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Abstract 

This article describes the development of a generic disruption predictor that is 

also used as basic system to provide an estimation of the time to disruption at the alarm 

times. The mode lock signal normalised to the plasma current is used as input feature. 

The recognition of disruptive/non-disruptive behaviours is not based on a simple 

threshold of this quantity but on the evolution of the amplitudes between consecutive 

samples taken periodically. The separation frontier between plasma behaviours 

(disruptive/non-disruptive) is linear in such parameter space. The percentages of 

recognised and false alarms are respectively 98% and 4%. The recognised alarms can be 

split into valid alarms (90%) and late detections (8%). The experimental distribution of 

warning times follows an exponential model with average warning time of 443 ms. On 

the other hand, the prediction of the time to the disruption has been fitted to a Weibull 

model that relates this predicted time to the distance of the points to the diagonal in the 

parameter space of consecutive samples. The model shows a very good agreement 

between predicted times and warning times in narrow time intervals (between 0.01 s 

and 0.06 s) before the disruption. 

 

1. Introduction 

Nowadays, important efforts are exerted to develop disruption avoidance 

methods [1-3]. In general, avoidance techniques should detect that the plasma is close to 



a stability limit and, therefore, that the probability of disruption is not negligible. Hence, 

actions from the tokamak control system are required to steer the plasma to safe 

conditions. Generally speaking and thinking of ITER operation, ‘to steer the plasma to 

safe conditions’ means either to continue the discharge with different plasma parameters 

(for example, density, heating power, plasma current or magnetic field) or to terminate 

the discharge in a controlled way. 

However, in the presence of an impending disruption, avoidance actions cannot 

be applied and, therefore, mitigation methods are mandatory. These mitigation methods 

can be aimed at reducing forces, at alleviating heat loads during the thermal quench and 

at avoiding runaway electrons. Examples of amelioration measures can be the injection 

of a significant amount of gases through fast valves [4-5], killer pellets [6-8] or Electron 

Cyclotron Resonance Heating injection [9-10]. It is important to emphasise that 

disruption mitigation techniques crucially depend on reliable disruption predictors, 

whose alarms have to be triggered with enough anticipation time (or warning time) to 

the disruptive event. 

The objective of this article is twofold. A first goal is to show a simple method 

to develop a generic disruption predictor without the complexity of traditional machine 

learning models (for example, Support Vector Machines (SVM), artificial neural 

networks, regression trees or random forests) and whose outputs have a direct 

interpretation. The predictor is not based on amplitude thresholds but on modelling the 

signal increments between consecutive samples of relevant signals. Modelling the 

variations of amplitudes between successive samples is a novel approach to the 

disruption prediction problem. This article shows that a simple linear equation in two 

variables is powerful enough to predict disruptions in JET. 

A second goal is to provide an estimation of the time to the disruption (TTD) at 

alarm times, by means of the above predictor and without the need of black box models 

deduced from machine learning methods.  

Section 2 summarises general concepts of disruption prediction. Sections 3 and 4 

review disruption predictors and predictors of the time to disruption respectively. 

Section 5 shows the basis of the present predictor to recognise disruptive behaviours 

and section 6 describes the particular parameter space that has been used in this article. 

Section 7 summarizes the training process and section 8 presents and discusses 

prediction rates in JET. Section 9 implements the predictions of the time to the 

disruption and analyses its results. Finally, section 10 contains a discussion about the 

methods shown in the paper. 

2. Disruption prediction concepts and definitions 

So far, neither theory deduced from first principles nor empirical physics models 

are able to completely explain the causes and variety of disruptive events. However, at 

present, big efforts are being devoted to developing physics models of disruptions. This 



is a difficult task and only partial models (typically based on strong assumptions and 

unphysical boundary conditions [11-12]) are available. 

An alternative to physics models for disruption prediction is the use of machine 

learning methods. Machine learning methods allow the creation of binary classifiers in 

multi-dimensional feature spaces to determine the plasma status (disruptive/non-

disruptive) at any time. A training dataset, with examples (feature vectors) of both 

disruptive and non-disruptive behaviours, allows determining the separation frontier 

(i.e. an equation) between disruptive and non-disruptive states (fig. 1). To this end, an 

underlying machine learning method (for example, SVM, neural networks, fuzzy logic, 

Bayesian classifiers or deep learning) is required. The objective of these equations is to 

derive data-driven models to explain and predict disruptive events directly from the 

available empirical evidence. However, so far, equations with direct physics 

interpretation (i.e. simple form equations) are not reliable enough to cope with the 

description and prediction of disruptions. In present applications, the equations derived 

from general machine learning methods provide non-trivial relationships (complex 

equations) between several signals to describe the separation frontier. Although these 

complex equations are not suitable to interpret the physics causes of the onset of 

disruptive events, however, they are very useful to forecast imminent disruptions. In this 

way, during the discharges, feature vectors are used on periodic basis as inputs to the 

classifiers to determine in which part of the separation frontier the plasma is (fig. 1). 

 

Fig. 1: The separation frontier (or decision function) splits the operational space into two zones: 

disruptive and non-disruptive. The location of feature vectors at each time determines the plasma state. 

The assessment of predictors performance is carried out through three indicators 

that are obtained from a dataset of discharges different from the one used for the 

training process. The first output is the success rate (its complementary output is the 

missed alarm rate). The success rate is the fraction of disruptive discharges successfully 

recognised by the predictor over the total number of disruptive discharges in the test 

dataset. The second output is the false alarm rate. It is computed as the number of non-

disruptive shots that are recognised as disruptive ones divided by the number of non-

disruptive discharges in the test set. The third output is the distribution of warning times 

obtained from the test dataset. For test purposes, the warning time of a discharge is 

defined as the difference between the disruption time and the alarm time of the 



predictor. With this definition, positive warning times correspond to disruptive 

behaviours that are recognised with anticipation. However, a negative warning time 

means that the predictor identifies a disruptive condition after the disruption (tardy 

detection). 

In principle, disruption predictors could be trained to satisfy either avoidance or 

mitigation requirements. Typically, avoidance actions require longer anticipation times 

than mitigation methods. Therefore, in general, predictors for avoidance would have to 

provide warning time distributions that are peaked far from the disruption times. Fig. 2 

shows the conceptual difference between predictors for avoidance (fig. 2a) and 

mitigation (fig. 2b) in terms of the warning time distributions. The black line at warning 

time 0 is the disruption time reference of the discharges, i.e. an alarm with warning time 

equal 0 means that the alarm has been triggered at the disruption time. 

 

Fig. 2: Conceptual view of warning time distributions for avoidance (a) and mitigation predictors (b). The 

red dashed line represents the minimum warning time to apply a specific mitigation technique. 

Focusing the attention on fig. 2b, another important time is shown (red dashed 

line to the right of warning time equal 0). For real-time applications, it should be 

emphasised that mitigation alarms are only useful if the anticipation time is greater than 

the characteristic reaction time of a particular technique. Due to this fact, the success 

rate can be a biased indicator to qualify a predictor. The term ‘success rate’ includes 

three elements: disruptions recognised with negative warning times (that have been 

called tardy detections), disruptions predicted with a positive warning time but shorter 

than the reaction time required for a successful mitigation action and, finally, 

disruptions identified with a larger warning time than the reaction time needed for a 

successful mitigation action. The fraction of disruptions recognised with warning times 

(either positive or negative ones) less than the reaction time will be called ‘late 

detections’. The fraction of disruptions whose warning time is greater than the reaction 

time will be called ‘valid alarms’.  

For example, the time in JET to trigger the disruption mitigation valve (DMV) is 

10 ms and this is the reaction time that has been considered in this article. However, the 

cumulative fraction of detected disruptions with positive warning times (CUMUL0) is 

also important. This qualifier gives an idea about the potential increase of valid alarms 



with the availability of faster mitigation systems, i.e. mitigation systems with 

characteristic times less than 10 ms in the present case. 

It is important to note that the performance of avoidance and mitigation 

predictors strongly depends on the patterns used as features to train the classifiers. 

Avoidance predictors are much more difficult to develop because early precursors of 

potential disruptions also can appear in non-disruptive behaviours and they can generate 

high rates of false alarms. 

3. Review of disruption predictors 

In view of the difficulties to devise physics models for disruption prediction, a 

practical approach to protect tokamaks from disruptions has been the use of the mode 

lock (ML) signal as disruption predictor. During operation, magneto-hydrodynamic 

(MHD) instabilities can be locked to the wall and, therefore, the amplitude of the ML 

signal can increase. This raise is produced by two facts: the deceleration of the rotating 

mode and/or the growth of the MHD mode. In a running experiment, usually, if the ML 

amplitude crosses a certain threshold, (which is set-up prior to each discharge), an alarm 

is triggered to warn about an incoming disruption. In general, this threshold is selected 

in a manual way (within certain limits determined by experience) and it is chosen 

depending on the characteristics of the experimental programme: the ML threshold is set 

lower or higher depending on the potential danger of the possible disruptions. 

Disruption predictors based on the ML signal have been universally accepted in 

the nuclear fusion community due to its direct relation to MHD activity [13-14]. In JET, 

the ML signal is calculated as the n = 1 combination of saddle loop signals 

(http://users.euro-fusion.org/pages/mags/equilibrium/eq-coil-loop/saddle-loop/saddle-

loop.htm). More specifically, JET uses the ML signal normalised to plasma current 

(ML/Ip) as predictor. However, an optimal threshold (either ML or ML/Ip based) to 

trigger alarms cannot be determined. The manual selection of multiple thresholds in the 

execution of discharges has triggered alarms that do not correspond to real disruptive 

events (actually, they are false alarms). On the other hand, there are discharges in which 

the threshold was set-up excessively high and, therefore, disruptions occurred (missed 

alarms). However, these missed alarms cannot be used to determine a good threshold 

because there are non-disruptive discharges whose maximum amplitudes are higher than 

amplitudes in disruptive discharges. This is a clear symptom that thresholds in the ML 

or ML/Ip signals are not optimal disruption predictors. 

As a consequence, historically, the simple ML (or ML/Ip) threshold has not been 

enough to achieve success rates close to 100%. The reason for this, apart from the 

problems associated to the lack of an optimal threshold, resides in the fact that not all 

disruptions show a non-rotating mode close to the disruptive event (for example, 

disruptions linked to vertical displacement events). To improve disruption prediction, 

general machine learning methods have been used with, typically, several of the 

following signals: ML, plasma current, poloidal beta, poloidal beta time derivative, 

safety factor, safety factor time derivative, total input power, plasma internal 

http://users.euro-fusion.org/pages/mags/equilibrium/eq-coil-loop/saddle-loop/saddle-loop.htm
http://users.euro-fusion.org/pages/mags/equilibrium/eq-coil-loop/saddle-loop/saddle-loop.htm


inductance, plasma internal inductance time derivative, plasma vertical centroid 

position, plasma density, stored diamagnetic energy time derivative and net power [15]. 

These quantities have been combined in multiple ways (to form various multi-

dimensional spaces) with different underlying machine learning methods: SVM [16], 

fuzzy logic [17] or Artificial Neural Networks [18-19]. 

The use of multi-dimensional spaces with amplitudes exclusively in the time 

domain is outperformed by the use of features either exclusively in the frequency 

domain [15, 20-21] or with combinations of both domains [22-24]. Again, in these 

cases, the resulting predictors are very useful to recognise incoming disruptions with 

enough anticipation time (on average, hundreds of ms in JET). However, the physics 

interpretation of the models implemented by these predictors are not clear at all. 

4. Review of methods to predict the time to the disruption 

The TTD prediction is a difficult problem with no practical solution so far. 

There have been few attempts to deal with this but all of them use, first, a complex 

structure of artificial neural networks for the prediction, second, a limited number of 

discharges and, third, particular types of disruptions. The first point prevents the 

possibility of identifying physics reasons and the other two imply that these predictors 

cannot be generalised to a large number of disruption types. A brief description of three 

TTD predictors follows. 

The first one is a proposal from Pautasso et al [25] that is based on a two-layer 

artificial neural network. The first layer contains 20 neurons and the network output 

(second layer) provides the time interval to the disruption. Therefore, the predictor is a 

temporal evolution signal whose value at each time instant is the time to disruption. To 

filter false positives, an alarm is triggered when the predictor output is less than or equal 

to 50 ms during three consecutive samples (sampling period is 2.5 ms). The predictor 

was tested on-line in open loop with 128 discharges (28 of them were disruptions). The 

success and the false alarm rates with reduced types of disruptions were 79% (22/28) 

and 7% (7/100) respectively. 

A second work [26] related to TTD prediction used a fuzzy framework only to 

achieve a suitable clustering of the input space. The proposed predictor defined a 

complex structure of neural networks (NN). A first processing layer based on the radial 

basis function NN scheme was basically used to decompose the original database into 

four subsets. The layer outputs were used to activate four multilayer perceptrons, trained 

exclusively on a subset of the original database. The output of the system was a single 

node linear layer that provided the estimated time to disruption as well as an alarm 

when appropriated. As in [25], the predictor generated a temporal evolution signal (time 

period of 2.5 ms) and the alarm was triggered when the time to disruption was below a 

certain threshold. An on-line test of the predictor was carried out in open loop, but the 

total number of discharges is not specified in [26]. In these tests, an alarm was triggered 

when the TTD was maintained in the range 250 ms – 350 ms for ten consecutive 

predictions (to avoid false alarms). 



A third work about predicting the time to disruption [27] was applied to the JET 

database and was also based on artificial neural networks. The best network 

configuration was composed of nine inputs, two hidden layers with six and five hidden 

neurons respectively, and one output. Only signals available in real-time were taken into 

account (this means that data relying on off-line equilibrium reconstruction or off-line 

processed data were not used). The neural network output was a real number between 0 

and 1 representing the risk of disruption, which is obtained every 20 ms. An alarm was 

triggered when the neural network output is above a certain threshold that was chosen 

minimizing a detection error function. The predictor was tested with 62 and 132 

disruptive and non-disruptive shots respectively. The neural network output was 

analysed in a time interval between 440 ms and 100 ms before the disruption. A success 

rate of 83.9% was reported. 

From these brief descriptions, the complexity of the potential solutions and also 

the lack of physics basis in the developed TTD predictors are more than evident. 

5. Rationale of a generic disruption predictor based on centroids 

In view of the next DT campaign in JET and of the future operation of ITER and 

DEMO, disruption predictors need to be implemented as simple equations with direct 

physics meaning. This section describes a simple and general method to develop 

predictors based on a very general principle. 

Let’s consider a multi-dimensional parameter space 
m  where each 

dimension is a physics quantity. The general method proposed here to develop generic 

predictors can be summarised in two simple rules: 

1. Both the disruptive and non-disruptive physics knowledge in  can be 

compressed into two single points CD and CN respectively (fig. 3). 

2. At any time t in a running discharge, the plasma state is represented by a point 

 1 2, ,..., mP x x x   (fig. 3). If the Euclidean distance from P to CD  , DP Cd  is 

shorter than the Euclidean distance from P to CN  , NP Cd , the plasma is 

recognised as being in a ‘disruptive state’. Otherwise, the plasma is in a ‘non-

disruptive state’. It should be noted that this reasoning is consistent from a 

physics point of view: the plasma state is associated to the closest behaviour 

summarised by the two points CD and CN. 

 



Fig. 3: A general predictor can be based on the well-known nearest centroid technique. From m physics 

quantities, CD and CN are centroids, which condense the relevant information about disruptive and non-

disruptive behaviours respectively into two points in . 

The points  1 2, ,...,D mC d d d  and  1 2, ,...,N mC c c c  are the centroids of a dataset 

of disruptive and non-disruptive examples in the parameter space  respectively. In 

other words, given a training dataset made up of both disruptive examples 

 1, 2, ,, ,..., , 1,...,i i i m i Di n      and non-disruptive examples 

 1, 2, ,, ,..., , 1,...i i i m i Ni n     , the respective coordinates of CD and CN are  

    1 2 1, 2, ,, ,..., , ,..., , 1,...,m i i m i Dd d d mean i n      

and  

    1 2 1, 2, ,, ,..., , ,..., , 1,...,m i i m i Nc c c mean i n      

where  mean  returns a vector containing the average value of each column ,j i  or 

, , 1,...,j i j m  . 

This general predictor assigns a disruptive behaviour to point  1 2, ,..., mP x x x  

when 

 , ,D NP C P Cd d   

that can be written explicitly as 

    
2 2

1 1

m m

i i i ii i
x d x c

 
      

By simple algebraic manipulations, the condition of disruptive behaviour can be 

expressed 

    2 2

1 1
2

m m

i i i i ii i
d c x d c

 
       (1) 

Taking into account that the centroid coordinates are fixed for each given training set, 

equation (1) is linear in the physics quantities xi: 

 
1

m

i ii
A x K


    (2) 

where , 1,...,iA i m and K are constants that are determined in the computation process 

of the centroids. Equation (2) summarises the first result of this article: the formulation 

of a very general disruption predictor that can be implemented in an easy way. 

It is important to note five important facts, in comparison with other machine 

learning predictors: 



a. Equation (2) has been deduced from a very simple criterion (the shortest 

distance to a centroid) without any other kind of hypothesis. No assumptions 

about layers, neurons, kernels, tree branches etc. have been required. In addition, 

no time consuming optimization algorithms are necessary for training. 

Moreover, new re-trainings (centroid computations) can be carried out in a fast 

way whenever new training examples have to be added. 

b. Equation (2) is linear in the physics quantities, which makes easier the physics 

interpretation. 

c. Equation (2) allows a very simple recognition of disruptive behaviours given the 

coordinates of point  1 2, ,..., mP x x x  at any time instant. 

d. Due to the general validity of the equation, it could be used for both avoidance 

and mitigation. The distinction between both applications resides in the 

precursor capability of the quantities used in the development of the predictor. 

Of course, multiple predictors (either for avoidance or mitigation) can be 

obtained by simply changing the physics quantities to form the parameter space 

. 

e. The prediction is accomplished through a linear inequality, which is very 

efficient from a computational point of view, even in the case of large 

dimensions (large m). Therefore, the implementation under real-time 

requirements is not a problem (for example, JET real-time network has a 

characteristic time of 2 ms and this time is sufficiently long to make predictions 

with equation (2)). 

 

6. Application to JET of the centroid method for mitigation purposes 

This section shows a specific implementation of a generic disruption predictor 

for JET based on equation (2). To accomplish this implementation, several 

considerations have been taken into account: 

 Only quantities in the time domain have to be used in order to make easier the 

physics interpretation of the predictions. This prevents one from using features 

in the frequency domain which, in addition to having a more difficult meaning, 

also impose the need of data processing in time windows with a minimum 

number of samples. 

 So far, linear predictors based on general purpose machine learning methods 

have not achieved high success rates (> 95% is required for ITER) and low false 

alarm rates (<5 % for ITER) in a simultaneous way. However, the challenge is 

to find the simplest linear predictor based on the centroid method that is able to 

approach ITER requirements. 

 The use of equation (2) in one-dimensional spaces would be connected to the 

existence of simple thresholds in individual signals to identify disruptive 

conditions. However, experience tells that this is not optimal as mentioned in 

section 3. Therefore, the simplest predictor not linked to a threshold that is based 

on equation (2) defines a separating frontier between disruptive/non-disruptive 

behaviours of the form: 1 1 2 2A x A x K    . This means that the corresponding 

parameter space  has dimension 2. 

 The developed predictor has been optimised to recognise disruptive behaviours 

close to the disruptions (mitigation purposes). 



 The mode lock signal is one of the most relevant quantities in JET to create 

predictors for mitigation. On the one hand, it is known that most of the JET 

disruptions generate a mode lock previous to the disruption [1]. On the other 

hand, the lack of the ML signal produces very bad predictions in JET [28]. 

Therefore, the ML signal will be present in the application of the present 

predictor. 

 

The above considerations motivate the development of a predictor in a two-

dimensional space and the use of the ML signal. So, next step would be the search for a 

second signal to be used together with the ML. However, if possible, the fewer signals 

the simpler the predictor. Therefore, the idea is to use only the ML signal but after 

mapping it into a two-dimensional feature space. This mapping is an evolution of a 

recent approach focused on anomaly detection to recognise disruptive events [29-31]. 

In the case of the present predictor (that is based on centroid computations), and 

assuming that the ML signal has a sampling period , the two-dimensional parameter 

space is defined by the amplitudes of consecutive samples of the ML signal. Fig. 4 is an 

example of how the amplitudes of consecutive samples define points in this feature 

space.  

 

Fig. 4: ML amplitudes in black, red, cyan, green and purple diamonds are respectively points P1, P2, P3, 

P4 and P5 in the feature space. X(t) are the ML amplitudes (in T). 



Once the two-dimensional feature space is defined, it is necessary to apply the 

procedure described in section 3. Given a training dataset of Nn  non-disruptive 

discharges with respective non-disruptive examples  1, 2,, , 1,...i i i Ni n     and Dn  

disruptive shots with corresponding disruptive examples  1, 2,, , 1,...,i i i Di n    , the 

coordinates of the non-disruptive centroid  1 2,NC c c  are  

    1 2 1, 2,, , , 1,...,i i Nc c mean i n     

and, in a similar way, the coordinates of the disruptive centroid  1 2,DC d d  are 

    1 2 1, 2,, , , 1,...,i i Dd d mean i n     

where  mean  returns a vector containing the average value of each column. 

At this point, it is necessary to specify how disruptive/non-disruptive examples 

of individual discharges are obtained. 

In the case of a non-disruptive shot, the time interval considered for the training 

starts when the plasma current is above a certain threshold, let’s say IT1, until the plasma 

current decreases below a possible different threshold IT2. In this article, IT1=0.9 MA 

and IT2=0.7 MA. 

Examples of disruptive discharges in  are determined in a different way. In 

general, the selection of a number of disruptive feature vectors to train predictors is not 

unique because disruption precursors do not appear always with the same anticipation. 

However, for mitigation purposes, it is reasonable to assume that the closer the feature 

vector to the disruption the more reliable the selection is. In the present case, only one 

example per disruptive discharge is considered in  and it has to be as close as possible 

to the disruption. 

7. Training process description: computation of the centroids 

The datasets of discharges used in this work correspond to JET operations with 

the ILW. The specific information appears in table 1. Disruption times have been 

defined as the time when the current quench starts. Approximately one third of the 

available discharges have been used for training (i.e. centroid computations) and the rest 

for test. In particular, the disruptive discharges from table 1 are unintentional and 

unmitigated disruptions. 

In this article, the predictor based on centroids has been tested with the mode 

lock normalised to the plasma current. In this respect, it is important to note that the 

reasoning carried out in the previous section about the ML signal (in particular, fig. 4) is 

valid for ML/Ip. As mentioned previously, the ML/Ip signal is typically used in the JET 

control system to trigger disruption alarms when its amplitude is above a selected 



threshold. Typical threshold in JET is when ML/Ip is above a value usually between 

0.400 – 0.520 mT/MA [32]. 

Table 1: Datasets of disruptive discharges (D) and non-disruptive discharges (ND) to test a predictor 

based on centroids in JET. ‘Training’ means computation of centroids. 

Type/use Number 

of shots 

Range 

D/training 113 80181-82504 

SEP 2011-MAR 2012 

ND/training 1397 80176-82550 

SEP 2011-MAR 2012 

D/test 277 82569-92410 

MAR 2012-NOV 2016 

ND/test 3027 82552-92504 

MAR 2012-NOV 2016 

 

Fig. 5 shows the disruptive and non-disruptive centroids obtained with the 

training discharges of table 1: 

disruptive centroid:  1 2,D Dd stdx d stdy   

non-disruptive centroid:  1 2,N Nc stdx c stdy   

where 

    1, 2,, , , 1,...,D D i i Dstdx stdy std i n     

    1, 2,, , , 1,...,N N i i Nstdx stdy std i n     

and  std  returns a vector containing the standard deviations. 

 

Fig. 5: Black points with error bars are the centroids. Blue and red points are non-disruptive and 

disruptive examples of individual discharges respectively. The plot shows the centroids for the mode lock 



normalised to plasma current. The sampling period of the ML/Ip signal has been  = 0.002 s. The dashed 

straight line is the separation line between disruptive and non-disruptive behaviours. 

The dashed line in fig. 5 is the linear separation frontier between disruptive and 

non-disruptive behaviours in the parameter space of the centroids. Fig. 5 also shows that 

non-disruptive examples form very compact clusters but the disruptive examples are 

scattered. Also, it should be emphasised that the error bars of the disruptive centroids do 

not overlap with the cluster of non-disruptive examples. 

The error bars in the case of the non-disruptive centroid do not have any 

influence in the frontier estimation due to the high compact cluster structure. This is a 

consequence of the fact that 0N Nstdx stdy  . However, the displacement of the 

disruptive centroid within the square box defined by the error bars (fig. 6) changes both 

the slope and interception of the straight line. Therefore, to take into account the 

potential impact of the error bars, these ones have been divided in quarters. In this way, 

9 points are considered in each direction and, therefore, 81 different disruptive centroids 

have been considered (fig. 6). Consequently, 81 different models have to be tested and a 

criterion to choose the best one has to be established. In the present case, receiver 

operating characteristics (ROC) analysis has been implemented. Given different models 

for the same training and test datasets, the ROC curve [33] plots the success rate of each 

model versus their corresponding false alarm rates. The best model is defined by the 

point (false alarm, success rate) that is closest to the point (0, 100). 

 

Fig. 6: In addition to the initial disruptive centroid  
1 2
,

D
C d d , 80 new disruptive centroids are obtained 

with positive/negative increments of its coordinates in relation to the error bars in each dimension. The 81 

centroids are the red points. 

8. Results in JET with ILW discharges 

Each one of the 81 models obtained by considering the displacement of the 

disruptive centroid has been qualified in terms of the valid alarm and false alarm rates 

together with the distribution of warning times according to the definitions provided in 

section 2. Fig. 7 shows the ROC curve of the 81 different models, where the valid alarm 

rates are plotted versus the false alarm rates. The closest predictor to (0, 100) is the 

optimal predictor and corresponds to the disruptive centroid located in the point 



 
1 2

0.75 ,
D D

d stdx d stdy   . The separation frontier between disruptive and non-disruptive 

behaviours is 

    0.7441 0.002 6.1243 10X t X t e        

where      /X t ML t Ip t , 0.002 s is the sampling period, ML is in Tesla and Ip in A. 

Therefore, a disruptive behaviour is recognised with this model and with this sampling 

period when 

    0.7441 0.002 6.1243 10.X t X t e        (3) 

 

Fig. 7: ROC curve for ML/Ip. The red square is the closest points to (0, 100) and determines the best 

predictor. 

By applying the model of equation (3) to the test dataset of table 1, the results 

are shown in table 2. Fig. 8 shows the distribution of warning times. This distribution 

can be fitted to an exponential model of the form 

    0
exp wf w f

T
     

where  f w  is the fraction of detected disruptions with a warning time w, 0f  is the 

fraction of detected disruptions with positive warning times and T is the average 

warning time of the predictions. The resulting model parameters are 

0 0.8963 0.0055f    and 0.4428 0.0039T    s, where the estimations have been 

performed with 95% of confidence bounds and the R-square factor of the fit is 0.9778. 

 

Table 2: Results of the predictor selected by the ROC curve. The average warning time (AVEWT) is 

determined by the fit of the warning times distribution to an exponential model. 

CUMUL0 (%) 98 

Valid alarms (%) 90 

False alarms (%) 4 

AVEWT (ms) 443 



 

 

Fig. 8: The distribution of warning times (w) follows an exponential model with an average warning time 

of 443 ms. 

The summary of the best predictor obtained by the ROC analysis is shown in 

table 2. Obviously, the rest of predictors in the ROC analysis are implemented in a very 

similar way to equation (3). All of them follow the expression 

    0.002X t A X t B      (4) 

where A and B are constants that are different for each predictor and depend on the 

coordinates of the respective centroids. 

It should be emphasised that a simple linear inequality in two variables can 

predict with high reliability (high valid alarm and low false alarm rates) disruptive 

behaviours in JET. The inequality is the outcome of condensing the disruptive/non-

disruptive character of JET ILW shots into two centroids. During a running discharge, 

points in the feature space are obtained on a periodic basis and its nearest centroid 

determines the plasma state. The signal used in the predictions (ML/Ip) is a common 

quantity used in JET to recognise disruptive behaviours but, in this article, instead of 

basing the prediction on a threshold, a particular data processing has been performed. 

Fig. 9 shows scatterplots of a non-disruptive discharge (fig. 9a) and two 

successful disruption predictions (fig. 9b and 9c). Green crosses represent non-

disruptive behaviours and are located below the separation frontier (red line). Red 

circles are disruptive behaviours and appear above the red line. It is important to 

emphasise that non-disruptive points are quite concentrated around the diagonal of the 

parameter space. However, disruptive points are very spread from the diagonal.  

 

 

 



 

 

 

 

 

 

Fig. 9: Scatterplots in the parameter space of consecutive samples for one non-disruptive discharge (a) 

and two disruptive discharges (b, c). Black squares are the centroids. It should be noted that  = 0.002 s. 

9. Distance to the diagonal in the parameter space: physics interpretation 



An off-line analysis of the disruptive ILW discharges in JET and the 

corresponding alarms triggered by eq. (3) allows establishing that disruptive points 

close to the diagonal show larger warning times than the ones far from the diagonal. It is 

important to note that the term ‘warning time’ is the actual time interval between the 

alarm time and the disruption time. The empirical fact that the closer the points to the 

diagonal the larger the warning times suggests the hypothesis that when an alarm is 

triggered, the time to the disruption TTD is related to the distance Dd  to the diagonal, 

i.e.  DTTD f d . 

To model the form of the distribution, a first set of data is required to perform a 

fit. Once the fit has been carried out, a second set of data (different from the first one) is 

necessary to test the hypothesis. 

To generate the first set, the 113 disruptive discharges of table 1, which have 

been used to determine equation (3), are considered. The predictor represented by 

equation (3) is applied to each one of these 113 discharges to obtain all pairs 

    ,  distance to the diagonal warning time  whenever a disruptive behaviour is detected. 

This means that every discharge can possibly contribute with several pairs. It is 

important to note that the use of equation (3) for mitigation purposes only needs the first 

recognition of a disruptive behaviour to trigger an alarm. However, the situation to 

model the warning times is different as all possible pairs can contribute to fit the data to 

a specific distribution model. 

With regard to the test procedure, a second set of pairs 

    ,  distance to the diagonal warning time  is generated. This set is made up of all pairs 

corresponding to disruptive behaviours that are obtained with equation (3) and the 277 

test disruptive discharges of table 1. 

Among the various alternatives investigated, the best pdf to relate distances to 

TTDs is a Weibull distribution model of the form 

    1 exp , 0D D D DTTD d d d d            (5) 

where TTD(dD) is an estimation of the time to the disruption, dD is the distance to the 

diagonal and, finally,  and  are the model coefficients. 

However, at this point, some considerations have to be taken into account. The 

first one is related to the selection of pairs from the training set to determine the model 

parameters ( and ). Due to the fact that 10 ms is the minimum time in JET to mitigate 

disruptions with the DMV, a disruption time predictor for JET should be trained to 

make estimations of TTDs greater than 10 ms. Therefore, only training pairs whose 

warning time is greater than or equal to 10 ms are used. 

The second consideration is related to the goal of finding the largest warning 

time for which the model of equation (5) provides good results. To this end, 14 intervals 



of warning times have been defined to create 14 different models whose training 

warning times are between the following time limits 

  0.01,0.02 1 0.01 , 1,...,14k k        (6) 

where the times are in s. It should be noted that the temporal resolution between 

intervals is 0.01 s. 

With this definition of intervals, the largest interval with the best results obtained 

with the test set will define the best model fit. It is important to note that the minimum 

width is 0.01 s and the maximum one is 0.14 s. 

The last point refers to the specifications for building the test set. The test pairs 

(dD, warning time) are generated with equation (3) for all the test discharges. From this 

set of pairs, 14 subsets are chosen in such a way that the corresponding test pairs are 

grouped according to their warning times. In this way, each subset includes the pairs 

(dD, warning time) within the intervals established by equation (6). 

Once the test subsets are defined, the dD coordinates of the test points that 

recognise a disruptive behaviour are used as inputs to equation (5) to get the TTD 

estimations. To assess the model fit, a comparison between the warning times from 

equation (3) and the TTDs from equation (5) is carried out. The TTDs are classified into 

one of three classes. The first class contains the fraction of test discharges whose TTDs 

are below the limit of 10 ms. This corresponds to discharges in which the model fit 

produces smaller TTDs than the real warning times. The second class includes the 

fraction of discharges whose TTDs are within the warning time interval used for 

train/test. This is the ideal case. The third class comprises the fraction of discharges 

whose TTDs exceed the right limit of the warning time interval. This situation takes 

place when the model fit provides greater TTDs than the real warning times. Therefore, 

according to this classification criterion, a successful model would produce very low 

rates in classes 1 and 3 and a high rate in class 2. 

Figure 10 shows the three test rates corresponding to classes 1, 2 and 3 

respectively of the 14 models. It can be seen that models from k = 1 to k = 6 (equation 

(6)) provide the best possible results, i.e. class 1: 0%, class 2: 100%, class 3: 0%. This 

means that any one of these 6 models determine good predictors of the time to the 

disruption because the test warning times and the test TTDs show the same values in 

narrow time intervals. 

In particular and according to the second consideration above concerning the 

largest warning time that produces the best results, the best choice corresponds to the 

model with k = 6. In this case, the model parameters  and  of equation (5) with 95% 

confidence bounds are respectively 0.0145 0.0041    and 0.7038 0.1060   . 

Appendix I shows an example of Weibull fit together with the  and  parameters for k 

= 1, …, 6. 



 

Fig. 10: Test rates in the respective classes for each one of the 14 models. The x axis shows the right limit 

of the respective time intervals. 

10. Discussion 

The centroid method is a reliable disruption predictor for JET that has been 

developed by means of a single signal: mode lock normalised to the plasma current. The 

method compresses into two single points the disruptive and non-disruptive information 

of ILW discharges and the prediction is based on the nearest centroid approach. The 

disruptive/non-disruptive plasma state is determined by a simple linear inequality in two 

variables, where the variables are the amplitude of consecutive samples that are 

acquired every 2 ms on JET. 

The linear dependency of equation (3) means that a simple threshold is not 

optimal to recognise disruptive behaviours. An additional condition has to be fulfilled. 

For example, the typical ML/Ip thresholds in JET between 0.400 mT/MA and 0.520 

mT/MA [32], used to recognise a disruptive state at time t, are actually false alarms if, 

according to equation (3), the amplitudes 2 ms earlier are below 0.285 mT/MA and 

0.124 mT/MA respectively. In the same way, small amplitudes (let’s say 0.300 

mT/MA) do not ensure a non-disruptive behaviour. In the case   0.300 /X t mT MA , 

a disruptive behaviour is present if   0.420 /X t mT MA  . Recently, following a 

different line of reasoning, the use of simple thresholds in the ML signal has been 

proven to be unreliable [34]. 

However, taking into account that the ML/Ip signal is always a positive quantity, 

the intercept of equation (3) defines a critical value above which the plasma is always in 

a disruptive state. In other words, if   6.1243 10X t e   T/A, equation (3) is always 

true regardless of the amplitude  0.002X t  . 

Moreover, it is important to note that the centroid method is flexible enough to 

operate at different risk levels of disruptions without manual selection of thresholds. 

The centroid method allows a more flexible operation by selecting a specific predictor 

on the ROC curves (fig. 7). A ROC curve permits the selection of a particular predictor 

to balance the requirement of a high success rate at the price of increasing the false 



alarm rate or to admit a smaller success rate but ensuring very low rate of false alarms. 

According to this, instead of choosing a signal threshold, a different predictor can be 

selected for each discharge because all of them implement equation (4), with A and B 

known in each case. 

With regard to the distribution of points in the space of consecutive samples, the 

common property of the points close to the diagonal is that the difference of amplitudes 

between consecutive samples is really small. But it should be noted that the amplitude 

of the ML/Ip signal is related to the rotation braking of an MHD mode or to the 

increasing amplitude of the mode. Therefore, a small difference between consecutive 

samples of the ML/Ip signal can be interpreted like small variations either in the rotation 

or in the amplitudes of MHD modes and then, when these small variations take place 

they cannot be associated to disruptive behaviours. However, disruptive behaviours can 

be identified when the points in the parameter space are ‘far enough’ from the diagonal, 

which means that there is ‘enough difference’ between the amplitudes of consecutive 

samples. So, following the previous reasoning, it is possible to conclude that abrupt 

changes in the amplitude of consecutive samples means abrupt changes either in the 

rotation or in the amplitudes of MHD modes and, therefore, the fast variations are 

related to disruptive behaviours. 

In addition to this, taking into account the bi-dimensional space of consecutive 

samples of the ML/Ip signal, the distance to the diagonal of a point in this space has 

been related to the time to the disruption by means of a Weibull model. 

The estimation of the time to the disruption is a very relevant achievement that 

has been tested with good results. The most important aspect to emphasise is the simple 

empirical reasoning to determine the TTD instead of using very complex expressions 

deduced from general machine learning methods like in [25 - 27]. 

By considering three classes to compare the TTD predictions with the real 

warning times at the alarm times produced by the centroid method, the best possible 

results (class 1: 0%, class 2: 100%, class 3: 0%) are obtained at time intervals close to 

the disruptions (the largest interval is  0.01,0.07  s). However, larger time intervals (up 

to 0.15 s) also provide good results (fig. 10). It should be noted that the fraction of 

points whose predicted TTD and warning time belong to the same interval (class 2) is 

above 95% (except in one case). In the same way, the fraction of pairs whose predicted 

TTD is less than the real warning time (class 1) is below 2% in all cases. Finally, the 

fraction of pairs in which the predicted TTD is greater than the corresponding warning 

time (class 3) is always less than 5%. 

With regard to methodological developments, it is a subject for future 

investigations to address the potential of the described techniques (centroid method and 

TTD estimation) to provide also classification of the disruption types. This is indeed a 

very important aspect for the optimisation of avoidance and mitigation strategies and 



can require also more sophisticated metrics, such as the Geodesic Distance on Gaussian 

Manifolds already pioneered in [35]. 

Appendix I 

Fig 11 shows, as an example, all the pairs with warning times less than 0.4 s 

from the training set of 113 disruptive discharges and the fit to a Weibull model. 

 

Fig. 11: Circles are the pairs (distance to diagonal, warning time) that are obtained by recognizing 

disruptive behaviours with equation (3) in the dataset of 113 disruptive discharges shown in table 1. The 

continuous red line is the fit to a Weibull model. 

Fig. 12 shows the model parameters  and  of equation (5) with 95% 

confidence bounds for k = 1, …, 6. It is important to note that the first parameter 

remains around 0.015 but the second one decreases from 1 to 0.7. Equation (5) with  = 

1 reduces to an exponential model (that is able to explain only the case for k = 1). 

However, the Weibull models explain the 6 cases in which the test warning times and 

the test TTDs have the same values inside narrow time intervals with the best possible 

prediction rates.  

 

Fig. 12: Variation of the  and  parameters of the Weibull fit with 95% confidence bounds for the cases 

k = 1, …, 6 of the time intervals (6). The horizontal axis shows the right limit of the intervals. 
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