
Combining PDEVS and Modelica for
describing Agent-Based Models

Journal Title
XX(X):1–20
©The Author(s) 2021
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Victorino Sanz1 and Alfonso Urquia1

Abstract
Modelica is a general-purpose modeling language mainly designed to facilitate the development, reusability and
exchange of models. It represents the state-of-the-art in equation-based modeling of continuous-time systems.
Modelica libraries facilitate the description of multi-formalism and multi-domain models. However, the description of
agent-based models (ABMs) in Modelica is not currently supported, mainly due to the characteristics of the language
and its simulation algorithm. The combination of ABMs with continuous-time equations provides a powerful tool
for describing and analyzing complex systems. An approach for describing ABMs using the Modelica language is
presented in this manuscript, with the objective of facilitating the combination of ABMs with the rest of Modelica
functionality. Agent behavior is described using a process-oriented modeling approach. Agents are described
as individual entities that move across a flowchart diagram, that represents the processes that agents undergo.
Processes are formally described using the Parallel DEVS formalism, extended to describe the interface with other
Modelica models. The environment where agents interact is described as a cellular automaton. This approach has
been implemented in a free Modelica library, named ABMLib. Three case studies are discussed to illustrate the
modeling functionality of the library and its combination with other models: a basic traffic model, a sheep-wolves
predator-prey model and a consumer market model.

Keywords
Agent-based modeling, Modelica, Parallel DEVS, hybrid systems

1 Introduction

Agent-based modeling (ABM*) is a modeling methodology
that has been widely adopted to study systems in multiple
domains (e.g., ecology, economics, social science and
biology, among many others)1,2. Systems in ABM are
described as a combination of the individual behaviors
of their components, named agents, and their interactions
in a common environment. An agent may represent any
component of a system, such as birds, cars, customers,
molecules, grass, etc. The behavior of each individual
agent is usually simple, but their combination sometimes
leads to complex or emergent behavior of the system as
a whole. The combination of continuous-time and agent-
based models (ABMs) leads to a powerful and versatile
approach for describing complex systems.

The objective of the work presented in this manuscript
is to support the description of ABMs using the
Modelica language. The main benefit for describing
ABMs in Modelica is to facilitate the combination of
ABM with the modeling functionality already supported
by Modelica, which represents an advantage specially

when the description of the continuous-time part is non-
trivial. Modelica is an equation-based object-oriented
modeling language3 widely used in academia and
industry. Modelica libraries have been developed to
facilitate system modeling in different physical domains
(multibody, electrical, thermo-fluid, etc.), and applying
different modeling formalism (e.g., physical modeling,
bond graphs, System Dynamics, Petri Nets, State Machines,
PDEVS, etc.). Modelica models are described in terms of
differential and algebraic equations (DAE), and discrete
events4. Modelica modeling environments (e.g., Dymola
and OpenModelica) automatically perform the analyses

1Dpto. de Informática y Automática, ETSI Informática, Universidad
Nacional de Educación a Distancia (UNED), Spain

Corresponding author:
Victorino Sanz, Dpto. de Informática y Automática, ETSI Informática,
Universidad Nacional de Educación a Distancia (UNED), C/ Juan del
Rosal, 16, 28040, Madrid, Spain.
Email: vsanz@dia.uned.es
∗When ABM is used in plural (ABMs) or with an article (an ABM) it
stands for agent-based model instead of agent-based modeling.

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

and symbolic manipulations on the model equations
(assignment of computational causality, reduction of the
DAE index, tearing of the algebraic loops, etc.) required
to translate the Modelica description of the model into
efficient executable code5. The use of Modelica frees the
modeler from these tedious and error-prone tasks. Also, the
use of a single modeling language to describe the entire
system, instead of a combination of multiple tools as in
co-simulation approaches, facilitates the modeling task, and
the exchange and maintenance of models.

The authors have previously proposed an approach for
describing ABMs in Modelica6. The rationale of the
proposal was the description of the behavior of agents
in the form of flowchart diagrams. The components
and structure of these flowchart diagrams are used to
describe the particular behavior of agents. In each model,
individual agents are represented by entities that flow
from one component to another. Each agent that arrives
to a component performs the process represented by that
component and, when finished, continues to the next
process. This approach complies with Modelica semantic,
which imposes that the number and equations and variables
can not vary during the simulation. Flowchart diagrams are
represented as model variables and equations, while agents
are represented by the information transported between
modules (i.e., they are values assigned to model variables).
The environment is represented as a cellular automaton,
whose state is periodically updated using a transition
function. Agents can read the state of the environment and
are allowed to perform asynchronous changes on it. This
proposal was implemented in a Modelica library named
ABMLib.

The work presented in this manuscript extends the
previous proposal as follows:

• The components of the flowchart diagram are for-
mally specified using the Parallel DEVS (PDEVS)
formalism, extended to include the interface with
other Modelica models and the environment.
PDEVS7 is an extension of the Classic DEVS for-
malism8. It is focused on the collection of input
messages into bags that are available for the external
transition function, instead of individual messages,
and the parallel execution of transitions, introduc-
ing the confluent transition function to manage the
simultaneous occurrence of internal and external
events. The use of PDEVS as underlying formalism
defines clear semantics to describe the flowchart
diagrams (i.e., processes and their inter-connections),
thus facilitating the understanding of their behavior,
the development of additional components, and their
adaptation and maintenance in other applications.

• In the initial proposal, the components of the
flowchart diagram only described instantaneous

processes with only one component, named Tick,
used to represent periodical advances in the simulated
time. In this manuscript, the proposal is extended
into a more general and versatile modeling approach.
Modules that compose the flowchart diagram
describe either transitory or delayed processes. The
former describe instantaneous actions performed by
agents, with no time delays (e.g., modify a variable,
conditional divisions in the flow, etc.). The latter
include time delays for agents (e.g., a queue).

• The proposed approach has been implemented
in a new version of ABMLib. The new library
constitutes a fully functional implementation that can
be executed using Dymola without the requirement
of any manual manipulation to the model or the
generated code. ABMLib is freely distributed as a
part of DESLib9 (cf. http://www.euclides.
dia.uned.es/).

The manuscript is structured as follows. Section 2
includes an analysis of related work previously performed
by other authors, regarding the application of formal
methods or the development of software tools, and their
combination with continuous-time dynamics. Also, the
support for PDEVS in Modelica using the DEVSLib library
is explained. This discussion includes a description of the
hybrid DAE model, its simulation algorithm and how it has
been used to describe PDEVS operational semantics. The
proposed approach for ABM is presented in Section 3. The
design and implementation of the new ABMLib library is
presented in Section 4. The functionality of ABMLib is
illustrated by means of three examples. Each example has
been included to illustrate some specific functionality of
ABMLib, as discussed below:

1. A basic traffic model is presented in Section 5.
This example does not include any continuous-time
behavior, but serves to illustrate the description of
agent behavior based on PDEVS and the interactions
between agents since cars adjust their speeds
observing the speed of the preceding car. This
example can also serve as a test for the application of
the proposed approach for ABM in any other PDEVS
simulator.

2. A predator-prey model is discussed in Section 6. In
this case, predators are described using a continuous-
time model, and prey as an ABM using transitory
processes and including independent environment
behavior. This example serves to illustrate the
versatility of combining PDEVS and Modelica, since
the continuous-time behavior could be described
using any available Modelica functionality. This
model can also be used as a test for other simulators,
since Lotka-Volterra equations are simple and can be
manually implemented in a PDEVS simulator.

Prepared using sagej.cls

http://www.euclides.dia.uned.es/
http://www.euclides.dia.uned.es/

Sanz and Urquia 3

3. A consumer market model is discussed in Section 7.
This example introduces the use of delayed processes
to describe the behavior of consumers, while the
supply chain of products is modeled with continuous-
time equations. This model also serves to compare
the description of continuous-time dynamics using
System Dynamics with the Modelica functionality.

Finally, the conclusions of the presented work are
summarized in Section 8.

2 Related Work
The description of continuous-time dynamical systems is
commonly formalized in terms of systems of differential
and algebraic equations (DAE). However, there is still
no agreement for the description of ABMs and multiple
approaches have been proposed, mainly focused on the
application of formal methods or the development of
specific software tools.

The use of formal methods to describe ABMs facilitates
the description of systems due to the introduction of formal
semantics to describe model behavior, structure and support
multi-resolution hierarchical modeling and model reuse10.
Multiple applications and extensions of formal methods
have been proposed.

The application of BDI (Belief, Desire, Intention), Gaia,
Tropos, Prometheus, Agent UML and the Z language are
reviewed by Wooldridge11. The specification of ABMs
using process algebras (e.g., CSP or the π-calculus), model-
oriented approaches (e.g, the Z or B languages) and logic
approaches (e.g., temporal or BDI logic) are also reviewed
and discussed in Rouff et al.12. SLABS is a model-
based formal specification language specially designed
for ABM13. SysML can be used to describe agent-based
models either directly creating an executable model14 or
translating it to DEVS15. Multiple extensions of Petri Nets
have been proposed for describing ABMs, such as G-
Nets16, Object Petri Nets17, Reflexive Petri Nets18, and
Resource-aware Petri Nets19. Other approaches include
the application of X-Machines20, Rewriting logic21, and
Continuous-time Markov-Chains22.

The DEVS formalism has also been used as a base for the
description of ABMs. The use of DEVS to describe ABMs
could be a starting point towards a formal description
of ABMs, as multiple different modeling formalisms can
be described in terms of DEVS23. Multiple extensions of
DEVS have been developed, such as Dynamic Structure
DEVS (DSDEVS)24,25, Dynamic DEVS (DynDEVS)26,
Mobile DEVS27, ρ-DEVS28, M-DEVS29, Multi-level-
DEVS (ml-DEVS)30, Symmetric DEVS31 and EB-
DEVS32. All these extensions focus on the description of
agents as DEVS models, and extend the DEVS formalism
to support the particular characteristics and behavior of

ABMs (e.g., dynamic structures, interfaces and couplings).
Agent interactions are modeled by means of message
communication. Other DEVS-based approaches include
its combination with cognitive modeling, the multi-agents
model33 or the application of the Cell-DEVS formalism,
where each cell represents an individual agent34. Examples
of applications can also be found in35–37.

On the other hand, multiple software tools have been
developed to describe ABMs (cf.38 and39 for an extensive
survey on ABM platforms and tools). The description
of the model greatly depends on the functionality and
design of the tools used for its implementation, ranging
between spreadsheets (e.g., MS Excel), general-purpose
programming languages (e.g., Java), mathematical software
(e.g., Matlab) or ABM specific tools (e.g., NetLogo,
AnyLogic, Repast, etc.)40.

2.1 Combination of ABMs with
Continuous-time Equations

Different approaches are used to describe the continuous-
time part of models that combine equations with ABMs.

One approach is to use System Dynamics (SD)41 to
graphically describe ordinary differential equations in the
form of rates, stocks, and their relationships. SD is
supported by NetLogo42 and AnyLogic43, that facilitates
the combination with ABM. For example, this approach
has been applied to the analysis of the urban commuting
CO2 emissions in Beijing44, the management of the water
quality in lakes45, the study of animal foraging46 or the
spread of pollution47.

A second approach focuses on the development
of custom models to combine the ABM part with
the differential equations of the continuous-time part,
since ABM tools do not facilitate the description of
equation-based models. This combination is based on
the discretization of the continuous-time equations, either
using a time-based (e.g., Forward Euler5) or a state-based
(e.g., QSS methods48) approach, in order to simulate it
with a discrete-event tool. Although this approach allows
to simulate hybrid systems in combination with formal
methods or other discrete-event tools, the task of manually
translating the model into a discrete form is left to the
modeler increasing the difficulty of the development.

Model transformations have been also proposed as
an alternative approach for multi-formalism modeling.
DEVS has been proposed as a common denominator to
unify the description continuous-time and discrete-event
dynamics, using state-based discretization to transform
the continuous-time equations into DEVS models23. The
approach proposed in this manuscript, together with other
available Modelica libraries that support other formalisms
(e.g., System Dynamics, Petri Nets, Bond Graphs, etc.),
can be seen as model transformations where the destination

Prepared using sagej.cls

4 Journal Title XX(X)

formalism corresponds to the hybrid DAE supported by
Modelica.

Custom models like the Global Epidemic Model
(GEM)49, MISS50 or AADIS51 have been developed
to combine ABM with SEIR disease spread models,
implementing them using a general-purpose programming
language (e.g., Java). Other authors use Matlab to describe
both the equations used to model intra-host bacteria
reproduction, and the inter-host relationships described
as an ABM52. NetLogo has also been used to combine
ABM with continuous-time equations, but in this way the
equations need to be manually transformed into difference
equations in order to be simulated53,54. HyVisual is a
domain-specific programming language specially designed
for the description of hybrid systems supported in Ptolemy
II55. In this case, continuous-time dynamics are represented
using a block-diagram approach which is combined with
finite-state machines used to describe different modes of
operation and discrete-event behavior. The combination of
ordinary differential equations (ODE) and ABM is also
discussed in56, where at each integration step the ABM
is used to compute new parameters of the ODE system,
and the values of the state variables of the ODE system
are used as new parameters for the ABM. A hybrid ABM
approach is discussed in57, where time-based and state-
based discretizations for the description cyber-physical
systems are combined.

A third approach is based in the application of
co-simulation58–61, where multiple tools with different
functionalities are combined to represent the final
system62–65.

These approaches present the following respective limi-
tations: offering limited support for describing continuous-
time equations by only using explicit ODE; requiring
manual manipulations of the model equations in order to
discretize them to apply any numerical integration approach
for the simulation; and requiring to use a combination
of different tools to describe the whole system, that usu-
ally involves learning how to use different tools, different
modeling approaches, additional programming skills, etc.
The Modelica language represents the state-of-the art in
equation-based modeling of continuous-time systems. The
use of Modelica, as an unified language for describing mod-
els that combine ABM and equations, would not exhibit
the limitations previously described. The combination of
Modelica functionality and PDEVS, as underlying formal-
ism to describe the actions performed by agents, provides a
general-purpose tool for the description of ABMs. Addi-
tionally, the ABM approach proposed in this manuscript
could be applied to simulate ABMs in any other PDEVS
simulator without requiring additional extensions. This is
the aim of our work. To our best knowledge, the library
presented in this manuscript (i.e., the ABMLib Modelica

library) is the first full-fledged library for describing ABMs
in Modelica.

2.2 An Implementation of PDEVS in Modelica
The authors have previously developed the DEVSLib
library as an implementation of PDEVS in Modelica66.
The description of atomic models is analogous to their
formal description, following the elements of the tuple (e.g,
interface ports, state, transition functions, output function
and time advance function). The description of coupled
models also follows their formal description, as a set of
internal components, an interface and couplings between
all these elements. In this section, the implementation of
the DEVSLib library is presented. The limitations imposed
by the design of Modelica and its simulation algorithm to
support PDEVS and its operational semantics are discussed,
together with their solutions implemented in DEVSLib.
DEVSLib is used for the development of ABMLib.

Modelica models can be described either behaviorally,
in terms of differential and algebraic equations, and
discrete events, or structurally, in terms of a set of inter-
connected components (cf.4 for a detailed description of
the language and its functionality). In the latter case,
component connections also follow an equation-based
rationale, introducing additional equations to the model.

Modelica models are automatically transformed by the
M&S tool into a mathematical description following
the hybrid DAE formalism67. Hybrid DAE models
include parameters or constant variables (p), the time as
independent variable (t), variables that appear differentiated
in the equations (x(t)), discrete variables whose value only
change at event instants te (pre(m(te)) represents the
value of the m variable previous to the event execution,
and m(te) represents the variable value after executing
the event), algebraic variables (y(t)), event conditions
c(te) and invariants (relation(v) where v are the model
variables). Modelica modeling environments automatically
determine the order in which the model equations need to be
evaluated, manipulating symbolically and sorting the model
equations to generate the executable code of the simulation
algorithm.

The simulation of the hybrid DAE model is graphically
described in Fig. 1. Briefly, before starting the simulation
consistent initial values are calculated for the variables
of the model. After that, continuous-time integration is
performed until any event is triggered. Conditions (c) and
discrete variables (m) are kept constant during numerical
integration. The occurrence of events is detected using
the invariants relation(v) (i.e., zero-crossing functions).
Modelica supports the definition of time and state events.
When an event is triggered, the numerical integration is
halted, the event instant is determined for state events and
the actions associated with the event are executed (i.e.,

Prepared using sagej.cls

Sanz and Urquia 5

Figure 1. A simulation algorithm for hybrid DAE models.

solving a set of algebraic equations). After managing the
event, an event iteration procedure is performed in order to
manage newly triggered events (i.e., cascades of events),
or otherwise, calculate new consistent initial values and
resume the numerical integration.

PDEVS models are formally described as atomic,
with the tuple (X,S, Y, δint, δext, δcon, λ, ta), or coupled,
with the tuple (X,Y,D, {Md|d ∈ D}, EIC,EOC, IC).
X = {(p, v)|p ∈ InPort, v ∈ Xp} and Y = {(p, v)|p ∈
OutPort, v ∈ Yp}, where InPort and Xp are the sets of
input ports and values, and OutPort and Yp are the sets of
output ports and values, respectively.

The behavior of PDEVS atomic models is described by
the occurrence of internal events, scheduled in time using
the time advance function (ta : S → R+

0,∞), or external
events, triggered when an input is received. When an
internal event is triggered and no inputs are received, the
state S is updated using the internal transition function
δint : S → S. When an input is received before reaching
the time for the next scheduled internal event, the state
is updated using external transition function δext : Q×
Xb → S, with Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}, being e
the time elapsed since the last transition and Xb a bag over
the elements in X . When an internal and an external event
are triggered simultaneously, the state is updated using
the confluent transition function δcon : Q×Xb → S. The
output function, λ : S → Y b (where Y b is a bag over the
elements in Y), is evaluated before the internal or confluent
transition functions, and may generate output messages
that are synchronously transmitted to their destinations,
triggering external events. After evaluating any transition
function, a new internal event is scheduled using the time
advance function. In the case of the external transition, this
new internal event replaces the one currently scheduled.

The specification of coupled models includes a set of
component names, D, and a set of PDEVS models Md, for

each d ∈ D. EIC, EOC and IC describe the couplings
between the interface of the coupled model and their
internal components, and among components themselves.

In order to support PDEVS in Modelica, the following
characteristics were considered for the development of
DEVSLib66. Communication between models follows a
message-passing approach, which is conceptually different
from the equation-based component connection supported
by Modelica. Message transmissions are triggered by
the occurrence of internal events, scheduled in time.
A message-passing communication (MPC) approach was
developed in DEVSLib to facilitate PDEVS model
communication68. This MPC functionality has been also
implemented in the MSGLib library, to be used in any
Modelica model additionally to DEVSLib models69. This
MPC mechanism is based on the following rules:

• Messages are transmitted only at time events,
in order to fulfill the semantics of PDEVS
models. Message transmissions are synchronous
and are immediately considered as external inputs
in their destinations. This MPC mechanism also
guarantees that outputs are immediately routed to
their destinations, following the defined couplings
between models.

• The content of the transmitted messages can only
depend on constants, parameters and pre() values
of discrete-time variables. This guarantees that the
content of the messages is known, as it only depends
on constants, parameters or the state of the model
previous to the event, which fulfills the requirement
for the evaluation of the output function in PDEVS
models.

The application of these rules guarantees that when the
Modelica modeling environment sorts the equations of
the complete model, the equations required to evaluate
the output functions will be sorted first (since they only
depend in known values of the model state), followed
by the equations required to transmit output messages to
their destinations, and finally, the rest of the equations
required to modify the state of the model. The event
iteration mechanism is used to manage cascades of events
triggered at the same instant, until no additional events
are triggered and the next scheduled event requires an
advance in time. In this way, the generation of output
messages, their transmission and the modification of the
model state satisfy the PDEVS specification. Simultaneous
occurrences of internal and external events were also taken
into account. Additionally, the support for bags of messages
was implemented in the message-passing mechanism,
since Modelica does not provide support for dynamic
data structures. The simulation of DEVSLib models was
validated and compared with equivalent models described
using PowerDEVS70 and Arena71.

Prepared using sagej.cls

6 Journal Title XX(X)

3 A Proposal for ABM in Modelica
The approach proposed in this manuscript allows to
describe ABMs using PDEVS, since no structural changes
in the model at simulation runtime are required. In addition,
this proposal allows to describe a variable number of
agents during the simulation run in Modelica. This is
achieved without interfering with the model analyses
and transformations performed by the Modelica modeling
environment (e.g., Dymola and OpenModelica) in order
to generate the executable code, which require to describe
the model using a number of equations and variables that
can not change during the simulation run. Our proposal is
also inspired in NetLogo, where the behavior of agents is
described as a sequence of commands. The components
of the flowchart diagrams can be seen as sequences of
commands or procedures, and the structure of the diagram
defines the flow of execution.

The ABMs considered in this manuscript are composed
of agent behavior and continuous-time behavior. These
components are graphically shown in Fig. 2.

Figure 2. Proposed ABM approach.

3.1 Agent Behavior
The behavior of agents is described as flowchart diagrams,
at least one, composed of interconnected components,
named modules. These diagrams are used to describe
one or multiple types of agents, and their interactions.
Modules are formally described as PDEVS models,
extended to include input and output continuous-time ports
as in DEV&DESS models72. The continuous-time inputs
influence the transition functions. The continuous-time
outputs are generated depending on the state of the model.

Messages sent between modules represent the individual
agents of the system. The information that composes each

message represents the state of each agent, usually in the
form of state variables or attributes. Different types of
agents can be described using different types of messages.

Each module represents a process performed by the
agents. Modules are either transitory (e.g., used to represent
instantaneous actions performed agents) or delayed, in
which agents will remain until some conditions are satisfied
(e.g., a process where agents must wait for some time or
where only a percentage of agents is able to continue while
the rest remains waiting).

Transitory processes are usually described using the
external transition function of an atomic model. This
represents that agents arrived to the module perform an
action, are stored in an internal queue, and trigger an
immediate internal event (i.e., the time advance function
after the external transition returns zero). During the
management of the internal event, the output and internal
transition functions are used to send agents to the next
process, empty the internal queue of agents and return the
module to idle state. Also, more complex processes can be
described as a combination of simpler modules in a coupled
model.

On the other hand, modules that describe delayed
processes can also be described as atomic models. These
must include the evaluation of the conditions for agents to
leave the module, usually in the internal transition function,
and the management of the time the agents spend in this
process, using the time advance function. Both types of
processes, transitory and delayed, can be combined in the
same flowchart diagram.

The environment where the agents live is defined as
a bi-dimensional cellular automaton (CA). The transition
function of the CA is used to represent the behavior of the
environment, synchronously updating the state variables of
each cell. This transition function is periodically evaluated,
by triggering internal events, and independently of the
behavior of agents described in the flowchart diagram. The
state variables of the environment cells are global variables
of the model, so all modules have access to them. This
way, the behavior of agents may be influenced by the
state of the environment and also the environment can
be asynchronously modified by the agents. The state and
behavior of the environment can be seen as belonging to all
the modules included in the flowchart diagram, however its
representation as a single cellular automaton facilitates its
management (e.g., any change in the environment will be
immediately shared to all modules present in the system,
thus allowing the agents to observe and modify it). This
approach is similar to the state of coupled models in EB-
DEVS32, or macro-devs models in multi-level DEVS30.

The interaction between the environment and the
modules included in the flowchart diagram complies
with the state encapsulation imposed by the PDEVS

Prepared using sagej.cls

Sanz and Urquia 7

formalism (i.e., only the transition functions of the
PDEVS atomic component can modify the state of the
component). The state of the environment is an argument
of the transition functions of the PDEVS components
that describe the modules. The transition functions of
the PDEVS components can modify the state of the
environment. An example of this behavior is shown in the
Sheep-Wolves model, where sheep eat the grass of the
environment decreasing its content in the current location of
the sheep. Simultaneous modifications to the environment
may be performed and their order depends on the ordering
of the model equations performed by the Modelica tool
when translating the model into executable code. This
ordering may affect to the order in which modules are
evaluated, and the ordering of the agents received in the
ports of the modules. Modelers do not have control over
this ordering. Specific orderings in the evaluation of agents
may be described within a module, using a custom ordered
queue of agents. This situation is similar to the random
order obtained when reading agents from agentsets in
NetLogo.

Interactions between agents are described through the
environment. Some of the state variables of the environment
can be used to store part of the state of individual
agents. Then, these state variables can be used to influence
the behavior of other agents, since the environment is
accessible from all the modules. This is illustrated in the
Basic Traffic model included in Section 5, where a car can
adjust its speed depending on the speed of the preceding car
in order to avoid collisions. This approach provides simple,
flexible and versatile way for describing agent interactions.
However, possible inconsistencies between agent’s states
and the states stored in the environment have to be properly
managed by model developers.

3.2 Interface with Continuous-time Behavior
The continuous-time behavior of the model can be
defined using any functionality provided by Modelica. This
continuous-time part, together with the agent behavior, will
be translated into a hybrid DAE model, as specified in
Modelica67, and simulated using the algorithm described
in Section 2.2.

The interface between the continuous-time part and the
ABM part can be defined using input and output connectors
in the modules of the flowchart diagram. These interface
connectors can be connected with other Modelica models
using the available connect sentences, which, as mentioned
above, describe equation-based communication between
model components. These inputs and outputs, and their
connections with other models, will be considered as
variables and equations of the hybrid DAE model.

The input connectors included in the modules can be
used as parameters for the transition functions, additionally

to the state, the input bag and the elapsed time. When
an event is triggered in a module, the current value of
these continuous-time input connectors could be used to
describe the behavior of the module when executing the
corresponding transition function. The value of an output
connector included in a module can be defined using
equations that depend on the state of the module. Since the
state of modules, as PDEVS models, only changes at event
instants, this approach generates outputs as piecewise-
constant signals. This approach is demonstrated in the
market hybrid model described in Section 7, where the
stock of a product influences the purchases from the
customers and the number of purchases influences the
manufacturing rate of additional products.

Another approach to describe the interface between
continuous-time and ABM is to translate the flow of agents
into a continuous-time signal, that could be connected
with other models, and viceversa. For example, the flow
of agents in a traffic model could be aggregated in a
continuous-time variable that represents the mean of cars
per unit of time. Similarly, aggregated variables could be
transformed back into a flow of agents. This approach
is demonstrated in the Sheep-Wolves model described in
Section 6, where the number of sheep agents present in the
model is used in the Lotka-Volterra equation that describes
the behavior of wolves.

4 The ABMLib Library
In this section, the support and implementation for the
elements of ABMs following the proposed approach are
presented.

4.1 Agents
Agents in ABMLib are described as an array of Real
variables, named attributes. Agents must have a minimum
of three attributes (i.e., Real[3] that correspond
to {port, type, value}), because these are required by
DEVSLib to manage them as DEVS messages. Any other
attribute can be used to describe additional characteristics
of the agents. For example, agents able to move around the
environment require attributes to describe their position in
the space (xpos and ypos) and their orientation for moving
forward (head).

4.2 Modules
ABMLib includes several pre-defined modules used to
describe some common processes performed by agents.
These modules include the interface ports required to
receive and send agents. The behavior of these modules
represents simple processes and is implemented as atomic
PDEVS models. The specification of these models is
similar to the simple examples discussed in8. The Create

Prepared using sagej.cls

8 Journal Title XX(X)

module is analogous to the generator (cf.8 p. 99), the
Dispose module is analogous to the passive (cf.8 p. 96),
the Assign, Modify, and Count modules are analogous
to the processor (cf.8 p. 101) with zero processing time
(since these models represent transitory processes that are
performed without an advance in the simulation time), the
Tick module is analogous to the processor with positive
processing time (since it represents a delayed process,
so agents are stored until the tick time is elapsed), the
Duplicate module is analogous to a processor where the
outputs are sent simultaneously through two output ports
(e.g., the original agent and its duplicate), and the Decide
module is also analogous to a processor with two output
ports, and outputs are sent through each port depending on
the value of the condition. Also, many of these modules
include input and output connectors to interface with
continuous-time models. The included modules an their
descriptions are:

Create This module is used as the starting point for
agents. It generates agents in periodical batches, that
can be configured using the module parameters. This
module assigns to every agent a unique identification
number, stored in its value attribute. Random inter-
arrival times can be easily described by modifying
this module.

Dispose This module is used to remove agents from the
simulation and the graphical animation.

Assign, Modify These modules are included to modify
the values of the attributes of agents. The Assign
module changes the current value of an attribute,
while the Modify module sums a quantity to the
current value. The new value, or the modifier, can be
set as a constant parameter (value), a continuous-
time Real input (CVAL port) or a random variate,
using the randomD and randomP parameters to
configure the desired distribution and its parameters.

DecideC, DecideA, DecideP These modules can be
used to divide the flow of agents in the diagram.
DecideC divides the flow depending on an condi-
tional expression given as input, either as constant
parameter (inputCondition) or continuous-time
Boolean value (COND port). DecideA divides the
flow depending on the value of an attribute compared
with an input value. The module can be config-
ured to evaluate if the attribute is equal, greater
or smaller than another value, or a combination of
these conditions. The input value can be a constant
parameter (value) or a continuous-time Real input
(CVAL port). DecideP divides the flow depending
on a probability, which can be set as a constant

parameter (inputProbability) or a continuous-
time Boolean input (PROB port).

Duplicate This module generates clones of agents.
Each agent received is cloned, assigning to the clone
a new unique identification number.

Count This module can be used to account quantities
based on the flow of agents in the diagram. A
constant value (value) or a continuous-time Real
input (CVAL port) is summed to the value of the
counter every time a new agent is received. The value
of the counter can be observed using the COUT port.

Tick This module is used to represent periodical
simulation steps, by defining the time duration of a
tick. All agents received in this module wait until the
tick time is elapsed. Similarly to the tick command
in NetLogo, usually located at the end of the go
procedure, this module is usually located at the end
of a loop in the flowchart diagram that represents the
end of the set of processes performed by agents every
simulation step. The module is also used to count the
number of agents waiting in each step, that can be
observed using the NAGENTS port.

These modules can be easily extended or modified to adjust
their behavior to other requirements. Additional or more
complex processes can be implemented as new atomic
PDEVS models, or as a combination of several modules in
a coupled PDEVS model.

ABMLib only includes one delayed process, the Tick
module. Additional delayed processes can be described as
a combination of the Tick and other modules (e.g., any
Decide module used to describe the condition to leave
the process), or as new atomic PDEVS models, where the
delay is managed using the time advance function. In the
latter case, the conditions to leave the module need to be
expressed in the transition functions of the model.

4.3 Environment
In ABMLib the environment is described as a discrete bi-
dimensional space of cells. Each cell can store multiple
state variables that are used to describe characteristics of
the space (e.g., amount of grass, wind velocity, etc.) or
attributes of agents (e.g., agent ID, energy, speed, etc.)
located in that cell. These variables are used to describe the
interactions of agents with the environment or with other
agents. Agents in a module can access the variables of the
environment as a part of their behavior, and can update or
modify their values. For example, consider that one variable
of the environment is used to store the amount of agents
present in each cell. An agent that wants to move its position
in the space needs to decrease the value of that variable in its

Prepared using sagej.cls

Sanz and Urquia 9

current position and increase the value in its next position.
The access between the environment and the modules
is described using the Modelica inner/outer variable
modifiers, and performed using the functions described
below.

The components of ABMLib used to describe the
environment are:

EnvObj This is the external object used to manage the
data required to describe the environment. External
objects in Modelica are used to manage special data
structures using C code instead of Modelica. Multiple
functions are included in ABMLib to manage the
information stored in the EnvObj object:

• ENV plot, used to plot one of the variables of
the environment using GnuPlot to generate the
graphical animation of the simulation.

• ENV addplot, generates a new plot that
allows to simultaneously generate graphical
animations for multiple variables of the
environment.

• ENV clear, resets to zero the value of one
variable in all the cells of the environment.

• ENV modify, can be used to modify the value
of a variable in one cell. The new value is
summed to the current value of the variable.

• ENV set, can be used to set the value of a
variable in one cell.

• ENV read, is used to observe the value of a
variable in one cell.

• ENV newID, when a new agent is created this
function can be used to assign a new unique ID.
This is specially relevant when multiple agent
creation or reproduction modules are present in
the model, in order to guarantee unique IDs for
all the agents.

A three-dimensional matrix is used to describe the
space and the variables of each cell. Two dimensions
are used as coordinates for the cells and the third
is used to store the variables. EnvObj can be
configured to automatically generate the graphical
animation with the values from one of its variables.

EnvPort Is the Modelica connector used to make
the environment available to other models. The
connector contains a variable of EnvObj type that
represents the environment.

Environment It is the model used to represent the
environment. It includes an EnvObj object and an
EnvPort. This model also includes the periodical
updates of the graphical animation, if generated.

NewPlot This model can be used to generate additional
animations for other variables of the environment. It
has to be connected to one Environment model
using their EnvPort connectors.

The behavior of the environment can be described using
one or more modules, like the ones used to describe
agent behavior in the flowchart diagrams. However, these
environment modules have to be disconnected from the rest
of modules of the flowchart diagrams in order to describe
the transition function of the environment independently
from the behavior of agents. Since all modules have access
to the environment, these environment modules can be used
to update the state of the environment as required. The
grassgrowth module included in the sheep agent of the
Sheep-Wolves model is an example of this independent
environment behavior.

4.4 Comparison with other ABM tools
In this section the modeling functionality of ABMLib
is compared with other tools, such as Swarm, Java
Swarm, Repast, MASON and NetLogo, following the
analysis performed by Railsback et al.73. Different versions
of a very simple model (named StupidModel) were
implemented to compare the functionality and versatility of
these ABM tools. Each version of StupidModel is focused
on the analysis of a particular modeling functionality. The
support of these functionalities in ABMLib is discussed
next:

Mobile agents: agents in StupidModel live in a toroidal
bi-dimensional grid of cells. The Environment
module included in ABMLib can be used to describe
a non-toroidal bi-dimensional grid space. Additional
code for describing a toroidal space can be included
in the modules that describe interactions between
agents and the environment (e.g., when the position
of an agent is modified, etc.). As mentioned,
the environment model automatically generates a
graphical animation displaying one of the variables
stored in the environment. Additional variables can
be displayed in other animation windows using the
NewPlot model, also included in ABMLib. The
animation is autonomous, which means that it is
periodically refreshed without any dependence on
the processes performed by agents. Animations are
generated using GnuPlot, and their customization
is still very limited (e.g., colors, shapes, forms,
etc.). For example, in the Sheep-Wolves model two
animations are generated to show the amount of
grass and the position of sheep. The position of each
sheep agent is controlled assigning values to its xpos
and ypos attributes and using the forward1Step
model to move them around the environment. This

Prepared using sagej.cls

10 Journal Title XX(X)

model also updates the variables of the environment
used to display the position of each sheep in the
animation.

Agent growth: the state of each agent is stored in
their attributes. Changes, such as growth, must be
performed to any of these attributes. If these changes
need to be displayed in the graphical animation, a
specific model needs to be included in the diagram
to perform this interaction between the attributes
of the agent and the variables of the environment.
For example, the Sheep-Wolves model displays the
position of each sheep, however the animation could
display their energy by storing it in one variable of the
environment and use it to generate a new animation.

Habitat cells: these can be described using the variables of
the environment model. In the Sheep-Wolves model
one variable is used to describe the amount of grass
in each cell, which is periodically updated by the
grassgrowth model to represent grass growing
and is reduced when any sheep in that cell eats
the grass. The same variable is used to update the
animation showing the amount of grass.

Probes: in ABMLib, agents can only be observed at
processes or using variables of the environment.
Custom modules can be implemented to observe
agents as additional processes in the flowchart
diagram. Also, all interactions between agents are
performed using the variables of the environment.
These interactions are not present in the Sheep-
Wolves model, but are performed between cars in
the Basic Traffic model to adjust the speed of each
car with relation to the car ahead in order to avoid
collisions.

Parameters: in Modelica, parameters are a special class of
variables and are described using the parameter
modifier when declaring a variable. Parameter values
are defined in the code of the models and must
remain constant during the simulation. Multiple
simulation runs with different parameter values can
be automatically programmed using the Modelica
script language. Also, Dymola supports parameter
sweep that allows to automatically explore a range
of parameters for the simulations.

Histogram output: ABMLib does not support the creation
of histogram information. Data required for the
generation of the histograms needs to be generated
adding the required code or modules to the models or
flowchart diagrams.

Stop: Modelica includes a function named
terminate() that allows to stop the simulation

before reaching the programmed simulation time.
This function can be combined with a when
statement to define the condition required for the
simulation to stop.

File output: ABMLib does not generate any output
files. The required outputs can be generated using
custom code and using the functions provided by
the Modelica Standard Library to open, write and
manage files. Similarly, these functions were used in
SIMANLib and ARENALib71 to generate statistical
outputs.

Random actions: processes in ABMLib are ordered
following the structure and couplings between
modules in the flowchart diagram. A random
execution of these processes is not supported. It
could be described by randomly routing the agents
to different sets of processes, each set with the
same processes coupled in different order, using
a probabilistic division in the flow of agents in
the diagram (e.g., the decideP module). Also,
random transitions between processes, or sets of
processes, can be implemented. The RandomLib
library is distributed together with ABMLib, as a part
of DESLib, to facilitate the generation of random
numbers and variates71.

Size-ordering movement: each module of the flowchart
diagram receives in its input ports a list of agents
(i.e., the bag of input messages for PDEVS models).
The ordering of the list of agents is not controlled
by ABMLib, since it depends on the order of the
send functions imposed by the analysis and symbolic
manipulation of the whole Modelica model before
generating the executable code. However, an internal
queue of agents could be included in any module to
implement the desired order (e.g., based on the value
of an attribute).

Optimal movement: ABMLib does not provide function-
ality to manage neighbors or adjacent cells. All the
interactions with other agents and the space are per-
formed using the variables stored in the environment.
Custom code and modules can be implemented to
find optimal solutions for movement or any other
kind of interaction (e.g., the closest cell with the
biggest amount of grass).

Mortality and reproduction: agent reproduction is
supported in ABMLib by the Duplicate module,
that generates clones of agents. New agents are
assigned with a unique ID, that can be used to
distinguish them from the original agent. Agent
mortality can also be described using the Dispose

Prepared using sagej.cls

Sanz and Urquia 11

module, that removes from the simulation all the
received agents. These two actions are shown in the
Sheep-Wolves model.

Population graph: the Tick module automatically counts
the number of agents in the simulation and assigns
it to its NAGENTS port. This port can be used to
generate the population graph.

Random normal initial size: the Assign and Modify
modules support the generation of random values
from multiple continuous and discrete distributions.
These modules can be used after the creation of
agents to set the desired initial random values to agent
attributes.

Habitat data from file: the use of input data from external
files is not supported in ABMLib, but it is supported
by Modelica and could be easily included in an
ABMLib model.

Predators: additional types of agents can be included in
the models using additional flowchart diagrams to
describe their behavior. For example, Wolf agents
could be described in the Sheep-Wolves model using
an additional flowchart diagram analogous to the
Sheep (e.g., including modules for wiggle, move,
hunt, reproduce, die, etc.).

5 Basic Traffic Model
This model replicates the basic car traffic model described
by Wilensky and Rand42. It is presented here to illustrate
the ABM functionality of ABMLib with a very simple
model that includes interactions between agents.

The model is composed of a fixed number of cars
that move along a single-lane circular road. The initial
number of cars and the length of the road are parameters
of the model. The state of each car is defined with two
attributes: its position on the road (pos ∈ R); and its current
speed (speed ∈ R). The initial position and speed of each
car is randomly assigned. The minimum and maximum
values for the speed (minSpeed,maxSpeed ∈ R) are also
parameters of the model. The road is divided into 200
discrete segments, and each of them can be occupied by
a single car. The segment occupied by each car is defined
as the integral part of its position (bposc). After the initial
assignment of positions, cars are separated to avoid several
cars in the same road segment.

The behavior of each car, after the initialization is as
follows:

• Each car observes the segment of the road ahead of
its current position to see if it is occupied by another
car. If not, the car increases its speed, and otherwise,
it slows down to avoid collision.

• The speed of the car is adjusted between the defined
minimum and maximum values.

• The car advances its position, depending on its
current speed.

• This behavior is iterated every time step until the final
simulation time is reached.

Figure 3. Flowchart diagram of the Basic Traffic model.

The flowchart diagram that represents the behavior of the
cars and the environment, that represents the road, is shown
in Figure 3. The diagram is composed of a combination
of pre-defined modules from ABMLib (i.e., the Create,
Assign, Tick and Environment modules), and custom-
made modules implemented to describe other processes
performed by the cars (i.e., separate, carAhead, slowDown,
speedUP, minMaxSpeed and carForward). The behavior
of these components is not detailed since the actions
performed are very simple and their names are self-
explanatory. An example of graphical animation is shown
in Fig. 4, where each colored line represents a car and its
current position. Note that cars move from left to right in
the animation.

The performance and scalability of the simulations has
been evaluated. The model has been simulated, during
1000s and with a road length of 2000 segments, with an
increasing initial number of cars, between 100 and 2000.
The simulations have been executed on an Intel Core i7-
4720HQ CPU running Linux 5.15.1 and Dymola 2021.
The execution times, obtained without the generation of
the graphical animation to focus on the simulation of the
agents, are shown in Table 1. Since the execution time
depends on the number of agents present in the model and
the size of the model, the execution time per module is
also included. Per module execution time corresponds to
the total execution time divided by the number of agents
times the number of modules present in each simulation
cycle (i.e., the size of the loop between ticks in the flowchart
diagram). The evolution of both indicators is graphically

Prepared using sagej.cls

12 Journal Title XX(X)

Figure 4. Graphical animation of the Basic Traffic model.

presented in Fig. 5. The execution time per module grows
almost linearly with the number of agents in the model.

Table 1. Performance of the Basic Traffic model.

Cars Exec. Time Exec. Time per Module

100 0.9087s 0.0018s
500 4.27s 0.0017s
1000 11.2s 0.0022s
1500 22.7s 0.0030s
2000 38.6s 0.038s

Figure 5. Evolution of total and per module execution times
for the Basic Traffic model.

6 Sheep-Wolves Hybrid Model
A modified Sheep-Wolves model is presented as a
demonstration of the modeling functionality of ABMLib
in combination with other Modelica models. The model
is based on the sheep-wolves model from NetLogo42. In
NetLogo, sheep and wolves are modeled as agents. In our
version, only sheep are described as agents, while wolves
are described using one of the Lotka-Volterra equations
for predator-prey systems. This model is used to illustrate
the combination of ABM with continuous-time dynamics
when both parts are clearly separated, sheep on one side and
wolves on the other. Also, the description of agents mainly
involves transitory processes and the simulation steps are
controlled using the tick module.

Briefly, the model consists on a bi-dimensional discrete
space, divided into N ×N cells, and populated by sheep
and wolves. Each cell of the space is covered with an initial
amount of grass, that serves as food for sheep. Grass in
each cell grows every time step until a maximum amount
of grass is reached. Each individual sheep living in the
space is represented by an agent, whose behavior is detailed
below. Wolves are represented as a whole quantity across
the space.

6.1 Sheep
The state of each sheep is described using the tuple of
attributes: 〈ID ∈ N, head ∈ [0, 7], xpos ∈ [1, N], ypos ∈
[1, N], energy ∈ R〉, where:

• ID is the unique identifier of the sheep.
• head is the orientation of the sheep (e.g., 0 = E, 1 =

S-E, 2 = S, 3 = S-W, 4 = W, 5 = N-W, 6 = N, 7 =
N-E).

• xpos is the position of the sheep in the X axis.
• ypos is the position of the sheep in the Y axis.
• energy is the current energy of the sheep.

The behavior of sheep is graphically described with
the flowchart diagram shown in Fig. 6. Note that the
Wiggle, Move, SheepEat and Reproduce modules are
coupled PDEVS models, and their internal components are
also shown in the figure to better illustrate the structure
of the diagram. A fixed number of sheep are created at
the beginning of the simulation, and random values are
assigned to xpos, ypos and head. After this initialization
of sheep agents, their behavior in each simulation step is as
follows:

1. The sheep wiggles, which means that turns its head a
random angle between [−90◦, 90◦] and is modeled as
a random turn to the right followed by a random turn
to the left.

2. After the wiggle, the sheep moves one cell forward,
in the direction of its current head. During the

Prepared using sagej.cls

Sanz and Urquia 13

Figure 6. Flowchart diagram of the Sheep agent model.

movement the sheep spends some energy, defined by
the parameter moveCost.

3. If the energy of the sheep reaches zero it dies.
Otherwise, the sheep continues its behavior.

4. The next step for the sheep is eating grass. If some
grass is available in its current position, the sheep
increases its energy. Otherwise, no energy is gained.

5. Sheep reproduction is performed making copies of
the current agents to create new sheep. If the sheep
has enough energy to reproduce, a new copy of
the sheep is created and its energy is reduced by
repCost. The initial energy of the new sheep is also
assigned.

6. After these steps, all sheep are gathered in the Tick
module and wait for the next time step. The Tick
module counts the number of sheep agents in the
model, that is used as an input for the wolves model
(i.e. numberSheep connector).

7. When the tick time is elapsed a new step is started.
Before starting the new step, sheep can be hunted
by wolves. The probability of being hunted is
proportional to the number of wolves, which is
received as input from the wolves model (i.e. the
numwolves connector). Hunted sheep die and the
rest continue to the next step starting with the wiggle
action.

Model components used to describe the environment are
also shown in Fig. 6. Each cell has two variables, one
for the grass and another for the number of sheep present
in the cell. The ENV module describes the bi-dimensional
space and automatically generates the animation for the
amount of grass in each cell. The PlotSheep module
is added to automatically generate the animation of the
sheep, showing their current positions in the space. Note the
connection between the ENV and PlotSheep modules,
as they generate animations for different variables of the
same environment. The grassgrowth module is used
to define the behavior of the environment, and represents
the periodical growth of grass in each cell of the space.
Note that this module is disconnected from the flowchart
diagram, and thus it can only interact with the environment
as it will never receive any agent.

6.2 Wolves
As mentioned above, wolves are represented using one of
the differential equations, Eq. (1), described by Lotka and
Volterra for predator-prey models,

ẏ = δxy − γy (1)

where, x is the number of sheep, y is the number of wolves,
and δ and γ are the parameters describing their interactions.

The translation of Eq. (1) into Modelica code is straight
forward, as shown in Listing 1. Note that sheep is an input

Prepared using sagej.cls

14 Journal Title XX(X)

Listing 1: Modelica code of wolves model.
model WolvesEQ
import Modelica.Blocks.Interfaces.*;
parameter Real C, D;
parameter Integer initWolves=5;
RealInput sheep;
RealOutput wolves (start=initWolves);

equation
der(wolves) = C * sheep * wolves - D * wolves;

end WolvesEQ;

Table 2. Parameters of the Sheep-Wolves model.

Parameter Value

moveCost 0.4
grassGrowthRate 0.03
energyGain 1.7
repCost 200
initEnergy 100
initSheep 100
initWolves 5
δ 0.00075
γ 0.005

Figure 7. Sheep-Wolves simulation results.

to the model, computed as the count of sheep agents from
the ABM, and wolves is used in the ABM to calculate the
probability of wolves hunting sheep.

6.3 Simulation Results
The whole model is composed of the Sheep and Wolves
models, connected to communicate the number of sheep
and wolves. The NumberSheep port of the Sheep model
is connected to the sheep port of the WolvesEQ model.
The wolves port of the wolvesEQ model is connected to
the numwolves port of the Sheep model.

The values of the parameters used for the simulation
are shown in Table 2. The model is simulated during
3000 time steps. The evolution in the number of sheep

Figure 8. Examples of animations showing the amount of
grass and the location of sheep agents.

and wolves is shown in Fig. 7. The staircase shape
shown in the variation of the number of sheep is due to
the initial generation of sheep agents as a single batch,
that generates a synchronization in their reproduction.
Examples of animations, showing the amount of grass and
the position of sheep in the space, are shown in Fig. 8.

In this case, an analyses of the performance is not
included since the number of agents is variable in each
simulation run. The simulation has been executed on an
Intel Core i7-4720HQ CPU running Linux 5.15.1 and
Dymola 2021. The execution time for the model with the
described parameters is 7.53s.

7 Market Hybrid Model

An example extracted from AnyLogic74 is presented and
implemented using ABMLib. This model represents the
marketing of two products, A and B, in a population of
individuals. Thus, the model is composed of: consumers,
described as individual agents, and products, described
used stock amounts and manufacturing rates. In this case,
both parts, ABM and continuous-time, are more integrated.
This model is used to demonstrate how different variables
of the continuous-time part can influence different ABM
modules, and viceversa. Also, alternatively to the Sheep
model previously presented, in this case agent behavior is
described using delayed processes.

7.1 Products
Products are manufactured and supplied to retailers. In
AnyLogic, this supply chain is modeled using System
Dynamics (SD) as shown in Fig. 9.

Figure 9. AnyLogic System Dynamics model of product
manufacturing.

Prepared using sagej.cls

Sanz and Urquia 15

Listing 2: Modelica code of Product model.
model Product
import Modelica.Blocks.Interfaces.*;
parameter Real deliveryRate = 0.5;
parameter Integer initialStock = 100;
RealInput productionRate(start=15);
RealInput purchases(start=0);
Real Fstock(start=initialStock);
Real Rstock(start=0);
RealOutput stockOut(start=initialStock);

equation
when sample(0,1) then

stockOut = pre(Rstock);
end when;
// Production
der(Fstock) = productionRate - deliveryRate*Fstock;
// Delivery
der(Rstock) = deliveryRate * Fstock - purchases;

end Product;

The simple differential equations that correspond to the
described SD model can be easily coded in Modelica,
as shown in Listing 2. More complex models can also
be graphically described in Modelica using the System
Dynamics library75.

The variation of the factory stock (Fstock) depends
on the newly produced items (productionRate)
minus the products delivered to retailers
(deliveryRate*Fstock). The variation of the
retailer stock (Rstock) depends on the products received
from the factory (deliveryRate*Fstock) minus
the products sold to customers (purchases). Note that
productionRate and purchases are inputs to the
model, that will be calculated in the Consumers model,
and stockOut is the output, calculated as a periodical
sample of the retailer stock.

7.2 Consumers
Consumers are represented as individual agents. Alterna-
tively to the Sheep model previously presented, in this
case agent behavior is described using delayed processes.
Each consumer can be in any of the following processes:
potentialUser, wantX, wantAnything and usesX (where X
can be either A or B, depending on the selected prod-
uct). The flowchart diagram is shown in Fig. 10. This
diagram also includes two Product models, productA
and productB that correspond to products A and B, and
the interactions between them and the agents.

A fixed number of agents, or consumers, is initially
created in the model. All these agents start in the
potentialUser process, as potential consumers of any of
the products. They decide between both products due to
advertisement or to interactions with other agents that
already use any of the products. Once the product type is
decided, agents change to the corresponding wantX process.

Figure 10. Flowchart diagram of Market model showing
consumer processes, transitions and interactions with Product
models.

While in the wantX process, agents try to buy the product
from the retailer. Availability of a product is defined by
the value of the stockOut variable calculated by the
corresponding Product model. It the product is available,
the agent becomes a user and moves to the usesX process.
Otherwise, the agent waits for the product to be available.
Agents waiting for a product during more than 2 days will
change to the wantAnything process, meaning that they
give up waiting for a particular product and now they will
buy the first product available of any type. After using the
decided product for a variable amount of time, between 17
and 23 days, agents decide to discard the product and move
to the wantX process to buy a new one.

The modules used to describe the processes of
the diagram (potentialUser, wantA, wantB,
wantAnything, usesA and usesB) are implemented
as atomic PDEVS models. Each module is used to represent
one process. Agents remain in the processes until any of
the conditions for the transitions to other processes are met.
The evaluation of these conditions is described inside the
internal transition function of the modules. Agents received
by a module are stored in an internal queue. Periodically,
the conditions for process transition are evaluated for all
agents in the internal queue. If an agent meets a condition it
leaves the internal queue and is sent to corresponding new
process using the output function.

The interactions between consumers and products are
defined as follows. The wantA process receives as input
the current stock of the product A (i.e., the stockOut
variable), which is used to evaluate the availability of
products for consumers. Its outputs are: a) the number
of consumers waiting for product A, that is used as
productionRate since production equals demand in
this model, and; b) the number of consumers that have
purchased available products, that is used to calculate the
variation in the stock of the retailers. The same interactions

Prepared using sagej.cls

16 Journal Title XX(X)

are required for the processes wantB (involving product
B instead of A) and wantAnything (involving both
products A and B at the same time). Also, two add models
are included in the diagram to calculate the total amount of
purchases for each product, summing the purchases from
the wantX and the wantAnything processes.

7.3 Simulation Results
The system has been simulated for 100 days, with an
initial number of 1000 consumers. Process transitions are
periodically updated every simulated day. The evolution of
the number of consumers in the different processes, wait
and use, is shown in Fig. 11. A higher priority is given to
the evaluation of the conditions for product A, that results in
a bigger adoption by consumers when compared to product
B. The oscillations shown in the figure correspond to the
periodical product discard after use. Otherwise the results
will correspond to a typical logistic curve.

Figure 11. Simulation results for the Market model.

Table 3. Performance of the Market model.

Consumers Exec. Time Exec. Time per Module

1000 0.114s 0.000038s
10000 3.1s 0.000103s
50000 69.2s 0.000462s

100000 269s 0.000896s

The performance and scalability have been also evaluated
in this model. The model has been simulated with a
variable number of consumers (e.g., 1000, 10000, 50000
and 100000). The simulations have been executed on an
Intel Core i7-4720HQ CPU running Linux 5.15.1 and
Dymola 2021. As with the basic traffic model, the total
execution time and the execution time per module are
shown in Table 3. The results are analogous to the basic
traffic model, with a linear evolution of the per module
execution time. These results are also graphically shown in
Fig. 12.

8 Conclusions
An approach for describing ABMs using the Modelica
language has been presented. Previous contributions

Figure 12. Evolution of total and per module execution times
for the Market model.

from other authors oriented to combine ABM with
continuous-time equations present several limitations, such
as the description of continuous-time dynamics only
using explicit ODE, the requirement to perform manual
manipulations to the model equations in order to generate
the simulation code, or the use of multiple tools to
describe the entire system in a co-simulation approach.
The Modelica language represents the state-of-the-art
in equation-based modeling of cyber-physical systems.
However, Modelica does not facilitate the description of
ABMs, since Modelica does not allow variations in the
number of variables or equations of the model during
the simulation, nor the use of dynamic data structures.
This functionality is basic to describe the variations
in the behavior of agents during the simulations. The
proposed approach facilitates describing ABMs using the
functionality provided by Modelica, and combining the
ABMs described in Modelica with other Modelica models.
Our solution is grounded in two concepts: the description
of agents using a process-oriented approach, as entities
flowing across a flowchart diagram; and the use of PDEVS
as a formalism to provide clear semantics for the description
of the processes performed by agents. Since Modelica is
a general-purpose object-oriented equation-based modeling

Prepared using sagej.cls

Sanz and Urquia 17

language, this combination provides a powerful framework
for the study of complex systems using a multi-formalism
modeling approach.

Acknowledgements

This research was supported by the Ministerio de Economı́a y
Competitividad of Spain, DPI2013-42941-R grant.

References

1. Railsback SF and Grimm V. Agent-Based and Individual-
Based Modeling - A Practical Introduction. 2nd ed.
Priceton, NJ, USA: Priceton University Press, 2019. ISBN
9780691190839.

2. Dam KV, Nikolic I and Lukszo Z (eds.) Agent-Based
Modelling of Socio-Technical Systems. Springer Netherlands,
2013. ISBN 9789401782685.

3. Åström KJ, Elmqvist H and Mattsson SE. Evolution of
continuous-time modeling and simulation. In Proceedings of
the 12th European Simulation Multiconference. Manchester,
UK, 1998. pp. 9–18.

4. Fritzson P. Principles of Object-Oriented Modeling
and Simulation with Modelica 3.3: A Cyber-Physical
Approach. Wiley-IEEE Computer Society Pr, 2014. ISBN
9781118859124.

5. Cellier FE and Kofman E. Continuous System Simulation.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
ISBN 0387261028.

6. Sanz V, Bergero F and Urquia A. An approach to agent-based
modeling with Modelica. Simul Model Pract Theory 2018;
83: 65–74. DOI:10.1016/j.simpat.2017.12.012.

7. Chow ACH and Zeigler BP. Parallel DEVS: a parallel,
hierarchical, modular, modeling formalism. In Proceedings
of the 26th Winter Simulation Conference. Orlando, FL, USA,
1994. pp. 716–722.

8. Zeigler BP, Muzy A and Kofman E. Theory of Modeling
and Simulation: Discrete Event and Iterative System
Computational Foundations. 3rd ed. New York: Academic
Press, 2018. ISBN 9780128133705.

9. Sanz V, Urquia A and Dormido S. Parallel DEVS and
process-oriented modeling in Modelica. In Proceedings of the
7th International Modelica Conference. Como, Italy, 2009.
pp. 96–107.

10. Zhang M, Seck M and Verbraeck A. A DEVS-based M&S
method for lange-scale multi-agent systems. In Proceedings
of the 2013 Summer Computer Simulation Conference.
Toronto, Ontario, Canada, 2013.

11. Wooldridge M. An Introduction to Multiagent Systems. Wiley,
2009. ISBN 9780470519462.

12. Rouff CA, Hinchey M, Rash J et al. (eds.) Agent Technology
from a Formal Perspective. NASA Monographs in
Systems and Software Engineering, Springer, 2006. ISBN
9781846282713.

13. Zhu H. Slabs: A formal specification language for agent-
based systems. Int J Softw Eng Know 2001; 11(05): 529–558.
DOI:10.1142/S0218194001000657.

14. Maheshwari A, Kenley CR and DeLaurentis DA. Creating
executable agent-based models using SysML. In Proceedings
of the 25th Annual INCOSE International Symposium. 2015.
pp. 1263–1277.

15. Tsadimas A, Kapos GD, Dalakas V et al. Integrating
simulationcapabilities into SysML for enterprise information
system design. In Proceedings of the 9th International
Conference on System of Systems Engineering. 2014. pp.
272–277.

16. Xu H and Shatz SM. An agent-based Petri Net model with
application to seller/buyer design in electronic commerce.
In Proceedings of the 5th International Symposium on
Autonomous Decentralized Systems. 2001. pp. 149–154.

17. Pouyan AA, Beigi AH and Kadkhoda M. An agent-based
model for virtual tourism using Object Petri Nets. In
Proceedings of the 5th International Conference on Circuits,
Systems, Electronics, Control and Signal Processing. 2006.
pp. 149–154.

18. Köhler M, Langer R, von Lüde R et al. Socionic multi-agent
systems based on reflexive petri nets and theories of social
self-organisation. J Artif Soc Soc Simul 2007; 10(1): 3.

19. Plà A, Gay P, Meléndez J et al. Petri net-based process
monitoring: a workflow management system for process
modelling and monitoring. J Intell Manuf 2014; 25: 539–
554. DOI:10.1007/s10845-012-0704-z.

20. Holcombe M, Coakley S and Smalwood R. A general
framework for agent-based modelling of complex systems. In
Proceedings of the European Conference on Complex Systems
(ECCS’06). 2006.

21. Boucheri A, Khebaba A and Belala F. Rewriting logic based
approach for the formalization of critical systems based on
multi-agent system. Int J Comput Appl 2011; 13(2): 6–13.
DOI:10.5120/1755-2392.

22. Reinhardt O and Uhrmacher AM. An efficient simulation
algorithm for continuous-time agent-based linked lives
models. In Proceedings of the 50th Annual Simulation
Symposium. 2017.

23. Vangheluwe HLM. DEVS as a common denominator for
multi-formalism hybrid systems modelling. In Proceedings
of the IEEE International Symposium on Computer-Aided
Control System Design. IEEE Computer Society Press, 2000.
pp. 129–134.

24. Barros FJ. Dynamic structure discrete event system
specification: a new formalism for dynamic structure
modeling and simulation. In Proceedings of the 27th

Conference on Winter simulation. Arlington, VA, USA, 1995.
pp. 781–785.

25. Barros FJ. Modelling formalisms for dynamic structure
systems. ACM Trans Model Comput Simul 1997; 7(4): 501–
515. DOI:10.1145/268403.268423.

Prepared using sagej.cls

18 Journal Title XX(X)

26. Uhrmacher AM. Dynamic structures in modeling and
simulation: A reflective approach. ACM Trans Model Comput
Simul 2001; 11(2): 206–232. DOI:10.1145/268403.268423.

27. Kim JH and Kim TG. DEVS-based framework for
modeling/simulation of mobile agent systems. Simulation
2001; 76(6): 345–357. DOI:10.1177/003754970107600603.

28. Uhrmacher AM, Himmelspach J, Röhl M et al. Introducing
variable ports and multi-couplings for cell biological
modeling in DEVS. In Proceedings of the 2006 Winter
Simulation Conference. 2006. pp. 832–840.

29. Müller JP. Towards a Formal Semantics of Event-Based
Multi-Agent Simulations. Berlin, Heidelberg: Springer-
Verlag. ISBN 9783642019906, 2009. p. 110–126. DOI:
10.1007/978-3-642-01991-3 9.

30. Steiniger A, Krüger F and Uhrmacher AM. Modeling agents
and their environment in multi-level-DEVS. In Proceedings
of the 2012 Winter Simulation Conference. 2012. pp. 2629–
2640.

31. Goldstein T, Breslav S and Khan A. A symmetric formalism
for discrete event simulation with agents. In Proceedings
of the 2018 Winter Simulation Conference. Gothenburg,
Sweden, 2018.

32. Foguelman D, Henning P, Uhrmacher A et al. Eb-devs: A
formal framework for modeling and simulation of emergent
behavior in dynamic complex systems. J Comput Sci 2021;
53: 101387. DOI:10.1016/j.jocs.2021.101387.

33. Bae JW, Lee G and Moon IC. Formal specification
supporting incremental and flexible agent-based modeling. In
Proceedings of the 2012 Winter Simulation Conference. 2012.
pp. 1–12.

34. Bouanan Y, Zacharewicz G and Vallespir B. DEVS modelling
and simulation of human social interaction and influence. Eng
Appl Artif Intell 2016; 50: 83–92. DOI:10.1016/j.engappai.
2016.01.002.

35. Uhrmacher AM and Schattenberg B. Agents in discrete event
simulation. In Proceedings of the 10th European Simulation
Symposium. Nottingham, UK, 1998.

36. Camus B, Bourjot C and Chevrier V. Combining DEVS with
multi-agent concepts to design and simulate multi-models of
complex systems. In Proceedings of the Spring Simulation
Multi-Conference. Alexandria, VA, USA, 2015. pp. 85 – 90.

37. Bouanan Y, Zacharewicz G, Ribault J et al. Discrete
event system specification-based framework for modeling and
simulation of propagation phenomena in social networks:
application to the information spreading in a multi-layer
social network. Simulation 2019; 95(5): 411–427. DOI:
10.1177/0037549718776368.

38. Kravari K and Bassiliades N. A survey of agent platforms.
J Artif Soc Soc Simul 2015; 18(1): 11. DOI:10.18564/jasss.
2661.

39. Abar S, Thodoropoulos GK, Lemarinier P et al. Agent
based modelling and simulation tools: A review of the state-
of-art software. Comput Sci Rev 2017; 24: 13–33. DOI:
10.1016/j.cosrev.2017.03.001.

40. Macal CM. Tutorial on agent-based modeling and simulation:
ABM design for the zombie apocalypse. In Proceedings of the
2018 Winter Simulation Conference. Gothenburg, Sweden,
2018. pp. 207– 221.

41. Forrester JW. Principles of Systems. Waltham, MA, USA:
Pegasus Communications, 1969. ISBN 9781883823412.

42. Wilensky U and Rand W. An Introduction to Agent-
Based Modeling: Modeling Natural, Social, and Engineered
Complex Systems with Netlogo. Cambridge, MA, USA: MIT
Press, 2015. ISBN 9780262731898.

43. Company TA. Anylogic simulation software website, 2021.
URL http://www.anylogic.com. Accessed May
2021.

44. Wang H, Cao R and Zeng W. Multi-agent based and system
dynamics models integrated simulation of urban commuting
relevant carbon dioxide emission reduction policy in China. J
Clean Prod 2020; 272. DOI:10.1016/j.jclepro.2020.122620.

45. Martin R and Schlüter M. Combining system dynamics
and agent-based modeling to analyze social-ecological
interactions—an example from modeling restoration of a
shallow lake. Front Environ Sci 2015; 3. DOI:10.3389/fenvs.
2015.00066.

46. Vincenot CE, MAzzoleni S, Moriya K et al. How spatial
resource distribution and memory impact foraging success:
A hybrid model and mechanistic index. Ecol Complex 2015;
22: 139–151. DOI:10.1016/j.ecocom.2015.03.004.

47. Swinerd C. On the Design of Hybrid Simulation
Models, Focussing on the Agent-Based System Dynamics
Combination. PhD Thesis, Cranfield Defence And Security
Centre For Simulation And Analytics, Cranfield, UK, 2014.

48. Kofman E. Discrete event simulation of hybrid systems.
SIAM Journal on Scientific Computing 2004; 25(5): 1771–
1797.

49. Bobashev GV, Goedecke DM, Yu F et al. A hybrid
epidemic model: Combining the advantages of agent-based
and equation-based approaches. In Proceedings of the 39th

Winter Simulation Conference. Washington, DC, USA, 2007.
pp. 1532–1537.

50. Gräbner C, Bale CSE, Furtado BA et al. Getting the best of
both worlds? developing complementary equation-based and
agent-based models. Comput Econ 2019; 53(2): 763 – 782.
DOI:10.1007/s10614-017-9763-8.

51. Bradhurst RA, Roche SE, East IJ et al. A hybrid modeling
approach to simulating foot-and-mouth disease outbreaks in
australian livestock. Front Environ Sci 2015; 3. DOI:
10.3389/fenvs.2015.00017.

52. Caudill L and Lawson B. A hybrid agent-based
and differential equations model for simulating antibiotic
resistance in a hospital ward. In Proceedings of the 2013

Prepared using sagej.cls

http://www.anylogic.com

Sanz and Urquia 19

Winter Simulation Conference. Washington, DC, USA, 2013.
pp. 1419–1430.

53. Hunter E, Mac Namee B and Kelleher J. A hybrid agent-
based and equation based model for the spread of infectious
diseases. J Artif Soc Soc Simul 2020; 23(4): 14. DOI:
10.18564/jasss.4421.

54. Banos A, Corson N, Lang C et al. 2 - multiscale modeling:
Application to traffic flow. In Banos A, Lang C and
Marilleau N (eds.) Agent-based Spatial Simulation with
NetLogo, Volume 2. Elsevier, 2017. pp. 37–62. DOI:10.1016/
B978-1-78548-157-4.50002-9.

55. Lee EA and Zheng H. Operational semantics of hybrid
systems. In Proceedings of the International Workshop on
Hybrid Systems: Computation and Control. 2005. pp. 25–53.

56. Duboz R, Éric Ramat and Preux P. Scale transfer
modeling: using emergent computation for coupling an
ordinary differential equation system with a reactive agent
model. Syst Anal Model Simul 2003; 43(6): 793–814.

57. Novak P, Kadera P and Wimmer M. Agent-based modeling
and simulation of hybrid cyber-physical systems. In
Proceedings of the 3rd IEEE International Conference on
Cybernetics. 2017. pp. 1–8.

58. Gomes C, Thule C, Broman D et al. Co-simulation: A
survey. ACM Comput Surv 2018; 51(3): 49:1–49:33. DOI:
10.1145/3179993.

59. Modelica Association Project FMI. Functional Mock-up
Interface for model exchange and co-simulation (v2.0.2),
2020. URL http://www.fmi-standard.org.
Accessed May 2021.

60. IEEE Computer Society. IEEE 1516-2010 – IEEE standard
for modeling and simulation (M&S) High Level Architecture
(HLA), 2010. URL https://standards.ieee.org/

standard/1516-2010.html. Accessed May 2021.
61. Palmintier B, Krishnamurthy D, Top P et al. Design

of the helics high-performance transmission-distribution-
communication-market co-simulation framework. In 2017
Workshop on Modeling and Simulation of Cyber-Physical
Energy Systems (MSCPES). 2017. pp. 1–6. DOI:10.1109/
MSCPES.2017.8064542.

62. Tang Y, Tai W, Liu Z et al. A hardware-in-the-loop based
co-simulation platform of cyber-physical power systems for
wide area protection applications. Appl Sci 2017; 7(12). DOI:
10.3390/app7121279.

63. Constantin A, Löwen A, Ponci F et al. Dymola-JADE
co-simulation for agent-based control in office spaces. In
Proceedings of the 12th International Modelica Conference.
Prague, Czech Republic, 2017. pp. 345–351.

64. Marilleau N, Lang C and Giraudoux P. Coupling agent-
based with equation-based models to study spatially explicit
megapopulation dynamics. Ecol Modell 2018; 384: 34–42.
DOI:10.1016/j.ecolmodel.2018.06.011.

65. Größler A, Stotz M and Schieritz N. A software interface
between system dynamics and agent-based simulations:

Linking Vensim and Repast. In Proceedings of the 21st

International Conference of the System Dynamics Society.
New York City, NY, USA, 2003.

66. Sanz V, Urquia A, Cellier FE et al. System modeling using
the Parallel DEVS formalism and the Modelica language.
Simul Model Pract Theory 2010; 18(7): 998–1018. DOI:
10.1016/j.simpat.2010.03.004.

67. Modelica Association. Modelica – A unified object-oriented
language for systems modeling. Language spec. v. 3.5,
2021. URL https://modelica.org/documents/

MLS.pdf. Accessed May 2021.
68. Sanz V and Urquia A. Modelica extensions for supporting

message passing communication. In Proceedings of the 7th

International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. 2016. pp. 21–28.

69. Sanz V and Urquia A. Cyber–physical system modeling
with Modelica using message passing communication. Simul
Model Pract Theory 2022; 117: 102501. DOI:10.1016/j.
simpat.2022.102501.

70. Bergero F and Kofman E. PowerDEVS: a tool for hybrid
system modeling and real-time simulation. Simulation 2011;
87(1-2): 113–132. DOI:10.1177/0037549710368029.

71. Sanz V, Urquia A, Cellier FE et al. Hybrid system modeling
using the SIMANLib and ARENALib Modelica libraries.
Simul Model Pract Theory 2013; 37: 1–17. DOI:10.1016/j.
simpat.2013.05.005.

72. Zeigler BP. Embedding DEV&DESS in DEVS. In
Proceedings of the DEVS Integrative M&S Symposium.
Huntsville, AL, USA, 2006.

73. Railsback SF, Lytinen SL and Jackson SK. Agent-
based simulation platforms: Review and development
recommendations. Simulation 2006; 82(9): 609–623. DOI:
10.1177/0037549706073695.

74. Borshchev A. How to build a combined Agent-Based System
Dynamics model in AnyLogic. In Proceedings of the 26th

International Conference of the System Dynamics Society.
2008. pp. 402–4023.

75. Cellier FE. World3 in Modelica: Creating System Dynamics
models in the Modelica framework. In Proceedings of the
6th International Modelica Conference. Bielefeld, Germany,
2008. pp. 393–400.

Author biographies

Victorino Sanz received his M.S. in Computer Science
in 2004 from Universidad Politecnica de Madrid and his
Ph.D. in Computer Science from Universidad Nacional de
Educación a Distancia (UNED). He is assistant professor
at Dpto. Informática y Automática, Universidad Nacional
de Educación a Distancia (UNED) since 2010. His research
interests focus on hybrid system modeling and simulation
using the Modelica language.

Prepared using sagej.cls

http://www.fmi-standard.org
https://standards.ieee.org/standard/1516-2010.html
https://standards.ieee.org/standard/1516-2010.html
https://modelica.org/documents/MLS.pdf
https://modelica.org/documents/MLS.pdf

20 Journal Title XX(X)

Alfonso Urquia received his M.S. degree in Physics in
1992 from Universidad Complutense de Madrid and his
Ph.D. in Physics in 2000 from Universidad Nacional de
Educación a Distancia (UNED). Since 2002, he has been
working as an Associate Professor at Dpto. Informática
y Automática, UNED, in Madrid, Spain. His research
is focused on mathematical modeling and computer
simulation.

Prepared using sagej.cls

	1 Introduction
	2 Related Work
	2.1 Combination of ABMs with Continuous-time Equations
	2.2 An Implementation of PDEVS in Modelica

	3 A Proposal for ABM in Modelica
	3.1 Agent Behavior
	3.2 Interface with Continuous-time Behavior

	4 The ABMLib Library
	4.1 Agents
	4.2 Modules
	4.3 Environment
	4.4 Comparison with other ABM tools

	5 Basic Traffic Model
	6 Sheep-Wolves Hybrid Model
	6.1 Sheep
	6.2 Wolves
	6.3 Simulation Results

	7 Market Hybrid Model
	7.1 Products
	7.2 Consumers
	7.3 Simulation Results

	8 Conclusions

