SoftwareX 23 (2023) 101438

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

MSGLib: A Modelica library for message passing communication

Victorino Sanz *, Alfonso Urquia

Check for
updates

Dpto. de Informdtica y Automdtica, ETSI Informdtica, Universidad Nacional de Educacién a Distancia (UNED), Spain

ARTICLE INFO ABSTRACT

Article history:

Received 12 April 2023

Received in revised form 31 May 2023
Accepted 9 June 2023

Keywords:
Message passing communication
Modelica

MSGLib is a Modelica library designed and developed to support message passing communication
and the management of data structures stored in dynamic memory. The functionality of the library
facilitates the description of discrete-event models and their combination with other Modelica
functionality. MSGLib has been used as a base to develop other Modelica libraries such as DEVSLib,
ARENALib and ABMLib. A new version of MSGLib is presented in this manuscript, that includes user
documentation, performance optimization and illustrative examples. The library has been developed
and tested under Dymola and OpenModelica, and is freely distributed under the LGPL-3.0 license.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v2.0
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00197

LGPL-3.0 or later

git

C, Modelica, Dymola, OpenModelica
Modelica Standard Library 4.0.0

vsanz@dia.uned.es

1. Motivation and significance

Modelica is an object-oriented modeling language designed
to describe mathematical models using differential and algebraic
equations, and events [1]. It is widely used in academia and
industry to describe models in multiple domains (e.g., electrical,
power, automation, etc.). Modelica models can be described be-
haviouraly, by defining the equations that describe the dynamics
of the system, and structurally, as a set of interconnected compo-
nents. Modelica tools automatically analyze and manipulate the
structure and equations of the model, and generate an executable
code for the simulation [2].

Component connections for structurally defined Modelica
models follow an equation-based physical rationale [3]. The de-
scription of model communications in discrete-event approaches
(e.g., DEVS) follows a message-passing rationale (i.e., instanta-
neous communication of impulses of information). DEVS mod-
els can communicate by scheduling the generation of output

* Correspondence to: Juan del Rosal, 16, 28040, Madrid, Spain.
E-mail addresses: vsanz@dia.uned.es (Victorino Sanz), aurquia@dia.uned.es
(Alfonso Urquia).

https://doi.org/10.1016/j.s0ftx.2023.101438

messages, that are immediately transmitted to other models
as external inputs [4]. In order to facilitate the description of
these discrete-event systems using the Modelica language, and
combine them with the rest of the language functionality, a
message-passing communication (MPC) mechanism is required.
The MSGLib library has been designed and developed to provide
such MPC functionality. Additionally, MSGLib provides function-
ality to manage data structures stored in dynamic memory.

In this manuscript, the version 2.0 of the MSGLib library is
presented. This new version extends the previous version by
including detailed documentation of its functionality and use,
performance improvements and a detailed set of illustrative ex-
amples.

2. Software description

The MSGLib library is composed of two parts: one written in
Modelica, named MSGLib.mo, that provides the required mod-
eling functionality; and another written in C, named msglib.c,
that constitutes the actual implementation of the data structures
and the communication mechanism. The interactions between

2352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101438
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101438&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00197
mailto:vsanz@dia.uned.es
mailto:vsanz@dia.uned.es
mailto:aurquia@dia.uned.es
https://doi.org/10.1016/j.softx.2023.101438
http://creativecommons.org/licenses/by/4.0/

Victorino Sanz and Alfonso Urquia

-] MsGLib
-] MSGLib © Documentation
© Documentation © LICENSE
© LICENSE +[_] BufferReal
-] BufferReal -[_] BufferArray -
» buffer » buffer [] MsGLib
@ bsize © bsize © Documentation
@ bput © LICENSE
) bgetpos »[] BufferReal
© bget »[] BufferArray
breadpos v[] Examples
breéd simpleReal
) bwritepos X
. D bwrite s?mpIeArray
[inPort couple ‘ ‘5|m;‘)IePorts
Driver (® bsend » L Testing
LI outport [InPort » ("] BarrelFilling
LI RinPort Driver
O Routrort [outPort (c)
rUJ BufferArray I RinPort
» || Examples [I ROutPort
+[_] Examples
(a)
(b)

SoftwareX 23 (2023) 101438

msglib.c

— struct bufferR

—void* initBufferR ()

| — closeBufferR (void*R)

(— int bsizeR(void* b)

f— bputR (double msg, void* b, int index)

f— double bgetR(void* b, int index)

f— double breadR(void* b, int index)

f— double bwriteR(void *b, double newval, int index)
|— coupleR (void* b, void* d)

“— bsendR (void* b)

L— struct msgA
struct bufferA

—void* initBuffera ()

(— closeBufferA (void* b)

(— int bsizeA(void* b)

|— bputa (double* msg, void* b, int index)

|—double bgetposA(void* b, int pos, int index)

|- double breadposA(void* b, int pos, int index)

— double bwriteposA(void* b, double newval, int pos, int index)
(— coupleA (void* b, void* d)

—bsendA (void* b)

(d)

Fig. 1. Structure of MSGLib: (a) MSGLib.mo Documentation and BufferReal package, (b) MSGLib.mo BufferArray package, (c) MSGLib.mo Examples package,

and (d) msglib.c.

both parts are described using the Modelica external function
interface.

The structure of MSGLib is shown in Fig. 1. MSGLib.mo in-
cludes, additionally to the Documentation package and the LI-
CENSE description, three packages:

e BufferReal, that includes components to describe MPC
with messages of Real type.

e BufferArray, analogous to the previous package but sup-
porting MPC using messages of Real[] type (i.e., array
of Real, with each element of the array considered as a
position).

e Examples, that includes multiple illustrative examples and
test cases of discrete-event and hybrid systems. The Test-
ing package includes test cases in combination with other
Modelica functionality (e.g., algorithm and equation sec-
tions, reinit, and time and state events), and the Bar-
relFilling package includes the models used to describe
a barrel filling facility as a hybrid system, and the imple-
mentation of a similar system described in [4].

As shown in Figs. 1(a) and 1(b), the names of the compo-
nents in the BufferReal and BufferArray packages are almost
identical since they provide the same functionality, to be used
with different types of messages. The use of either message type
can be selected by importing one of both packages in a model.
Message types need to be statically defined in order to comply
with the type mappings [3] between Modelica and C (cf. Fig. 1(d)).
Note that messages of Real type can be also described using
an array of length 1 (e.g., Real[1]) using the BufferArray
package, but we decided to include both packages to avoid the
use of array declarations for messages of Real type and be-
cause the BufferReal package, and its corresponding C code
in msglib.c, provides a better performance in this case. The
supported message types provide a wide modeling versatility,
however, if custom message types are required (e.g., using a
record class) the library can be easily adapted to support them
by duplicating and modifying the existing code.

2.1. Buffers

The main component of the library is the buffer, which
represents a container for messages. Buffers can be used as tem-
porary storage for messages and, when coupled using the couple
function, as the ends of a communication channel (e.g., origin
and destination). Buffers are implemented as external objects
in Modelica, with its corresponding constructor, and destructor
functions. In C, they are described as a struct that stores an
array of messages and an array of destinations, used to store
the communication channels between buffers. Both arrays are
dynamically stored in memory, depending on the requirements
of the simulation. In this new version of the library, the array of
messages in BufferArray buffers has been implemented as a
double linked list in order to improve the performance of inser-
tions and extractions of messages. The constructor and destructor
C functions for the buffers are initBuffer and closeBuffer,
respectively. The constructor allocates an initial memory space
for the messages and initializes all the variables to represent
an empty buffer. The destructor frees the memory used for the
buffer.

The library includes multiple utility functions to manage mes-
sages and buffers (as shown in Fig. 1 each function in MSGLib.mo
has its corresponding implementation in msglib. c, for the two
supported type messages):

e bput, used to insert a message into a buffer.

e bget, used to extract a message from a buffer, and bgetpos,
used to extract a message and return a given position of that
message.

e bread, used to observe a message in a buffer, and bread-
pos, used to observe a given position of a message.

e burite, used to set a new value for a message in a buffer,
and bwritepos, used to only modify a given position of a
message.

e bsize, used to observe the number of messages in a buffer.

The library includes the bsend function that can be used to
transmit the messages stored in a buffer to all its previously
coupled destinations. Messages are directly routed to their final

Victorino Sanz and Alfonso Urquia

M1l ®
M1 p—& M2 i M3
couple (M1.p.B,M2.p.B); M2 [P1

Ml.p.M = M2.p.M; couple (M1.p.B,M3.p.B);
couple (M2.p.B,M3.p.B);

Ml.p.M + M2.p.M = M3.p.M;

i
o]

M1 —r M4

o M3 M2 P M3

couple (M1.p.B,M3.p.B);
couple (M2.p.B
couple (M3.p.B
Ml.p.M + M2.p.
M3.p.M = M4.p.

couple (Ml1.p.B,M2.p.B);
couple (Ml1.p.B,M3.p.B);
Ml.p.M = M2.p.M;
Ml.p.M = M3.p.M;

Fig. 2. Examples of port connections [5].

destinations, avoiding to store messages in intermediate buffers
in the channel (e.g., having couple(a,b) and couple(b,c),
bsend (a) will send messages directly from a to c). This behavior
provides an automatic flattening of the structure formed by the
components of the model and their interconnections.

2.2. Interface for MPC

The library also includes specific models, named ports, to
describe the MPC interface of the models. All ports include two
common components: a buffer, named B, used to store the trans-
mitted messages; and a Real variable, named M, used to synchro-
nize the transmission of messages (cf. [5]).

The following ports are included:

e InPort: represents an input port used to receive messages.
Additionally to the common components, input ports in-
clude a boolean flag, named rcv, that signals the reception
of new messages and can be used as an event condition to
manage the received messages.

e OutPort: represents an output port for outgoing messages.
Additionally to the common components, output ports in-
clude an array of Driver models. The driver model is used
to schedule and synchronize the transmission of the output
messages stored in the port to its destinations (cf. [5] for a
detailed description). Output messages need to be inserted
in the buffer of the output port before the transmission is
scheduled. The array of drivers is used to support multi-
ple sequential transmissions during the same time instant
(e.g., due to event iterations, a loop in the communica-
tions, etc.). A boolean flag, named snd, is used to signal the
successive transmissions using different drivers of the array.

e RInPort: is used to define router input ports. Router ports
are intermediate ports in a communication channel and
usually describe the interface of models structurally defined.
Router input ports have to be connected to input ports of
any internal component of the model.

e ROutPort: is used to define router output ports. Analogous
to the router input ports but need to be connected to output
ports of internal components.

Connections between ports are defined with the following two
actions:

SoftwareX 23 (2023) 101438

e Coupling their buffers, using the couple function within an
initial algorithm section in order to guarantee that it is only
executed once in the simulation.

e Setting the value of their M variables within an equation
section. The M variable of an input port has to be equaled
to the sum of the M variables of its connected output ports.

Examples of multiple connection topologies are shown in Fig. 2.
Port connections need to be textually specified in the models
(e.g., the code shown in Fig. 2), since Modelica only supports the
graphical description of connections between connectors.

3. Illustrative examples

Three examples are described: two very simple examples are
used to illustrate the basic functionality of the library, store mes-
sages and MPC; and a more complex model describes a communi-
cation loop between three models with multiple messages trans-
mission during the same time instant. All these examples are in-
cluded in the Examples package of the library (cf. SimpleReal,
SimplePort and Testing.loopModular models).

3.1. SimpleReal

This simple model illustrates the use of buffers as storage for
messages. A reduced version of the code is shown in Listing 1
(prints to simulation log have been removed to simplify the code
and facilitate its comprehension). When the condition time >=
1 becomes true, two messages are inserted in the buffer. After
that, the messages are sequentially read (assigned to variables s1
and s2) and extracted. When the condition time >= 2 becomes
true, two new messages are inserted and extracted from the
buffer.

Listing 1: Modelica code for the SimpleReal model.

model simpleReal
import MSGLib.BufferReal. *;
buffer b=buffer();
Real out,x[2],s1,s2;
algorithm
when time >= 1 then
// First event at time >= 1
bput (1, b);
// two new messages inserted in the buffer
bput (2, b);
sl := bread(b, 1);
// read contents of the buffer
s2 := bread(b, 2);
out := bget(b);
// extract last message from the buffer
x[1] := out;
sl := bread(b, 1);
// read contents of the buffer
s2 := bread(b, 2);
// 0 returned for missing messages
out := bget(b);
// extract last message from the buffer
x[2] := out;
sl := bread(b, 1);
// read contents of the buffer
s2 := bread(b, 2);
// O returned for missing messages
end when;
when time >= 2 then
// Second event at time >= 2

bput (1, b);
bput (2, b);
x[1] := bget(b,1);
// extract first message from the buffer
x[2] := Dbget(b,1);
end when;

end simpleReal;

Victorino Sanz and Alfonso Urquia
3.2, SimplePort

This model represents a simple connection and message trans-
mission between two ports. The code of the model, also reduced
by removing prints, is shown in Listing 2. The model includes
an output port, Origin, and an input port, Destination. The
coupling between Origin and Destination is described using
the couple function and the equation between their M vari-
ables. Messages are periodically transmitted from Origin to
Destination, with an interval of 1s. The value of the message
is time+0.2, which is inserted in the Origin.B buffer before
scheduling the immediate transmission (Origin.tSend := time
and Origin.snd := not Origin.snd). Messages are instanta-
neously received at Destination, where they are extracted from
Destination.B.

Listing 2: Modelica code for the SimplePort model.

model simplePorts
import MSGLib.BufferReal.x*;
OutPort Origin;
InPort Destination;
Real msg;
initial algorithm
couple (Origin.B, Destination.B);
equation
Origin.M = Destination.M;
algorithm
when sample (0, 1) then
// GENERATION
bput (time+0.2,0rigin.B);
// message insertion

Origin.tSend :=time;
// transmission time
Origin.snd := not pre(Origin.snd);
// transmission flag
end when;
algorithm

when Destination.rcv then
// RECEPTION
msg := bget(Destination.B);
// extract received message
end when;
end simplePorts;

3.3. LoopModular

This model is presented to illustrate the functionality included
in MSGLib to describe sequential transmissions of messages at the
same time instant. This behavior is commonly found in discrete-
event models of cyber-physical systems (e.g., the management
of collisions in computer networks). The LoopModular model is
composed of three components of M type, named m1, m2 and m3,
connected in a ring topology (cf. Listing 3). Model components
include a continuous-time variable, x, whose derivative is set to
a constant value, derx, in order to illustrate the combination of
MPC and continuous-time dynamics in a model.

Message transmissions are periodically started by m1, sending
a message to m2. When a component receives a message, it
extracts it from the buffer, increases a counter and, depending on
the current value of the counter, it performs one of the following
actions:

o If the value of the counter has not reached a defined max-
imum (maxcount), the message is forwarded to the next
component in the ring.

e Otherwise, the value of x is reinit with the value of the mes-
sage and the counter is reset to 0. Thus, the transmissions
are interrupted.

Since maxcount is initially set to 4, the first message created
by m1 will have to perform three loops to the ring of models
during the same time instant. After this first message, the amount
of loops to the ring depends on the values of the counters in

SoftwareX 23 (2023) 101438

Listing 3: Modelica code for the M and LoopModular models.

model M
import MSGLib.BufferReal.x*;
parameter String name;
parameter Real derx;

parameter Boolean start = true;
parameter Integer maxcount = 4;
InPort IN;

OutPort OUT(nDrivers=maxcount);
Integer count(start=0);
Real x, msg;

algorithm

when sample(1,1) and start then
// GENERATION

count := pre(count)+1;

bput (pre(x),0UT.B);

OUT.tSend := time;

0UT.snd := not pre(0UT.snd);
end when;

when IN.rcv then
// RECEPTION
if bsize(IN.B) > 0 then
msg := bget(IN.B);
count := pre(count) +1;
if count < maxcount then
bput (pre(x),0UT.B);
OUT.tSend := time;
O0UT.snd := not pre(OUT.snd);
else
reinit (x,msg);
count := 0;
end if;
end if;
end when;

equation
der (x) = derx;
end M;

model LoopModular
import MSGLib.BufferReal.*;
M m1(derx=1, name="M1");
M m2(start=false, derx=2, name="NM2");
M m3(start=false, derx=3, name="M3");

initial algorithm
couple (m1.0UT.B,m2.IN.B);
couple (m2.0UT.B,m3.IN.B);
couple (m3.0UT.B,m1.IN.B);

equation
ml1.0UT.M = m2.IN.M;
m2.0UT.M = m3.IN.M;
m3.0UT.M = m1.IN.M;

end LoopModular;

the other components since only the counter of the model that
reaches the maximum is reset to 0 and the transmissions are
always started by m1.

4. Impact

As previously mentioned, MSGLib provides functionality to
facilitate the use of a MPC approach within Modelica models.
Buffers can also be used as data structures stored in dynamic
memory to describe variables that may change their size during
the simulation runs (e.g., a queue). This functionality has been
used to facilitate the description in Modelica of models using
the Parallel DEVS formalism [6], a process-oriented modeling
approach analogous to Arena [7], and their application to the
description of cyber-physical systems [5]. Also, an agent-based
modeling approach, where agents are described as messages that
flow across processes arranged in a flowchart diagram, has been
proposed by the authors [8,9].

Victorino Sanz and Alfonso Urquia

Introducing the MPC in Modelica and using it as a base to
support multiple discrete-event modeling functionality enhances
the versatility and applicability of the language. The description of
large and complex systems, that are usually composed of a com-
bination of heterogeneous parts, is facilitated by the application
of multi-formalism and multi-level modeling approaches.

5. Conclusions

The MSGLib library extends current Modelica functionality and
facilitates the use of message-passing communication to describe
interactions between model components. The library can be com-
bined with the rest of the language functionality to provide a
wider modeling functionality for multi-formalism modeling. The
presented version of the MSGLib library includes detailed user
documentation, code optimizations designed to improve the per-
formance of the simulations by reducing the operations required
to manage the buffer data structures, and multiple illustrative
examples aimed to facilitate the use of the library and to serve
as a base for other modeling applications. It is freely distributed
under the LGPL license and can be downloaded from https://
github.com/vsanzp/MSGLib.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Funding

This research was supported by Vicerrectorado de Investi-
gacion, Transferencia de Conocimiento y Divulgacién Cientifica

SoftwareX 23 (2023) 101438

of Universidad Nacional de Educacién a Distancia (UNED), Spain
[grant “Convocatoria Proyectos de Investigacion UNED 2022"].

Data availability
Data will be made available on request
References

[1] Fritzson P. Principles of object-oriented modeling and simulation with
Modelica 3.3: A cyber-physical approach. Wiley-IEEE Computer Society;
2014.

[2] Cellier FE, Kofman E. Continuous System Simulation. Secaucus, NJ, USA:
Springer-Verlag New York, Inc. 2006.

[3] Modelica association. 2021, [Modelica] - A unified object-oriented lan-
guage for systems modeling. Language spec. v. 3.5, Accessed 2023. https:
//modelica.org/documents/MLS.pdf.

[4] Zeigler BP, Muzy A, Kofman E. Theory of modeling and simulation: Discrete
event and iterative system computational foundations. 3rd ed.. New York:
Academic Press; 2018.

[5] Sanz V, Urquia A. Cyber-physical system modeling with Modelica using mes-
sage passing communication. Simul Model Pract Theory 2022;117:102501.
http://dx.doi.org/10.1016/j.simpat.2022.102501.

[6] Sanz V, Urquia A, Cellier FE, Dormido S. System modeling using the Parallel
DEVS formalism and the Modelica language. Simul Model Pract Theory
2010;18(7):998-1018. http://dx.doi.org/10.1016/j.simpat.2010.03.004.

[7] Sanz V, Urquia A, Cellier FE, Dormido S. Hybrid system modeling using
the SIMANLib and ARENALib Modelica libraries. Simul Model Pract Theory
2013;37:1-17. http://dx.doi.org/10.1016/j.simpat.2013.05.005.

[8] Sanz V, Bergero F, Urquia A. An approach to agent-based modeling with
Modelica. Simul Model Pract Theory 2018;83:65-74. http://dx.doi.org/10.
1016/j.simpat.2017.12.012.

[9] Sanz V, Urquia A. Combining PDEVS and Modelica for describing agent-
based models. Simulation 2023;99(5):455-74. http://dx.doi.org/10.1177/
00375497221094873.

https://github.com/vsanzp/MSGLib
https://github.com/vsanzp/MSGLib
https://github.com/vsanzp/MSGLib
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb2
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb2
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb2
https://modelica.org/documents/MLS.pdf
https://modelica.org/documents/MLS.pdf
https://modelica.org/documents/MLS.pdf
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb4
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb4
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb4
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb4
http://refhub.elsevier.com/S2352-7110(23)00134-6/sb4
http://dx.doi.org/10.1016/j.simpat.2022.102501
http://dx.doi.org/10.1016/j.simpat.2010.03.004
http://dx.doi.org/10.1016/j.simpat.2013.05.005
http://dx.doi.org/10.1016/j.simpat.2017.12.012
http://dx.doi.org/10.1016/j.simpat.2017.12.012
http://dx.doi.org/10.1016/j.simpat.2017.12.012
http://dx.doi.org/10.1177/00375497221094873
http://dx.doi.org/10.1177/00375497221094873
http://dx.doi.org/10.1177/00375497221094873

	MSGLib: A Modelica library for message passing communication
	Motivation and significance
	Software description
	Buffers
	Interface for MPC

	Illustrative Examples
	SimpleReal
	SimplePort
	LoopModular

	Impact
	Conclusions
	Declaration of Competing Interest
	Data availability
	References

