behavior is described by the compo-

nents of the flowchart diagram independently of the environment, but agents can40

interact with it. The environment is represented as a two-dimensional cellular

automaton, using CellularAutomataLib2 [11]. Some extensions to the message

passing communication mechanism, previously proposed by the authors [12], are

presented to describe agent’s interactions. All this functionality is included in a

new Modelica library, named ABMLib, designed and developed by the authors.45

ABMLib models can be also combined with other Modelica models. ABMLib

approach is similar to the description of systems using process calculus, where

the processes communicate using messages [13]. However, in this proposal agent

actions are not synchronized by means of communication rendezvous, but at

discrete points in time [14]. ABMLib approach is also similar to actor-oriented50

models, but in this case messages represent the agents themselves and not the

data flowing between actors.

A prototype implementation of the message passing mechanism and the

new library has been developed and tested, and an application example using

a Lotka-Volterra model is presented in this manuscript. The presented model55

combines ABMs with continuous-time equations in order to illustrate the ben-

efits of supporting ABMs in Modelica.

The structure of the manuscript is as follows. The requirements to describe

ABMs in Modelica are discussed in Section 2. The message passing communi-

cation mechanism is briefly described in Section 3, together with the proposed60

extensions required for ABM development. The ABMLib library is described in

3



Section 4, and the combination of ABMLib models with other Modelica models

is described in Section 5. The Lotka-Volterra model described using ABM-

Lib and other Modelica functionality is presented in Section 6. Finally, some

conclusions and future work ideas are given in Section 7.65

2. Requirements for describing ABMs in Modelica

Modelica and ABM are conceptually different. ABMs are composed of

agents, environments and interactions [1]. Modelica models are mainly de-

scribed by means of equations, while the behavior of agents is described us-

ing rules. Agents can be created or removed during the simulation run, while70

the number of variables and equations in Modelica has to remain constant.

ABMs are usually dependent on the spatial coordinates, with the agents mov-

ing and interacting around the environment, while the only independent variable

in Modelica is the time. The functionality of the Modelica language that can

be used to describe these characteristics is discussed below.75

• Agents are described by means of their state and behavior. Modelica

simple data types and complex data structures can be used to represent

the state of the agents. Usually, the behavior of agents is described as a

set of rules or actions. Modelica algorithm sections can be used to describe

the behavior of the agents.80

However, Modelica does not support changes in the number of variables

and/or equations during the simulation. These changes occur during the

creation or removal of agents from the model. An additional mechanism

needs to be used to represent the variation of agents during the simulation.

The proposed approach is to graphically represent the behavior of agents85

as a flowchart diagram. Agents are represented as messages that are sent

from one component to another in the diagram. The components repre-

sent the individual actions performed by agents. The diagram includes

components to create agents and to remove them from the simulation.

4



The components of the diagram communicate using the message pass-90

ing communication mechanism previously proposed by the authors [12],

which is capable of dealing with a variable number of messages during the

simulation run.

• The environment represents the physical space where the agents behave

and interact, and can be defined in multiple ways depending on the ne-95

cessities of the model. Some authors consider the environment as a set of

passive agents, since they can also have state and behavior [15]. Also, the

environment could only represent feasible agent interactions (e.g., links in

a social network).

As a first approach, our proposal is to represent the environment as a100

cellular automaton. This is a two-dimensional square lattice, where the

states of the cells are represented using some variables and all the cells

share the same behavior defined using a transition function. The state

of the cells is periodically updated using the transition function. The

CellularAutomataLib2 library, developed by the authors, supports the de-105

scription and efficient simulation of cellular automata in Modelica [11].

• Agents can interact with other agents or with the environment. Model-

ica provides functionality to access models and variables in the hierarchy

of models and libraries of models. This functionality includes the dot-

notation, that allows to access models in other libraries or packages, or110

the inner/outer variable modifiers that can be used to access variables

and models defined in another part of the hierarchy. Additionally, Cellu-

larAutomataLib2 includes interface models to combine cellular automata

with other Modelica models. These interface models, combined with the

other Modelica functionality, can be used to observe or modify the state115

of the environment depending on the behavior of the agents.

On the other hand, since each agent is defined as a message and they

move between the components of the flowchart diagram, the state of the

agents is not accessible. Additional functionality is required to describe

5



agent interactions. An extension to the message passing communication120

mechanism, with the concepts of sets and subsets of messages, is proposed.

This new extension is detailed next.

3. Message Passing Communication Mechanism

Coupling relationships between Modelica components are described using:

the connector class to define the ports of their interfaces, and the connect sen-125

tence to define the connection between connectors. Each connector is composed

of a set of variables that by default are defined as effort, and may be defined as

flow using the flow modifier. The effort variables of the connected connectors

are equaled, and the flow variables are summed up and the sum is equaled to

zero. These connect-equations are added to the model and taken into account130

with the rest of the model in order to perform the causality analysis.

Message passing corresponds to the transference of one or multiple impulses

of information between models, in contrast with the equation-based connec-

tions previously described. Both communication approaches are conceptually

different, and thus the authors proposed to include new functionality in Mod-135

elica in order to support message passing communication. A new class, named

buffer, and a new sentence, named couple, are introduced to describe commu-

nication buffers and their relationships. The proposed extensions are based on

the P-DEVS model communication approach [10]. These extensions are briefly

introduced in Section 3.1, and a detailed description can be found in [12].140

Message passing communication can serve as a general purpose extension to

Modelica, since it can be applied to describe systems using multiple approaches,

such as DEVS, process-oriented models and distributed models, among others.

Message passing libraries already exist for general purpose programming lan-

guages, like the Message Passing Interface (MPI) [16]. In this manuscript the145

use of message passing communication is focused on the description of ABMs.

However, the mechanism proposed in [12] needs to be extended to describe

the interactions between agents. These additional extensions are presented in

6



Section 3.2.

3.1. Previous Proposal150

The elements of the communication mechanism are the messages, the buffers

and the communication channel. A brief description of the proposed message

passing communication mechanism is presented.

• Messages represent the information transported from one model to an-

other. They can be defined using current Modelica functionality, such as155

basic data types (e.g., Integer, Real or Boolean) or more complex data

structures using record classes.

• Buffers constitute the data structures used to store messages. They can

be used to store a variable number of messages in a model, or as interface

ports for communicating with other models using the input and output160

Modelica modifiers. The messages in a buffer can be read using array-like

and dot-notation (e.g., buffer[1] for accessing the first message in the

buffer, or buffer[1].var for accessing a variable in the first message).

Two special functions, named put and pop, can be used to insert and

extract messages to and from the buffer respectively. The number of165

messages in a buffer is automatically computed and stored in a variable

named size (e.g., buffer.size).

• The Channel is used to define the communication relationships between

models. Similarly to the connect sentence, a new sentence, named couple,

is introduced to define relationships between input and output buffers.170

Point to point and collective (i.e., 1-N, N-1 and N-N) communication are

allowed.

As described above, messages can be used to represent agents. The actions

required to describe the behavior of agents can be defined as the actions as-

sociated with the management of input messages in a model. This modeling175

approach can be described in terms of the P-DEVS formalism and is similar

7



to the implementation of SIMANLib and ARENALib, which are two Modelica

libraries developed by the authors that support the process-oriented modeling

worldview [17].

The behavior of each agent type is defined using a flowchart diagram. All180

the agents of a particular type will be stored in the buffers of the components of

their diagram. An additional extension to this message passing communication

mechanism is presented next to allow agent interactions.

3.2. Additional Language Extensions

In order to allow the interaction between agents, two additional data struc-185

tures are proposed as new Modelica classes: msgset and msgsubset. These

new classes constitute language extensions, since their functionality cannot be

described using Modelica.

The msgset class represents the set of messages that are stored in the buffers

of a model and its components, including interface ports and internal buffers.190

The contents of the msgset object are automatically updated by the simulator,

adding or removing messages as required. In order to avoid duplicities between

msgset objects and the buffers of the model, the msgset object should only

store references to the actual messages. The msgset class can be used to access

the information carried by the messages using array-like and dot-notations (e.g.,195

set[1].a defines the value of the variable a of the first message in the set).

Note that the index of the array is not representative since buffers and sets are

unordered data structures, so additional mechanisms have to be used to identify

individual messages (e.g., unique message identification numbers). The number

of messages in the set is automatically computed and stored in a pre-defined200

size variable. In ABMs, a msgset object can be used to have access to all the

agents flowing in a flowchart diagram.

However, the interaction between agents is usually restricted to a particular

reduced set of agents. The msgsubset class represents a subset of messages

that share a given condition (e.g., agents located in the same position or in the205

neighborhood). The subset has two parameters: the sources that are the set or

8



sets from where the subset is composed of; and the condition that defines the

common characteristic for all the messages in the subset. The condition is used

to compare the values of the messages in the sources with other values. The ’:’

Modelica operator could be used to index all the messages in the sources (e.g.,210

sources[:].X == x, meaning that all the messages in the sources with a value

of X equal to x will belong to the subset). The authors propose to simplify the

notation and remove the reference to the array. In that case the same condition

will be written as sources.X == x.

An additional problem arises when the condition is based on the values of the215

variables of a message that is currently being processed. For example, an agent

that needs to interact with other agents located in the same spatial position.

In this case the condition for the msgsubset could be written as sources.X ==

agent.X and sources.Y == agent.Y, where X and Y are the spatial coordi-

nates of the agents. That condition will be different for each agent, depending220

on their spatial position, so a different subset has to be computed for each agent.

The introduction of a new Modelica operator, named msg, is proposed to facil-

itate the description of such conditions. The value of msg corresponds to the

value of the last message extracted from one buffer using the pop function (i.e.,

msg corresponds to the last active message in a model). Different models may225

have different values for msg, since messages can be simultaneously received and

managed. Thus, the condition defined above could be written as sources.X

== msg.X and sources.Y == msg.Y. The msg operator can also be used to ac-

cess the variables of the active message, to define other conditions or parameter

values in the components of the flowchart diagram.230

4. The ABMLib Library

ABMLib is a new Modelica library that facilitates the description of ABMs in

Modelica, and their combination with other Modelica models. The architecture

of the library is shown in Fig. 1. The library is composed of:

• stdAgent model that is used to describe a standard agent. It includes235

9



some variables common to all agents.

• obuffer and ibuffer that represent the output and input buffers used to

describe the interfaces of the components of the flowchart diagram.

• Components package that include some basic components that can be used

to describe the behavior of agents.240

• stdCell and Environment that can be used to represent a basic agent

environment. As described above, the CellularAutomataLib2 library pro-

vides better functionality to describe the environment and its use is en-

couraged.

• Examples package that includes some examples of use.245

Figure 1: ABMLib library architecture.

Since ABMLib is based on the proposed message passing communication

mechanism and that is not yet part of the Modelica specification, ABMLib

models cannot be simulated with standard Modelica tools. The implementa-

tion proposed by the authors is described in Section 6. Briefly, the support

for flattening ABMLib models has been included in the ModelicaCC compiler250

10



[18]. This implementation includes support for describing buffers and couple

sentences. The process generates Modelica flat code that can be simulated us-

ing a standard Modelica tool (OpenModelica in our case). The generated code

includes calls to external functions in C that contain the actual implementation

of the message passing communication. Some manual modifications have to be255

performed to the model in order to correctly generate the flat code. As a result,

ABMLib should be considered as a proof-of-concept library for supporting ABM

in Modelica.

An ABM described using ABMLib is composed of agent types, at least one,

that defines the characteristics and behavior of a kind of agent that populates260

the model (i.e., cars, humans, sheep, wolves, ants, etc.), and one environment

model that describes the characteristics and behavior of the world where agents

live. Agent types may include functionality to define their behavior and the

interaction between different agent types (e.g., humans and cars). All these

components are detailed next.265

4.1. Agent Type

An agent type is a Modelica model that includes the characteristics of the

agent and its behavior.

The record that describes the agent characteristics is used as data structure

to create the messages that represent the agents flowing in the diagram. ABM-270

Lib includes a partial record, named stdAgent, that contains some common

variables for all agent types: position in the environment, orientation, color,

identification number, agent type name and the buffer where the agent is lo-

cated before being moved to another destination. The stdAgent record can

be extended, and thus its variables inherited, by other records to facilitate the275

description of the characteristics of other agents. The Modelica code for the

stdAgent record and the declaration of a new agent, named car, is shown in

Listing 1.

11



Listing 1: ABMLib agent partial record code.

partial record stdAgent

Integer X; // X coordinate

Integer Y; // Y coordinate

Integer head; // head orientation in degrees

Real color; // color for graphical animation

Integer ID; // identification number

String name; // agent type name

buffer origin; // buffer of origin before send

end stdAgent;

record car extends stdAgent(name="car");

Real kms; // kilometer count

Real fuel; // amount of fuel

Integer passengers; // number of passengers

end car;

4.2. Agent Behavior

The behavior of an agent type is described by means of a flowchart diagram.280

Agents are created in the diagram and flow through its components following the

structure of its links and performing the actions defined by the components. All

the inter-connected components of a flowchart diagram have to manage the same

agent type, which is specified as a parameter of each component additionally to

other parameters. In order to describe the flowchart diagram, ABMLib includes285

the components listed below. A graphical description of their interfaces is shown

in Fig 2. Ports with two stripes represent buffers for message communication

and the rest are Boolean inputs and Real outputs.

• Create, represents the starting point for the agents in the diagram. Agents

are created in batches of a given size.290

• Dispose, represents the ending point for the agents. Agents that arrive to

this component are removed from the model.

• Assign, represents an assignment to a variable of the agent or the model,

12



Figure 2: Flowchart component models in ABMLib.

in response to the arrival of an agent.

• Decide, represents a bifurcation in the flow of agents based on the value295

of a boolean condition. If multiple conditions need to be meet, multiple

Decide components should be consecutively nested.

• Count, represents a point where basic statistical information of the model

is computed based in the flow of agents.

• Duplicate, represents the creation of a duplicate of an agent. The dupli-300

cate agent is an exact copy of the original agent, but it has a different

identification number.

• Tick, represents the point where the agents wait for a time unit to be

elapsed (i.e., a tick of time).

Note that some variables have been included in the components to facilitate305

the analysis of the simulations (e.g., number of disposed agents, number of

agents in each decision branch, counters, etc.). This information can be used to

observe the evolution of the model and perform a basic analysis of the simulation

results. More detailed and complex information, such as statistical indicators,

13



can be included in these or other custom made components to perform more310

complex analyses.

4.3. Agent Interaction

Agent interaction happens when the actions performed by an agent depend

on the state of other agents, or when they directly modify the state of other

agents. These two kind of interactions can be described using the proposed315

extensions to the message passing communication mechanism: the msgset and

msgsubset classes.

The msgset and msgsubset objects can be used to access the state of other

agents, like any other model variable. The values of the state variables of other

agents can be used to configure the parameters or conditions in the flowchart320

diagram of an agent type.

On the other hand, an additional flowchart component has to be included

in order to influence the state of other agents. The Send component has been

included in ABMLib for this purpose. This component can be used to extract

an agent from its current buffer and send it to a new destination (i.e., another325

flowchart diagram) that represents the new actions to be performed by that

agent. For example, when an agent policeman finds an agent criminal (e.g.,

both agents are located in the same coordinates in the environment) a Send

component can be used to send the criminal to another flowchart diagram that

represents the stay in jail. The parameters of the Send component are the agent330

to be sent.

Note that since the agent sent to the destination is extracted from its

flowchart diagram, it will no longer be able to return to its normal behavior. In

order to facilitate the return of the agent to the point in the original flowchart

diagram before the movement, a variable named origin is included by default335

in the state of the agent. This variable stores a reference to the original buffer,

and can be used with another Send component to return the agent back to its

behavior.

14



4.4. Environment

The environment represents the space where the agents move and behave.340

It can be described in multiple ways, but in order to simplify this proposal

it is described as a uniform two-dimensional grid of square cells, as a cellular

automaton.

Cells are described using a set of state variables and a transition function,

which is periodically evaluated to update the state of the cells. The authors have345

developed the CellularAutomataLib2 library, which facilitates the description

and efficient simulation of cellular automata in Modelica [11].

The interaction between agents and their environment can be described us-

ing the interface models included in CellularAutomataLib2. The ExtInputRe-

gion model can be used to modify the state of the cells of the environment.350

The OutputRegion model can be used to observe the state of the cells of the

environment, and use it to configure the behavior of the agents.

CellularAutomataLib2 models automatically generate a graphical animation

of the simulation. This animation can also serve to analyze the simulation results

of the ABMs.355

5. Interface with other Modelica Models

Multiple free and commercial Modelica libraries that support modeling in

multiple domains and with multiple formalisms are already available. The com-

bination of these models with ABMLib models offers an extended functionality

to describe more complex models. This combination is performed by including360

Modelica connectors in the ABMLib components. The values of the variables of

these connectors can be observed and used to define the behavior of the agents,

or vice-versa, the behavior of the agents can define the values of those variables

in the connectors.

The following ABMLib components include connectors to interface with365

other Modelica models:

15



• Create, includes a Boolean input connector, named EXTIN, that can be

used to control the creation of new agents using an external input. Every

time the EXTIN port switches its value a new batch of agents is created.

• Assign and Count, both components include an EXTOUT connector of370

Real type that is assigned with the value assigned to the variable in the As-

sign component or with the new value of the counter in the Count compo-

nent. Thus, the EXTOUT connector resembles a discrete-time piecewise

constant signal.

• Decide, includes a Boolean connector, named COND, that can be used to375

define the condition used to divide the flow of agents.

6. Application Example: Hybrid Sheep-Wolves Model

In order to demonstrate the modeling functionality of ABMLib, an applica-

tion example is presented. It corresponds to a Lotka-Volterra model where sheep

and wolves coexist in the same environment (cf. [15], where it is implemented380

using Netlogo). The comparison between the Netlogo and ABMLib models helps

to validate the simulation results and evaluate the modeling functionality of the

latter.

Since one of the main advantages of describing ABMs in Modelica is the

possibility to combine equation-based models with ABMs, the presented model385

is described using a combined approach. Sheep are described as agents, while

the wolves are described using the Lotka-Volterra equations for predator-prey

models. Both parts of the model are described next.

6.1. Wolves

The Lotka-Volterra equations for predator-prey models are:390

ẋ = αx− βxy (1)

ẏ = δxy − γy (2)

16



where, x represents the number of preys, y represents the number of predators,

and α, β, δ and γ are the parameters that describe the interactions between

both species.

The behavior of wolves, Eq.(2), can be directly coded in Modelica as:

der(wolves) = C * sheep * wolves - D * wolves;395

Note that the number of sheep, sheep, is an input to this model and needs to

be computed by the agent-based Sheep model.

6.2. Sheep

Sheep agents are described using a Modelica record, named SheepAgent,

which is composed of three variables to represent the current energy of the400

sheep, the energy gained from eating grass and the cost of moving.

The behavior of the sheep is as follows (the corresponding flowchart diagram

is shown in Fig.3). Sheep are created and a random position for each sheep is

assigned. After that, sheep behave in cycles defined using a tick component.

During each tick, each living sheep performs the following actions: they wiggle405

and move around the environment searching for grass, while consuming energy.

Sheep die and are removed from the model when they spent all their energy.

Otherwise, they eat grass to gain energy and reproduce, which also consumes

energy. A counter is used to count the number of living sheep in the model,

which is the input required by the wolves model.410

Before starting a new cycle, sheep can be hunt by wolves. Since wolves are

not described as agents, sheep are hunted using a probabilistic approach based

on the number of wolves computed by the equations (i.e., wolves variable in

the Wolves model).

Note that the Wiggle, Move, SheepEat, Reproduce and Hunted are coupled415

components of the flowchart diagram. Their internal contents are graphically

shown in Fig. 4.

6.3. Simulation

An implementation of the message passing communication mechanism has

been included in the ModelicaCC compiler in order to simulate the model. Some420

17



Figure 3: Flowchart diagram of the Sheep model.

(a) Wiggle (b) Move

(c) SheepEat

(d) Reproduce

(e) Hunted

Figure 4: Sheep model coupled components.

18



additional features are required to flatten the ABMLib model and generate

standard Modelica code, that is simulated using OpenModelica.

The procedure to flatten and simulate the Hybrid Sheep-Wolves model is as

follows:

• A new class is included in the model to represent the buffers (i.e., class425

buffer). Input and output buffers inherit this new class. While the

model is analyzed, the different types of buffers that appear in the model

are registered.

• Expressions using the size variable of a buffer are replaced with a call to

an external C function (e.g., IN.size, where IN is a buffer of type B is430

replaced by a call to the C function B size(IN)).

• A read access to the first element of a buffer is replaced by a call to the

external C function peek (e.g., IN[1] is replaced with B peek(IN)).

• A read access to a variable in the first element of a buffer is similarly

replaced by a function (e.g., IN[1].a is replaced with B peek a(IN)).435

• Two functions, named B put and B pop, are defined to substitute the put

and pop functions for the type of buffer B.

• The couple sentences are also replaced by external C function calls (e.g.,

B couple(OUT,IN)).

• Buffers defined as interfaces of coupled models are removed and their two440

couple sentences (one outside the model and one inside) are replaced by

only one. This operation has to be performed manually, since the tool

does not currently support this simplification.

• All buffers are replaced by external C objects, with calls to their construc-

tor and destructor functions.445

After the model is flattened, it can be simulated using OpenModelica. An

example of simulation run is shown in Fig. 5. Note the alternating oscillatory

behavior between the number of sheep and wolves.

19



Figure 5: Simulation of the hybrid sheep-wolves ABMLib model.

7. Conclusions

A new free Modelica library, named ABMLib, has been designed and de-450

veloped to facilitate the description of agent-based models (ABMs) and their

combination with other Modelica models. The design of the library is based in

the analyses of the requirements to describe ABMs in Modelica and the current

functionality of the language. Agents are described as messages moving through

a flowchart diagram, whose components represent the actions that define the455

behavior of the agents. This allows to have a variable number of agents in

the model during the simulation run. The communication between components

of the flowchart diagram is performed using the message passing mechanism

proposed by the authors. Additional extensions to this mechanism are also

proposed to describe the interactions among agents. The environment where460

the agents live is represented using a cellular automaton, and described using

the CellularAutomataLib2 library. This allows an efficient simulation of large

spatially dependent models, using two-dimensional lattice structures.

The main limitation of the library is that it is based in language extensions,

and thus it is not supported by current Modelica tools. However, a prototype465

implementation using the ModelicaCC compiler is presented to demonstrate the

20



functionality of the library. The message passing mechanism has been imple-

mented in ModelicaCC as calls to external functions in C. ABMLib models can

be flattened and the resulting code can be simulated using OpenModelica. Some

manual manipulations of the model have to be performed during the flattening470

process. The simulation algorithm for ABMs has to be studied and improved.

In the future, a full implementation of the message passing mechanism will be

developed. The support of ABMLib in other Modelica tools has to be analyzed

in order to facilitate the use of the library to different users. The functionality

to describe agents will be revised taking into account already used concepts475

such as the BDI (Belief-Desire-Intention) and the process calculus. A better in-

tegration between CellularAutomataLib2 and ABMLib has to be performed, to

facilitate the description of models with different types of environments. Also,

the integration between ABMLib and other agent-based tools will be consid-

ered, specially those that support the FIPA standards. Additional flowchart480

components will be included in ABMLib, specially to automatically generate

statistical indicators to analyze the simulation results. Also, a better graphical

animation will be developed to include more information about the model.

Acknowledgements

This research was supported by the Ministerio de Economı́a y Competitivi-485

dad of Spain, DPI2013-42941-R grant.

References

[1] D. J. Barnes, D. Chu, Guide to Simulation and Modeling for Biosciences

(2nd edition), Springer, London, 2015.

[2] K. J. Åström, H. Elmqvist, S. E. Mattsson, Evolution of continuous-time490

modeling and simulation, in: Proceedings of the 12th European Simulation

Multiconference (ESM’98), Manchester, UK, 1998, pp. 9–18.

21



[3] Modelica Association, Modelica - An unified object-oriented language for

physical systems modeling. Language spec. v. 3.4, [online; accessed 14-Dec-

2017] (2017).495

URL http://www.modelica.org/documents

[4] F. E. Cellier, E. Kofman, Continuous System Simulation, Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2006.

[5] T. Bosse, A. Sharpanskykh, J. Treur, Integrating agent models and dy-

namical systems, in: Proceedings of the 5th International Conference on500

Declarative Agent Languages and Technologies V, Springer-Verlag, Berlin,

Heidelberg, 2008, pp. 50–68.

[6] T. Bosse, C. M. Jonker, L. V. D. Meij, J. Treur, Leadsto: A language and

environment for analysis of dynamics by simulation, in: Proc. of the Third

German Conference on Multi-Agent System Technologies, MATES’05. Lec-505

ture Notes in Artificial Intelligence, Springer Verlag, 2005, pp. 165–178.

[7] A. Djanatliev, R. German, P. Kolominsky-Rabas, B. M. Hofmann, Hybrid

simulation with loosely coupled system dynamics and agent-based models

for prospective health technology assessments, in: Proceedings of the 2012

Winter Simulation Conference (WSC), 2012, pp. 1–12.510

[8] L. Caudill, B. Lawson, A hybrid agent-based and differential equations

model for simulating antibiotic resistance in a hospital ward, in: Proceed-

ings of the 2013 Winter Simulation Conference: Simulation: Making Deci-

sions in a Complex World, WSC ’13, IEEE Press, Piscataway, NJ, USA,

2013, pp. 1419–1430.515

[9] A. Constantin, A. Löwen, F. Ponci, K. Huchtemann, D. Müller, Dymola-

JADE co-simulation for agent-based control in office spaces, in: Proceed-

ings of the 12th International Modelica Conference, Prague, Czech Repub-

lic, 2017, pp. 345–351.

22

http://www.modelica.org/documents
http://www.modelica.org/documents
http://www.modelica.org/documents
http://www.modelica.org/documents


[10] B. P. Zeigler, T. G. Kim, H. Prähofer, Theory of Modeling and Simulation,520

Academic Press, Inc., Orlando, FL, USA, 2000.

[11] V. Sanz, A. Urquia, A. Leva, CellularAutomataLib2: Improving the sup-

port for cellular automata modeling in Modelica, Mathematical and Com-

puter Modelling of Dynamical Systems 22 (3) (2016) 244–264.

[12] V. Sanz, A. Urquia, Modelica extensions for supporting message passing525

communication, in: Proceedings of the 7th International Workshop on

Equation-Based Object-Oriented Modeling Languages and Tools, Milan,

Italy, 2016, pp. 21–28.

[13] B. C. Pierce, Programming in the pi-calculus: A tutorial introduction to

Pict, available electronically (1997).530

[14] E. A. Lee, The problem with threads, Computer 39 (5) (2006) 33–42.

[15] U. Wilensky, W. Rand, An Introduction to Agent-Based Modeling: Model-

ing Natural, Social, and Engineered Complex Systems with Netlogo, MIT

Press, Cambridge, MA, USA, 2015.

[16] M. P. I. Forum, MPI: A message-passing interface standard, [online; ac-535

cessed 14-Dec-2017] (2015).

URL http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[17] V. Sanz, A. Urquia, S. Dormido, Parallel DEVS and process-oriented mod-

eling in Modelica, in: Proc. of the 7th Intl. Modelica Conf., Como, Italy,

2009, pp. 96–107.540

[18] F. Bergero, M. Botta, E. Campostrini, E. Kofman, Efficient compilation

of large scale dynamical systems, in: Proceedings of the 11th International

Modelica Conference, Versailles, France, 2015, pp. 449–458.

23

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

	Introduction
	Requirements for describing ABMs in Modelica
	Message Passing Communication Mechanism
	Previous Proposal
	Additional Language Extensions

	The ABMLib Library
	Agent Type
	Agent Behavior
	Agent Interaction
	Environment

	Interface with other Modelica Models
	Application Example: Hybrid Sheep-Wolves Model
	Wolves
	Sheep
	Simulation

	Conclusions

