
Highlights
A novel feature engineering approach for high frequency financial data
Pablo Mantilla,Sebastián Dormido-Canto

• It is proposed a feature engineering for high frequency financial data based on time series segmentation.
• This methodology allows to extract and analyze variables by intraday trends, as well as feeding artificial intelligence

models in order to forecast response variables in future trends.
• This feature engineering is applied to estimate high frequency volatility, duration and direction linked to future intraday

trends.
• Experimentation was conducted using high frequency financial data from the Brazil Stock Exchange.



A novel feature engineering approach for high frequency financial data
Pablo Mantilla, Sebastián Dormido-Canto
Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

A R T I C L E I N F O
Keywords:
Artificial intelligence in finance
High frequency financial data
Time series segmentation
Intraday volatility
Directional forecasting

A B S T R A C T
It is proposed a feature engineering for high frequency financial data based on constructing dynamic
data subsets, defined by time intervals in which high frequency trends occur. These intervals are
obtained through time series segmentation. This methodology allows to extract and analyze variables
by intraday trends, as well as feeding artificial intelligence models in order to forecast response
variables in future trends. Furthermore, in order to show how to use this feature engineering, this
methodology is applied to estimate high frequency volatility, duration and direction linked to future
intraday trends, developing multiclass classification models based on the machine learning method
XGBoost. Experimentation was conducted using high frequency financial data from the Brazil Stock
Exchange, corresponding to 206 trading days related to 20 listed assets from this financial market.

1. Introduction
In the new technology era, artificial intelligence has

become a central issue for data science, with applications
in numerous branches of science. One of these fields is
finance, where machine learning techniques have emerged
as powerful tools to extract knowledge from high frequency
data and have become an increasingly important research
area to tackle high frequency financial data analysis and fore-
casting. On the other hand, the widespread use of electronic
systems on the stock markets has made it possible to store
these data with the high precision with which it is generated.
This situation has caused a boom in the application of
learning algorithms to this type of data, as it is showed in
the comprehensive review presented in (Ntakaris, Magris,
Kanniainen, Gabbouj & Iosifidis, 2018).

These data are characterized by being generated at irreg-
ular intervals with precision of milliseconds or even higher
frequencies, which causes high volumes of data containing
multiple variables. In other ways, we are not dealing with
usual time series, since these data come from buy and sell
orders that arrive to the market system, where some of
these orders intersect, giving rise to what are called trades,
and others remain queued, whose processing consists of the
reconstruction of the so-called limit order book. The final
data contain multiple variables that evolve over time, which
has contributed to the fact that these data have been the
subject of a multitude of research works from a statistical
point of view (Hautsch, 2012). However, the very nature of
these data causes that their distributions are not maintained
over time, so that this circumstance has created a suitable
framework to address the resolution of forecasting problems
on these data with other kinds of methods, based on artificial
intelligence, in which it is not necessary to make assump-
tions on the distributions of these data (Nousi, Tsantekidis,
Passalis, Ntakaris, Kanniainen, Tefas, Gabbouj & Iosifidis,
2019).
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The progressive scientific interest in the combination
of knowledge fields related to high frequency data analysis
and artificial intelligence methods for forecasting purposes
is evident in the multiple references cited in this scientific
article, most of which have been published in recent years.
This growing body of literature recognizes the importance
of using machine learning methods to analyse, modeling,
and forecast financial markets. Moreover, there is strong
private sector interest in this research topic, on account of
the fact that investment banks, hedge funds and other wealth
management firms are in the race for successful forecasts, in
addition to higher returns at lower risks.

In order to apply machine learning techniques on raw
data from financial markets, and solve multiple high fre-
quency forecasting problems, it is necessary to extract rel-
evant features from these data, so they must be previously
analyzed and treated, using techniques that allow to achieve
this objective. The literature reviewed contemplates feature
extractions on sets of observations with a constant number
of elements, making forecasts on a fixed forecast horizon.
This is the situation of the usual forecasting problems in this
research field, such as volatility estimation and directional
forecasting linked to price movements. In such cases, the
cited forecasts are made based on a previously defined
sampling scheme and forecast horizon. However, volatility
is a variable that presents clustering in its values and does
not have symmetry with bullish and bearish movements
(Engle & Patton, 2001), so it seems reasonable to group
volatility values by intraday trend movements. In addition,
high frequency quotes tend to experience intraday trends
with irregular duration. These particularities arouse interest
in knowing what would be the evolution of a relative volatil-
ity linked to intraday trends durations, or what direction or
duration a future intraday trend would have. But the posed
problem is not limited to these variables, there are many
others whose evolution could be linked to intraday trends.

The research objective is to extract features from intraday
trends in the trades series and from the limit order book
states at every time in the trend movements. Therefore, a
methodology that meets this objective was developed, which
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provides answers to the questions previously formulated,
since it allows to analyze variables over time intervals in
which intraday trends occur, and also allows to estimate how
a variable will behave in future intervals, using values from
variables in previous intervals, treating them as regressors
that explain the variation in the response variable using
artificial intelligence models.

The sampling and forecasting scheme in this method-
ology constitutes a different approach from the traditional
one, which usefulness is aimed at solving a specific problem
with high frequency financial data, where the purpose is
to analyze variables over time intervals in which intraday
trends occur and estimate dependent variables in future
intervals. Therefore, the main contribution is a methodology
to extract features from subsets with variable composition.

The general structure of this document is organized in
seven sections, including this introductory part. The state of
the art related to this experimental research is reviewed in
Section 2. In Section 3, the research problem is stated and
it is raised the proposal. Section 4 includes the application
of the developed methodology to forecasting problems, in
which the artificial intelligence algorithm extreme gradient
boosting is applied. Section 5 contemplates the extensive
and laborious experimentation conducted in this research, in
which the designed methodology is executed and evaluated
and in which the developed feature engineering is applied
to three specific forecasting problems. Results are discussed
in Section 6. Finally, the concluding remarks are stated in
Sección 7.

2. Related work
In general terms, the state of the art linked to this research

is framed in the scientific field related to the application of
artificial intelligence methods to high frequency financial
data. Specifically, it is a feature engineering for high fre-
quency data, where the existing methods start from data sub-
sets with fixed composition, from which the corresponding
features are extracted. On the contrary, the developed feature
engineering contemplates an additional previous step, which
consists of constructing data subsets with variable composi-
tion, according to a specific criterion. For this reason, it is
considered that it has posed a new problem in artificial intel-
ligence using high frequency financial data. However, there
are works related, in some way, to this research proposal,
which are commented below.

The methodology exposed in this article is applied to
forecast intraday volatility linked to high frequency trend
movements, where it is used a dynamic blocking scheme
without overlapping, that is, it is sequentially computed
volatility over intervals with variable duration, which did not
share observations between them. It has not noted that this
type of sampling scheme is collected in the literature on high
frequency volatility. Nevertheless, volatility has been treated
with artificial intelligence models.

An example of volatility forecasting with machine learn-
ing models is found in (Ramos-Pérez, Alonso-González &
Núñez-Velázquez, 2019), where they used Gradient Descent

Boosting, Random Forest (RF), Support Vector Machines
(SVM) and Artificial Neural Networks (ANN) to forecast the
volatility of the S&P500 index. In this publication, they used
the standard deviation of returns as a proxy for volatility,
calculated with a window size equal to 5 observations. Also
in (Liu, 2019) were used SVM, Long Short-Term Memory
(LSTM) networks and daily data from the cited index and
Apple Inc., where the objective was to forecast volatility on
1 and 3 days forecast horizon.

Other authors developed machine learning models to
forecast intraday volatility. In (Guo, Bifet & Antulov-Fantulin,
2018), they forecasted short-term volatility using historical
volatility and order book data. They used RF, Extreme
Gradient Boosting (XGBoost) and LSTM neural networks.
In (Peng, Albuquerque, Camboim de Sá, Padula & Montene-
gro, 2018), they forecasted cryptocurrency volatility using
Support Vector Regression (SVR) and daily and intraday
data, on 1 hour forecast horizon for the intraday case.
In (Doering, Fairbank & Markose, 2017), they forecasted
high frequency volatility for a 20 events forecast horizon.
They used a binary classification model with Convolutional
Neural Networks (CNN), and used limit order book (LOB)
data from Barclays PLC stock, which is listed on the London
Stock Exchange.

In high frequency financial data analysis, directional
forecasting is a common problem addressed with machine
learning approaches. This issue has gained importance in
light of recent results, which prove that machine learning
methods are the most suitable option to deal with this prob-
lem. Studies over the last decade have provided important
insights into this challenge, in which directional forecasts
are made based on historical data. Directional forecasting
can consist of estimating future price movements on the
next observation, but it can also forecast at a higher forecast
horizon, on multiple observations.

Previous research works have focused their forecast-
ing on one observation horizon, on a fixed number of ob-
servations or over a constant time interval, feeding their
machine learning algorithms with features extracted from
high frequency data over a constant number of observations
or in a fixed time interval. Therefore, no previous works
have been found whose objective has been to use machine
learning techniques in high frequency financial data to make
directional forecasts about future intraday trends, extracting
data from subsets formed by previous trend movements.
Hence, the methodology presented in this article is applied
to high frequency directional forecasting with an unusual
approach. Below, multiple works that somehow performed
directional forecasting with machine learning methods are
reviewed.

In (Fletcher & Shawe-Taylor, 2013), they proposed SVM
to classify price direction into three classes and different
forecast horizons. The input consisted of features extracted
from order book updates, with sampling at a frequency
of 1 second. They used EURUSD data for one day. Since
then, other articles have covered the use of SVM to address
directional forecasting, as in (Kercheval & Zhang, 2015),
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where they used a multiclass SVM to forecast the mid-price
and the bid-ask spread direction, with a trading day data for 5
stocks listed on the NASDAQ. The input was multiple price
and volume features at different levels from the order book.
They made forecasts on a 5, 10, 15 and 20 events forecast
horizon.

Other publications have raised the use of SVM and neu-
ral networks. In (Tsantekidis, Passalis, Tefas, Kanniainen,
Gabbouj & Iosifidis, 2017a), they compared methods based
on CNN, Multilayer Perceptron (MLP) and SVM to perform
a multi-class classification of future mid-price movements
on three different forecast horizons: 10, 20 and 50. They
made data labeling comparing the average of 𝑘 previous
mid-prices with the average of the following 𝑘 mid-prices,
considering a certain threshold that split three classes. They
ran experiments with data composed of 10 LOB levels
from 5 stocks traded on the Finnish stock market, during
the period from June 1 to June 14, 2010. Also in (Nousi,
Tsantekidis, Passalis, Ntakaris, Kanniainen, Tefas, Gabbouj
& Iosifidis, 2019), they forecasted the mid-price direction
with a multiclass SVM model and with neural networks.
They used forecast horizons equal to 1, 5 and 10 mid-prices.
In the last two cases, they forecasted the average price. They
extracted features every 10 limit order events, and used data
from 5 listed stocks on the Finnish stock market, relative to
10 LOB levels and 10 trading days, as of June 14, 2010.
They extracted features from raw data as inputs for their
machine learning models, in addition to others obtained by
Autoencoders and Bag-of-features models. In (Tsantekidis,
Passalis, Tefas, Kanniainen, Gabbouj & Iosifidis, 2017b),
they used LSTM networks to forecast the future mid-price
direction with 10 levels of LOB data, corresponding to
5 shares listed on the Finnish stock market, during a 10-
day trading period. They made labeling data with three
classes, comparing the average of previous mid-prices with
the average of next mid-prices, considering a specific thresh-
old. They conducted experiments for three different forecast
horizons: 10, 20, and 50. Finally, they compared their results
with those obtained with a Linear SVM and with an MLP
network.

Multiple publications discuss different neural networks
types to forecast price direction. In (Dixon, Klabjan & Bang,
2017), they implemented a deep neural network to classify
the future price direction over a future time interval. The
data contained mid-prices in 5-minute intervals, related to
43 commodity and currency futures, from March 1991 to
September 2014. The input features contained price dif-
ferences and lags from 1 to 100, price moving averages
with window sizes from 5 to 100, pairwise correlations be-
tween returns and returns. In (Doering, Fairbank & Markose,
2017), in addition to forecast volatility, as discussed above,
they chose a deep CNN to classify the price trend direc-
tion in three classes on a 20 events future horizon, where
they estimated the direction of arithmetic returns. The data
consisted of Barclays PLC message books from the London
Stock Exchange, between June 2007 and June 2008. In total,
217 trading days. The input data were the previous order

book states and the events flow. In (Arévalo, Nino, León,
Hernandez & Sandoval, 2018), they suggested a deep neural
network with wavelet to forecast the next pseudo-log-return
in 1 minute, from which they got the average price in the
next minute. They used wavelets because high frequency
data shows simultaneous transactions, as well as price jumps
and low variance. The wavelets had length equal to eight and
compressed the corresponding tick-by-tick transactions in a
given minute. They conducted experiments with tick-by-tick
data from 19 randomly selected companies listed on the Dow
Jones Industrial Average index, during the period January
2015 to July 2017. The neural network input consisted of 27
variables: 1 minute pseudo-log-returns and wavelet vectors
compressed in 1 minute, both with lag equal to 3. In (Dixon,
Polson & Sokolov, 2019), they used a multi-layer deep learn-
ing network to classify the mid-price movement over a future
time interval. The data corresponded to the E-mini S&P500
message book during August 2016. They preprocessed their
data with an elastic network and extracted features from 5
levels of LOB states. In (Sirignano & Cont, 2019), they fed
LSTM networks in sequences of 100 and 5000 lags with his-
torical prices and order flows relative to multiple values from
the US stock market, in order to forecast whether the next
price direction would be increasing or decreasing. They built
multiple models using data from 1000 NASDAQ stocks. In
(Ntakaris, Mirone, Kanniainen, Gabbouj & Iosifidis, 2019),
they used MLP, CNN and LSTM models to forecast the mid-
price movement direction, and they estimated the order book
events generated until the direction change occurred. The
neural networks input included technical and quantitative
indicators, time-sensitive and insensitive features, as well
as features extracted automatically. They made two different
forecasts. On the one hand, they estimated the price direc-
tion, up or down, and when the next event would occur,
through classification and regression, respectively. With this
approach, they extracted features with a sliding window
of size equal to 10 events and step equal to 1 event. On
the other hand, they made a multiclass classification every
10 events, for which they used an average with 10 future
events, with feature extraction every 10 observations without
overlapping. The data set corresponded to 10 trading days,
5 stocks from the Finnish stock market and 2 stocks from
the US stock market, for 10 LOB levels in milliseconds
time frame. In (Passalis, Tefas, Kanniainen, Gabbouj &
Iosifidis, 2019), they combined the Bag-of-Features method
with deep neural networks to solve a multiclass classification
problem regarding the future average mid-price direction.
They considered the 15 most recent feature vectors for every
timestep and two forecast horizons: 10 and 50 timesteps.
The data consisted of 10 LOB levels from 5 shares listed
on the Helsinki Stock Exchange, during the period from
June 1, 2010 to June 14, 2010, which is 10 trading days.
In (Zhang, Zohren & Roberts, 2019), they designed a deep
learning model based on convolutional layers and LSTM
units to forecast future price movements on three different
forecast horizons: 20, 50 and 100. They used two different
data sets. The first set had 10 LOB levels relative to 5 shares
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from the London Stock Exchange during the period of 1
year. The second set was the public data set called FI-2010
(Ntakaris, Magris, Kanniainen, Gabbouj & Iosifidis, 2018).
They selected 40 features for each event: price and volume
of each level, for both LOB sides, from 100 previous order
book states.

Other methods have also been used to solve the same
problem. In (Felker, Mazalov & Watt, 2014), they presented
a method based on the feature-weighted Euclidean distance
to the centroid of a training cluster. They used multiple tech-
nical indicators to forecast price changes, 10 to 2000 mil-
liseconds before they occurred. Their forecasts were made
when the classification confidence was high enough, from
the record of every new market event. In (Tran, Magris,
Kanniainen, Gabbouj & Iosifidis, 2017), they used Mul-
tilinear discriminant Analysis and Weighted Multichannel
Time-series Regression to forecast the mid-price movement.
The input was a time series tensor representation. Labeling
corresponded to three mid-price movement classes in the
next 10 order events. They utilized LOB data from 5 stocks
listed on the Finnish stock market, relative to 10 trading days.

3. Methodology
Time series trends have a variable number of observa-

tions. It is intended to extract features from intraday trends
and from the limit order book states at the times of these
trends. This is the problem proposed to solve, whose solution
allows to analyze multiple variables in subsets defined by
time intervals in which intraday trends occur, and also allows
to estimate response variables in future trends, by feeding
artificial intelligence models with the extracted features.

This problem can be satisfactorily solved through a
multi-stage feature engineering. In the first step, the trans-
action time series are partitioned, and segments with a
variable number of observations are obtained, which are
conditioned by the irregular durations of intraday trends. The
intervals obtained form subsets of values which correspond
to variables related to trades. In the next stage, the order book
states at trades times are synchronized, to obtain variables
associated with each order book state, which form the second
subset comprised in the aforementioned time interval.

The methodology scheme is shown in figure 1. On the
variables set in each segment, several transformations to
obtain the cited features are performed, which form the input
of artificial intelligence models.
3.1. Segmentation

The appropriate technique to obtain these high frequency
intervals is time series segmentation. Generally speaking,
the trades series are segmented to obtain the breakpoints
at which intraday trends change their direction in order to
accurately obtain the intraday trends that occur between
these breakpoints. In these segments, features from trades
and order book states are extracted, which are linked to
intraday trend directions.

The scientific literature collects different ways of ap-
proaching the problem. Reviews of segmentation methods

TRADES
TIME SERIES

BUY AND SELL
ORDERS

ORDER BOOK STATE
SYNCHRONIZING

DOUBLE
SEGMENTATION

LOB
FEATURES

FEATURES
TRADES

FEATURES

Figure 1: Feature engineering scheme

can be found in (Keogh, Chu, Hart & Pazzani, 2004) (Lovrić,
Milanović & Stamenković, 2014). Also in (Si & Yin, 2013),
different methods to address the segmentation problem are
reviewed. The technique that obtains an optimal or exact
solution to the segmentation problem uses dynamic pro-
gramming (Bai & Perron, 2003) (Zeileis, Kleiber, Krämer &
Hornik, 2003). It is very precise, but its main disadvantage is
its high execution time, due to the fact that this segmentation
method has algorithmic complexity of quadratic order, so the
execution time increases at most quadratically as the number
of observations increases.

High frequency data is recorded by days independently
and we could consider applying the exact method directly,
but most days have such a high number of observations that
it would not be feasible to apply the optimal method directly,
since the computational time would be considerably high. To
solve this problem, we apply the exact method in two phases.
First, we add the original data to a period of lower frequency,
reducing the number of observations and respecting the main
trends of the series. That is, we divide each daily series
into constant intervals of specific periodicity and select the
last observation of each interval. Then, we apply the exact
method to the resulting series and obtain the breakpoints
that delimit the trends of the reduced series. Next, we move
these breakpoints to the original series, obtaining primary
segments. Each of these segments is a time series that can be
re-segmented. We apply the exact method again and obtain
the final breakpoints, which delimit the final trends on which
we are going to extract the features.

The method used to obtain the breakpoints in the two per-
formed segmentations was implemented in (Zeileis, Leisch,
Hornik & Kleiber, 2002), where the optimal position of the
breakpoints is achieved by minimizing the residual sum of
squares and the optimal number of breakpoints is obtained
by minimizing the Bayesian Information Criteria. An exam-
ple of the final result is shown in Figure 2.
3.2. Feature processing

We start from the trades series segmented. For time
series with 𝑛 observations and 𝑚 breakpoints, we have a set
of 𝑚+1 segments, fragments or time intervals from this time
series

𝑆1, 𝑆2, ..., 𝑆𝑚+1 (1)
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Figure 2: Segmentation example

Each interval has a variable number of observations 𝑒𝑗and a set of 𝑝 trades features is extracted in each segment
𝑆𝑗 ,

𝑋𝑗1 , 𝑋𝑗2 , ..., 𝑋𝑗𝑝 (2)
We obtain each feature 𝑋𝑗𝑡 from the prices 𝑦𝑖, times 𝑥𝑖,transactions 𝑇𝑖 or volumes 𝑣𝑖 contained in an interval 𝑆𝑗 ,such that

𝑋𝑗𝑡 = 𝑓𝑡({𝑦𝑖}
𝑖𝑗
𝑖=𝑖𝑗−1+1

, (3)
{𝑥𝑖}

𝑖𝑗
𝑖=𝑖𝑗−1+1

, (4)
{𝑇𝑖}

𝑖𝑗
𝑖=𝑖𝑗−1+1

, (5)
{𝑣𝑖}

𝑖𝑗
𝑖=𝑖𝑗−1+1

)

The trades feature 𝑋𝑗𝑡 in each interval 𝑆𝑗 with 𝑡 =
1, 2, ..., 𝑝 is a function 𝑓𝑡 that can be any combination of the
variables: prices, timestamps, transactions or volumes.

As we can see in figure 4, we extract other features from
the LOB states at times set by transaction prices. For an
interval 𝑆𝑗 , we have the 𝑞 features from the LOB states

𝑍𝑗1 , 𝑍𝑗2 , ..., 𝑍𝑗𝑞 (6)
Figure 3 represents an example of the LOB state at time

𝑥𝑖, with depth of ten levels on each side of the market.
The best buy and sell orders, from the point of view of

being easily crossed, are those with the highest and lowest
prices, respectively. These orders are located in the middle
of the chart, separated by the spread, which is the difference
in price between said orders. Level 1 in the order book
corresponds to these orders, and the next levels are the
blocks that follow the best buy and sell orders, forming what
is called the LOB depth. In mathematical terms, the LOB
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Figure 3: LOB State

status at every time 𝑥𝑖 from the trades series is a matrix with
the prices and volumes from all levels formed by buy and
sell orders, that is, the buy and sell depths, named as 𝑑𝐵 and
𝑑𝑆 , respectively.

The feature extraction process using each LOB state has
three steps, as shown in figure 4. Let an interval 𝑆𝑗 formed
by observations 𝑖 from the trades series, and let the LOB
states 𝑖 at every time 𝑥𝑖 from each segment observation.
Every LOB state is a matrix with prices and volumes from
buy and sell orders (𝑃𝑖𝐵𝑙

𝑉𝑖𝐵𝑙 𝑃𝑖𝑆𝑙
𝑉𝑖𝑆𝑙 ) corresponding to

each level 𝑙 existing at time 𝑥𝑖. From these four variables,
we obtain other variables with single values at every time,
obtaining vectors 𝑢𝑖𝑗−1+1, 𝑢𝑖𝑗−1+2, ..., 𝑢𝑖𝑗 referred to each time
𝑥𝑖. The resulting set of vectors forms the matrix 𝑀𝑗 , which
contains the variables referring to times 𝑥𝑖 in the interval
𝑆𝑗 . Finally, we obtain the values related to the set of features
𝑍𝑗1 , 𝑍𝑗2 , ..., 𝑍𝑗𝑞 corresponding to said interval.

Ultimately, the features depend on the prices and vol-
umes corresponding to the buy and sell orders, but we
establish different types of features, depending on the input
data. In general terms, a feature𝑍𝑗𝑜 is obtained from a subset
with a number of input buy levels 1, 2, ..., 𝑑𝐵 and sell levels
1, 2, ..., 𝑑𝑆 within the interval𝑆𝑗 . According to this criterion,
we define the function 𝑔𝑜 that obtains the feature 𝑍𝑗𝑜 in a
segment 𝑆𝑗 with observations 𝑖, for 𝑜 = 1, 2, 3, ..., 𝑞

𝑍𝑗𝑜 = 𝑔𝑜({{𝑃𝑖𝐵𝑙
, 𝑉𝑖𝐵𝑙 }

𝑑𝐵
𝑙=1, {𝑃𝑖𝑆𝑙

, 𝑉𝑖𝑆𝑙 }
𝑑𝑆
𝑙=1}

𝑖𝑗
𝑖=𝑖𝑗−1+1

) (7)

The variables 𝑃𝑖𝐵𝑙
and 𝑉𝑖𝐵𝑙 are the buy prices and buy

volumes from the LOB level 𝑙 at time 𝑥𝑖 in the interval 𝑆𝑗 .Likewise, 𝑃𝑖𝑆𝑙
and 𝑉𝑖𝑆𝑙 are referred to sell orders.

Therefore, in each time interval two sets of different
features are extracted, according to the scheme represented
in figure 5.

First Author et al.: Preprint submitted to Elsevier Page 5 of 20
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Figure 4: LOB feature extraction process
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𝑍(𝑚+1)1, 𝑍(𝑚+1)2, ..., 𝑍(𝑚+1)𝑞

…

Figure 5: Segment features

4. Application
In order to apply the developed methodology to a fore-

casting problem, models based on an artificial intelligence
method for classification problems are built, although the de-
signed feature engineering could be used with innumerable
machine learning methods.

The input features needs prior preparation to feed these
models, so once we obtain the features, we proceed to
labeling and embedding, leaving the input ready for use in
modeling, as shown in figure 6.
4.1. Labeling

Once we have segmented the trades series and extracted
the respective features, we classify the segments according
to the corresponding response variable. It is constructed
a labeling to decide the groups in which it was going to
classify the segments. Said labeling depends on the values
of the response variable, and is composed of different labels,
referring to classes of the dependent variable, where each
one identifies a region of values. Thresholds or limits for
these regions are established in advance. The criterion was
to obtain three balanced regions from the train subset data,
so it was defined the limits using quantiles with probabilities
of 0.3333 and 0.6666 of the values of the dependent variable.

- Q.33
- Q.66

- % Train
- % Test
- k timesteps

- Model specification
- Hyperparameter tuning

- Kappa
- F1-score

LABELING

EMBEDDING

MODELING

PERFORMANCE

Figure 6: Machine learning scheme

4.2. Embedding
We have vectors of features that come from the trades

series and the order book states, which they were extracted
in each time interval obtained by segmenting this series.
From these vectors, it is built the set of samples to perform
the embedding. In the case of time series, it is usual to
include variables with lags, and that the advance over the
segments series has a specific step. It is a sliding window
with size equal to the number of lags and advance equal to
the considered step. Let 𝑘 be the number of lags. Then, it
was chosen a step equal to 1 and a number of lags equal to
𝑘, so the samples structure is the one shown in figure 7.

𝑆1 𝑆2 𝑆𝑘… 𝑌𝑆𝑘+1

𝑆2 𝑆3 𝑆𝑘+1… 𝑌𝑆𝑘+2

𝑆𝑚+1−𝑘 𝑆𝑚+2−𝑘 𝑆𝑚… 𝑌𝑆𝑚+1

… … … …

Figure 7: Embedding scheme

The first sample is a vector formed by the features
corresponding to the first 𝑘 segments, which represent the
explanatory part. The response variable corresponds to the
label that this variable has in the time interval 𝑘 + 1. We
advance a step in the segments series and build the second
sample, starting with the features relative to the second
segment and with an explained variable equal to the segment
label 𝑘 + 2, and so on.
4.3. Modeling

It was used the algorithm called Extreme Gradient
Boosting or XGBoost (Chen & Guestrin, 2016). In this
section, it is briefly reviewed theoretical foundations related
to this method, which is based on the Gradient Boosting
method (Friedman, 2001) and is an implementation of
Gradient Boosted Trees.
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Let 𝑋𝑖 and 𝑌𝑖 be the regressors and the response vari-
able, respectively. The objective is to forecast the response
variable 𝑌𝑖, which in classification models represents the
labels for each class. The explanatory variables 𝑋𝑖 constitute
the 𝑏 features extracted from the data, each of which has a
weight in the model, defined by the 𝜃 parameters. The model
is trained to learn and obtain the parameters that provide
the value for the response variable closest to a given one.
The difference between the estimated value corresponding
to the dependent variable and the observed one constitutes
the residual.

If we have 𝑎 samples and 𝑏 features, with 𝑋𝑖 ∈ ℝ𝑏 and
𝑌𝑖 ∈ ℝ, we forecast the output through 𝐾 additive functions
for a set of trees.

𝑌𝑖 = 𝜙(𝑋𝑖) =
𝐾
∑

𝑘=1
𝑓𝑘(𝑋𝑖) ; 𝑓𝑘 ∈  , (8)

where  is the space of trees , 𝑇 the number of leaves in each
tree and 𝑞 the tree structure. Each function 𝑓𝑘 refers to a tree
structure 𝑞 and leaf weights 𝑤.

The function that measures the error is the loss or cost
function. The target is to minimize the objective function,
which corresponds to the sum of the loss function and the
regularization function, which measures the model com-
plexity. This last function is introduced in order to penalize
overfitting. If the regularization term were zero, we would
have the classic gradient tree boosting.

(𝜙) =
𝑎
∑

𝑖=1
𝑙(𝑌𝑖, 𝑌𝑖) +

𝐾
∑

𝑘=1
Ω(𝑓𝑘)

(9)
Ω(𝑓𝑘) = 𝛾𝑇 + 1

2
𝜆‖𝑤‖

2,

where 𝛾 and 𝜆 are regularization parameters.
Optimization is done from training in an additive way.

Gradient Boosted Trees combine boosting and gradient de-
scent. In the former, the decision trees are built sequentially,
so that the next tree is built on the residuals of each tree, re-
ducing the error in each step. Finally, the objective function
is the sum of those obtained in each tree.

The gradient descent is an optimization method that is
based on the vector generalization of the derivative, whose
objective is to optimize the total minimum. The purpose is to
obtain the best parameters 𝜃 to have the minimum residual.

The variable importance is referring to the relative con-
tribution of each feature to the XGBoost model, based on the
participation of each feature in each tree division, which is
weighted over a total value equal to 1. If a specific feature,
like an 𝑋𝑡 feature from trades, has a higher contribution
than other features, then the feature 𝑋𝑡 is more relevant for
making forecasts. The total sum of the scores associated with
each feature is equal to 1.

4.4. Performance metrics
In this research, they were used multiclass classification

models to forecast the corresponding labels in future time
intervals. With the resulting labels, and those corresponding
to the test data, the confusion matrices were calculated,
where they were compared the observed classes with those
estimated. The diagonal of the confusion matrix includes the
correctly estimated cases of each class, while the rest of the
elements in the matrix correspond to errors in each class.

From these matrices, we can calculate multiple perfor-
mance metrics, including kappa and F1-score metrics. The
metric kappa considers the precision that could be obtained
by chance, penalizing this aspect in the model precision
(Kuhn & Johnson, 2013). These performance metrics were
calculated with the procedure below.

Let 𝐴 be the confusion matrix for a three-class classifi-
cation problem.

Observed
High Medium Low

Fo
rec

ast
ed High 𝑎11 𝑎12 𝑎13Medium 𝑎21 𝑎22 𝑎23Low 𝑎31 𝑎32 𝑎33

Let 𝑆𝑖𝑗 be the sum of all the elements 𝑎𝑖𝑗 from 𝐴, 𝑡𝑟(𝐴)
the trace of 𝐴 and let 𝑂 and 𝐸 be the observed precision and
the expected, respectively.

𝑆𝑖𝑗 =
3
∑

𝑖,𝑗=1
𝑎𝑖𝑗 ; 𝑡𝑟(𝐴) =

3
∑

𝑖=1
𝑎𝑖𝑖 (10)

The observed precision 𝑂 was obtained from the follow-
ing expression.

𝑂 =
𝑡𝑟(𝐴)
𝑆𝑖𝑗

(11)

Using the total sum and the sums of the elements in each
column and each row, it was attained the expected precision
𝐸.

𝐸 =
𝑆𝑖1
𝑆𝑖𝑗

.
𝑆1𝑗

𝑆𝑖𝑗
+

𝑆𝑖2
𝑆𝑖𝑗

.
𝑆2𝑗

𝑆𝑖𝑗
+

𝑆𝑖3
𝑆𝑖𝑗

.
𝑆3𝑗

𝑆𝑖𝑗
(12)

From the observed and expected precision, it was ob-
tained the Cohen’s kappa (Cohen, 1960).

𝑘𝑎𝑝𝑝𝑎 = 𝑂 − 𝐸
1 − 𝐸

, (13)
which can have values within the range [−1, 1]. A value
equal to zero means that there is no agreement between
the observed classes and the forecasts. A value equal to
one represents the perfect forecast, while negative values
indicate that the forecast is in the opposite direction to the
truth.
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In order to have a single measure for each class, the 𝐹1−
𝑠𝑐𝑜𝑟𝑒 was calculated as follows. Let the true positives 𝑇𝑃 ,
false positives 𝐹𝑃 , true negatives 𝑇𝑁 and false negatives
𝐹𝑁 for the first class, where 𝑇𝑁 corresponds to those
elements that do not belong to column and row one. The
procedure is similar for the other two classes, except that the
𝑇𝑃 are on the matrix diagonal for each class, so the 𝑇𝑁
related to the second class would correspond to the elements
not included in the column and row 2, and so on.

Observed
High Medium Low

Fo
rec

ast
ed High 𝑇𝑃 𝐹𝑃1 𝐹𝑃2Medium 𝐹𝑁1 𝑇𝑁1 𝑇𝑁2Low 𝐹𝑁2 𝑇𝑁3 𝑇𝑁4

𝑇𝑃 = 𝑎11 (14)
𝐹𝑃 = 𝑎12 + 𝑎13 (15)
𝑇𝑁 = 𝑎22 + 𝑎23 + 𝑎32 + 𝑎33 (16)
𝐹𝑁 = 𝑎21 + 𝑎31 (17)

First, it was obtained the metric precision, which mea-
sures the proportion of correct forecasts over the total of
positive forecasts,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(18)

Second, it was calculated the metric recall, which rep-
resents the proportion of positives observed with a correct
forecast,

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(19)

Finally, the 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 was achieved, as the harmonic
mean of the metrics precision and recall,

𝐹1 = 2𝑃𝑅
𝑃 + 𝑅

, (20)

where 𝑃 and 𝑅 correspond to the precision and recall
metrics, respectively.

It was followed the same procedure to obtain the F1-
score relative to the other two classes, with the particularity
that TP, TN, FP and FN were obtained according to the
positions of the respective matrix for each class, as indicated
above.

5. Experimentation
In this research, real data and supercomputing resources

have been used, which are described in the following sub-
sections, as well as the different stages followed to obtain
the results shown in section 6.

5.1. Data
Detailed studies of the characteristics relating to high

frequency financial data are found in (Dacorogna, Gençay,
Müller, Olsen & Pictet, 2001) (Russell & Engle, 2010).
In this research, experimentation was conducted using data
from 20 assets listed on the Brazil Stock Exchange (B3),
identified by their tickers or instrument symbols. These data
were stored in two types of compressed text files. One of
these refers to trades, while the other type corresponds to
buy and sell orders. The data and description of each type
of file were obtained from the financial market server ftp:

//ftp.bmf.com.br/MarketData/ in May 2019. The period used
in this experimentation starts on July 2, 2018 and ends on
May 6, 2019. In total, 206 trading days. Both trades and buy
and sell orders were recorded with millisecond precision.
The data correspond to trading hours: from 10:00 to 16:55.
Details about the Brazilian market schedule, as well as
studies related to it, can be found in (Perlin & Ramos, 2016).

Transaction data contain multiple variables. Their spec-
ifications, as well as that relating to the orders data, were in
files with .txt extension from the aforementioned server. The
file with the specification of the variables contained in the
trade data is called NEG_LAYOUT. In relation to the orders
data, these files are named as: OFER_CPA_LAYOUT and
OFER_VDA_LAYOUT. Additionally, more information was
obtained in (B3 Brasil, Bolsa, Balcão, 2018). Table 1 lists
the trades variables names used in this research.

Session Date Instrument Symbol
Trade Price Traded Quantity
Trade Time

Table 1: Transaction Data Variables

High frequency financial data contain multiple errors
(Dacorogna, Gençay, Müller, Olsen & Pictet, 2001) (Falken-
berry, 2002) (Hautsch, 2012) and a procedure for cleaning
this type of data is described (Barndorff-Nielsen, Hansen,
Lunde & Shephard, 2009). In relation to these errors,
(Brownlees & Gallo, 2006) established a procedure to detect
and eliminate erroneous observations. Subsequently, can-
celled operations and not executed orders were eliminated,
and those trades with a Trade Price or Traded Quantity
less than or equal to zero were rejected (Hautsch, 2012). In
addition, the variables Trade Price and Traded Quantity were
transformed, due to the existence of simultaneous orders
with the same Trade Price. Table 2 shows the extent of this
incidence.

The number of observations varies depending on the
ticker, with figures between just over 1 million observa-
tions until figures reaching around 5 million observations.
The columns PSO and PSODP refer to the percentage of
simultaneous operations and the percentage of simultaneous
operations with different prices, respectively. In the former,
there are percentages that exceed 60% of PSO, while in the
latter a ticker exceeds 8% of PSODP, followed by figures
below 2.5% in most of the assets. In order to solve this
problem, the work of (Brownlees & Gallo, 2006) was used as
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Ticker Trades POS (%) PSODP (%)
B3SA3 4621343 51.31 1.69
BBAS3 5097897 55.63 2.42
BBDC3 2014462 53.29 1.87
BBSE3 3038689 63.04 1.12
BRFS3 3425237 53.48 1.84
BRML3 3240840 53.88 0.45
CIEL3 4477212 60.94 0.65
CSNA3 2734771 55.46 0.73
GGBR4 3817163 50.72 1.00
GOAU4 2593701 38.67 0.35
HYPE3 1655824 46.09 1.73
JBSS3 4014349 58.22 0.50
KROT3 4023300 55.04 0.56
LAME4 2828343 48.91 1.20
MGLU3 1159513 58.39 8.53
PETR3 3165573 44.01 1.80
RAIL3 3595665 55.71 0.79
RENT3 3370796 58.86 1.26
TIMP3 1975100 45.22 0.62
USIM5 3078855 48.63 0.50

Table 2: Raw data. Simultaneous transactions

a reference, considering a weighted average and performing
the following transformations. Let 𝑦𝑖 be the prices, 𝑣𝑖 the
amounts traded and 𝑖 = 1, 2, ..., 𝑘 the number of equal
timestamps. Let be a timestamp 𝑥 with several simultaneous
trades. Then, for a timestamp 𝑥, we have

𝑦𝑥 =
Σ𝑘
𝑖=1𝑦𝑖𝑣𝑖
Σ𝑘
𝑖=1𝑣𝑖

𝑣𝑥 = Σ𝑘
𝑖=1𝑣𝑖 (21)

The result is a volume-weighted average Trade Price
and a total sum of the Traded Quantity for every group of
simultaneous trades. In order to lose as little information as
possible, it was created a variable with the number of simul-
taneous transactions in every group, as shown in (Brownlees
& Gallo, 2006), and what has been called Transactions.
Finally, the variables selected for the segmentation part were
the following: Trade Time, Trade Price, Traded Quantity and
Transactions.

It was used tick data or tick time with the cited tickers.
The description can be found in (Griffin & Oomen, 2008).
Raw high frequency data contain sequences in which the
price does not change, so the associated series of returns for
those sequences would be composed of zeros. If we reduce
these sequences to the first value, we obtain tick data or tick
time, which is the name used when there is a difference
of at least one tick between one trade and the next one,
defined as the smallest variation that can occur at the listed
price (Hautsch, 2012). The tick time data used can represent
a reduction of around 75% with respect to the raw data,
according to the figures for the number of trades in tables
2 and 3.

Tick data was obtained from the previously processed
tickers. All sequences with constant Trade Price were re-
duced to the first value, but the variables Transaction and
Traded Quantity are the sum of their values in each sequence.

An outlier treatment was also conducted, but under a
very conservative criterion. The purpose was to reduce
the loss of information and maintain the essence of the
dynamics of high-frequency financial data. The adaptive
filter suggested in (Brownlees & Gallo, 2006) was used to
detect inconsistencies in the data. Let be a time series with
observations 𝑖 = 1, 2, ..., 𝑛 and prices 𝑦𝑖, then we consider
that

|𝑦𝑖 − 𝑦𝑖(𝑘)| < 3𝑠𝑖(𝑘) + 𝛾 (22)
The terms 𝑦𝑖(𝑘) and 𝑠𝑖(𝑘) are referred to the 𝛿-trimmed

sample mean and the sample standard deviation from a
neighborhood of 𝑘 observations around 𝑖. The 𝛾 parameter
is called granularity. With this filter, the false observation is
removed, while it allows the true observation 𝑖 to remain.
The neighborhood corresponding to the first observation
of each daily series contains the first 𝑘 observations, the
neighborhood related to the last observation is composed of
the 𝑘 last transactions and for the observation in the middle
of the series, it was obtained the 𝑘∕2 previous transactions
and the 𝑘∕2 subsequent observations, and so on. In this way,
the reference to decide the validity of an observation is the
closest valid observations. It was selected a percentage of
trimming 𝛿 equal to 0.1 and a window length 𝑘 equal to 30.

The granularity avoids the zero variance provoked when
sequences of 𝑘 equal prices are produced. Following (Brown-
lees & Gallo, 2006), 𝛾 should be chosen as a multiple of
the minimum price change for each asset. According to this
premise, it was chosen 𝛾 as the mean of the absolute values
corresponding to 5% and 95% quantiles computed over the
price differences series.

Ticker Trades Ticker Trades
B3SA3 1244902 HYPE3 530391
BBAS3 1341834 JBSS3 765707
BBDC3 582892 KROT3 820254
BBSE3 621448 LAME4 762381
BRFS3 874510 MGLU3 463454
BRML3 622923 PETR3 859144
CIEL3 785091 RAIL3 731211
CSNA3 511758 RENT3 836196
GGBR4 885488 TIMP3 472230
GOAU4 574962 USIM5 633536

Table 3: Clean tick data

5.2. Segmentation
Trades time series are recorded by days, so we have

a first partition of these series. Therefore, it was executed
the segmentation on each day, independently. The execution
time will depend on the number of daily observations, so it
is interesting to know how these observations are distributed
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in each ticker. In table 4, it is shown descriptive statistical
summaries of the variable number of daily observations,
where the maximums range from figures close to 7500 to
figures above 25000.

Ticker Min. 1st Qu. Median Mean 3rd Qu. Max.
B3SA3 2516 4309.25 5420.0 6043.06 6980.50 25390
BBAS3 1959 4703.00 5796.0 6513.69 7442.00 23324
BBDC3 1108 2012.50 2504.5 2829.25 3152.25 14618
BBSE3 1120 2011.00 2806.5 3016.51 3576.25 9704
BRFS3 1476 2819.25 3686.5 4245.11 5122.00 13638
BRML3 837 1960.00 2679.0 3023.71 3808.00 8512
CIEL3 1189 2539.75 3298.5 3811.05 4660.75 9530
CSNA3 561 1337.00 1988.0 2484.25 3176.50 12072
GGBR4 1438 3039.25 3855.0 4298.47 5113.00 13937
GOAU4 702 1665.50 2488.0 2791.07 3396.75 12936
HYPE3 735 1819.25 2259.5 2574.40 3194.25 7441
JBSS3 928 2279.75 3019.5 3716.94 4568.00 14586
KROT3 1198 2749.00 3664.0 3981.73 4805.50 10383
LAME4 966 2392.75 3099.0 3700.68 4512.00 11932
MGLU3 830 1635.75 2126.5 2249.72 2689.00 7913
PETR3 1473 2774.75 3674.0 4170.52 4822.00 14984
RAIL3 1015 2457.50 3154.0 3549.36 4239.50 10047
RENT3 1317 3128.50 3844.0 4058.91 4802.25 11003
TIMP3 667 1476.75 2012.5 2292.28 2866.75 9774
USIM5 786 1882.25 2605.5 3075.41 3718.75 11204

Table 4: Daily trades summary

Once the procedure to obtain the clean tickers was per-
formed, the data was aggregated to a 1-minute period and
the segmentation was executed with the optimal method.
The resulting breakpoints were moved to the original data,
separating each day into different time series fragments. On
these fragments, a second segmentation was executed with
the optimal method, obtaining the daily segments of each
ticker. As mentioned above, each segment corresponds to an
intraday trend, and the number of resulting daily segments
is between 21 and 681 segments, depending on each ticker.
5.3. Limit order book reconstruction

In order to extract features from buy and sell orders, you
first have to rebuild the order book and obtain its status at
certain times. In (Gould, Porter, Williams, McDonald, Fenn
& Howison, 2013), they reviewed literature related to the
analysis and modeling of limit order books, in addition to
describing the so-called stylized facts of financial markets,
defined as non-trivial statistical regularities present in data
from such markets. In (Christensen & Woodmansey, 2013),
they defined the reconstruction of the limit order book as
the process by which we start from the recorded data and
regenerate it to obtain the multidimensional limit order book.

The limit order book is reconstructed by combining and
processing the data related to the buy and sell orders files
corresponding to the main market. The orders data variables
used in this research are listed in table 5, and are described in
the corresponding text files provided by the aforementioned
market.

Session Date Order Price
Instrument Symbol Total Quantity Order
Order Side Traded Quantity Order
Sequential Order Number Secondary Order ID
Order Datetime Entry Order Status

Table 5: Orders Variables

In figure 8, it is shown boxplots that represent summaries
relative to the number of orders per day and ticker, which are
variable. Orders generated in one day are added to those that
remain active from previous periods. The asset with ticker
BBDC3 has a day maximum number of orders exceeding
700000, with a daily average orders slightly higher than
250000, which reflects the computational effort required
to obtain the order book states for the times of 582892
trades that has the BBDC3 trades series, as indicated in
table 3. The rest of the tickers present lower figures, but the
computational effort to process these tickers, although lower
than in the BBDC3 ticker, is still considerably high.
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Figure 8: Raw data. Limit orders by day

It was preprocessed buy and sell orders data and elimi-
nated those observations with errors, such as negative or null
Total Quantity Order and Order Price , in addition to those
for which the spread was negative, as raised in (Barndorff-
Nielsen, Hansen, Lunde & Shephard, 2009).

All orders have a lifecycle that can go through different
states. For the purposes of this research, it has represented
the lifecycle of an order in figure 9, taking into account the
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Figure 9: Order Lifecycle. Source: (B3 Brasil, Bolsa, Balcão, 2018)

cycle shown in (B3 Brasil, Bolsa, Balcão, 2018). The graph
shows all possible combinations between different states.
There are 7 Order Status: New, Partially Filled, Filled,
Cancelled, Replaced, Rejected and Expired. The final states
can be: Filled, Cancelled, Replaced, Rejected and Expired.

In figure 9, the final states are arrow receivers, never
emitters. The origin of an order is registered with Order
Status New. If said order is rejected at origin, it would go
to the final state Rejected. Otherwise, the original order
could be modified, cancelled, partially or totally crossed or
expired. The modified order could go into the same states
as an original order, and it could also be modified again.
When an order is partially executed, this execution could be
repeated, but it could also go into the same states as a New
or Replaced order.

Each order with New status is linked to other states
through the Sequential Order Number, which allows know-
ing if the initial order has moved to different states. If we
were analyzing the LOB at a given time and there were
several orders with the same Sequential Order Number,
linked to an order with New status, the active order at the
time would be the one with the most recent timestamp, and
if there were several simultaneous orders, the active order
would be the one with the highest Secondary Order ID. The
LOB status at time 𝑥 includes the orders currently active.
These orders would be those with the state New, Replaced
or Partially Filled, which were not previously crossed and
were not cancelled, rejected or expired. From the active
orders at each time of the trades series, the buy and sell
prices and volumes are obtained for each level of the order
book. Finally, the features are extracted from said prices and
volumes for each segment.

5.4. Variable selection
The features extracted in the intervals from the high

frequency segmentation were used to estimate the future
behavior of three response variables. One of these is the
duration corresponding to the time intervals resulting from
the completed segmentation, which it was measured directly,
from the difference between the final and initial timestamp
of each interval. Regarding the other two response variables,
proxies were used in order to estimate the volatility and
direction associated with trend movements in future time
intervals. These variables are part of the set of features
extracted from each segment, to which it was added some
of those collected in the reviewed works, as well as others
that could be explanatory of the variance in the response
variables.

High frequency scientific literature collects evidence
about the influence of certain variables on price behavior.
Proof of this is what is stated in (Cont, Kukanov & Stoikov,
2013), where they suggested that changes in prices, during
short periods of time, are mainly driven by the order flow
imbalance, defined as the imbalance that occurs between
supply and demand for the prices from the best buy and sell
orders. Also in (Xu, Gould & Howison, 2018), they studied
the multi-level order flow imbalance. In (Cao, Hansch &
Wang, 2009), they considered the imbalance in the order
book length as a function of the difference in aggregated
quantities of shares on the buy and sell sides, divided by
the sum of these. Similarly, those features that reflect an
imbalance in the order book by level grouping were extracted
in this research.

Table 6 contains a proposal of features extracted in
each interval. These features were divided into two blocks,
depending on their origin: features from the trades series and
features from the limit order book. In the next subsection,
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Trades
Average price
Price variance
Fitted price variance
Residual variance
Mean absolute error
Interval duration
Average trade duration
Trade duration variance
Interval observations
Interval transactions
Interval transaction variance
Value per second
Return per second
Volatility per unit of time
Squared log-return per second
Total squared log-returns per second
Squared log-return per second variance

LOB
Average buy market
Average sell market
Average buy volume
Average sell volume
Average five levels OBI
Average ten levels OBI
Average total levels OBI

Table 6: Feature selection

the three response variables are described and the Appendix
contains the corresponding description of the remaining
features.
5.5. Response variables

The features extracted from the high frequency time
intervals are the regressors used to estimate the volatility,
duration and direction of future trend movements. In the
next three subsections, the variables employed to effect
the labeling corresponding to these response variables are
described.
5.5.1. Volatility per unit of time

Volatility is an unobserved variable, so proxies are used
for its study. Taking into account the volatility adjusted
for time duration between transactions present in (Engle,
2000), it was formulated the following proxy variable to
estimate the volatility associated with each trend movement
contained in a segment 𝑗 with observations 𝑖 and number of
observations 𝑒𝑗 ,

𝜎2𝑗 = 1
𝑒𝑗 − 2

𝑖𝑗−1
∑

𝑖𝑗−1+1

(

𝑟𝑖
√

𝑑𝑖
− 𝜇𝑟𝑥

)2

(23)

The variable 𝑟𝑖 represents the logarithmic returns be-
tween two consecutive trades, 𝑑𝑖 is the duration between
these trades and 𝜇𝑟𝑥 refers to the mean of log-returns per
square root duration in each segment 𝑗 with observations 𝑖,

𝑑𝑖 = 𝑥𝑖+1 − 𝑥𝑖 (24)

𝑟𝑖 = 𝑙𝑜𝑔(𝑦𝑖+1) − 𝑙𝑜𝑔(𝑦𝑖) (25)

𝜇𝑟𝑥 = 1
𝑒𝑗 − 1

𝑖𝑗−1
∑

𝑖𝑗−1+1

𝑟𝑖
√

𝑑𝑖
(26)

In figure 10, it is shown an example of the evolution of
volatility per unit of time through all the intervals in which
the quotes series were segmented for a given day.
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Figure 10: Volatility evolution

5.5.2. Interval duration
Total duration in seconds of each interval associated with

segment 𝑗,

𝐷𝑗 = 𝑥𝑖𝑗 − 𝑥𝑖𝑗−1+1 (27)
The elements 𝑥𝑖𝑗 and 𝑥𝑖𝑗−1+1 are the final and initial

timestamps of a given interval, respectively. Figure 11 con-
tains the graphical representation corresponding to an exam-
ple of the time evolution of the total duration on a specific
day.
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Figure 11: Interval duration evolution
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5.5.3. Return per second
It was formulated a proxy variable for the intraday trend

direction in each time interval achieved with the developed
segmentation method, which is a function of the total return
generated in each interval. But the trades series used in
the experiments are unevenly spaced, so it could be that
two intervals had the same return and the durations were
different. To differentiate this aspect, it was considered the
return in each interval adjusted for its duration. That is, the
arithmetic return per second in each segment 𝑗, with 𝑦𝑖𝑗 and
𝑦𝑖𝑗−1+1 the final and initial price in each interval, respectively

𝑅𝑗 =

𝑦𝑖𝑗−𝑦𝑖𝑗−1+1
𝑦𝑖𝑗−1+1

𝑥𝑖𝑗 − 𝑥𝑖𝑗−1+1
(28)

In this expression, the divisor corresponds to the interval
duration 𝐷𝑗 , and the elements 𝑥𝑖𝑗 and 𝑥𝑖𝑗−1+1 represent the
final and initial time in each interval, respectively. In figure
12, it is shown an example of the series of returns per second
relative to all the intervals coming from the partition of a
specific day.
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Figure 12: Return per second evolution

5.6. Machine learning
The segmented trades series are formed by the trades

variables, to which the limit order book variables were
added, obtained in each timestamp from the trades series.
These variables form the data set corresponding to each
ticker, from which the features in each segment were ex-
tracted. These sets were separated into subsets train and
test, in the proportion 70/30, so that the subset train was
composed of the segments relative to the first 144 days
from each ticker, while the subset test corresponded to the
segments present in the last 62 days. It was executed the
split of the initial sets into train and test subsets respecting
the time sequence, so that the observations from the test
subset occurred temporarily after the observations from the
train subset. The next step was to extract features in each
interval from the aforementioned subsets, and calculate the
quantiles with probabilities 0.3333 and 0.6666 relative to the
response variables, accomplished from the values of these
variables in the train subset. The resulting values divided

the three labeling regions of the response variables. Next,
it was constructed the samples to prepare the embedding
for the machine learning method used. These samples are
composed of an ordered sequence with the features from 𝑘
segments, where each block is a timestep. In the conducted
experiments, a value for 𝑘 equal to 8 was selected, which
provided a slight improvement in the results than those
obtained with values of 3, 5, 10, 20, 50 and 100.

The last term in each sample is the label of the corre-
sponding response variable, in such a way that each sample
has part in 𝑋 and part in 𝑌 , forming the divisions: trainX,
trainY, testX and testY. The samples were consecutively built
by days. In table 7, it is shown the number of segments and
samples from each subset for every ticker. It is noted that
the developed segmentation method provides a sufficient
number of samples to reliably train the artificial intelligence
models, with these data. Furthermore, the number of test
samples is a sufficient size to achieve a reliable validation
of the models.

Segments Samples
Ticker Train Test Train Test
B3SA3 29081 13503 27929 7426
BBAS3 37140 18858 35988 12263
BBDC3 22960 12003 21808 6000
BBSE3 20473 9332 19321 8536
BRFS3 21450 11202 20298 10229
BRML3 13693 6089 12541 3176
CIEL3 16636 6576 15484 5036
CSNA3 10439 9088 9287 5084
GGBR4 20429 7229 19277 5120
GOAU4 9969 2929 8817 2003
HYPE3 17521 8230 16369 5521
JBSS3 13837 9629 12685 7363
KROT3 16604 7278 15452 5217
LAME4 19108 7953 17956 4668
MGLU3 20521 7450 19369 5059
PETR3 24845 10332 23693 4533
RAIL3 17437 8756 16285 4408
RENT3 26343 13293 25191 9744
TIMP3 10912 4083 9760 2659
USIM5 12948 5023 11796 3602

Table 7: Segments and samples

The trainX and trainY divisions from the samples were
used to train artificial intelligence models. Next, the design
characteristics of these models and their respective hyperpa-
rameters are attached.
5.6.1. XGBoost

It was built a model for every response variable in
each ticker. The parameters selected are classified into three
blocks: general parameters, booster parameters and learning
parameters. The first block refers to the type of boosting
used, which was of type tree. Regarding the second group, it
was chosen values for the parameters relative to the learning
rate 𝜂 equal to 0.001, the minimum loss reduction 𝛾 to
perform an additional partition in a tree node equal to 3, the
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maximum tree depth equal to 5 and the training subsampling
ratio equal to 0.75. The learning parameters selected refer
to the learning objective with the softprob function for
multiclass classification, and to the evaluation metric for data
validation, called error rate for multiclass classifications and
equal to the proportion of failed cases between total cases.
Finally, it was set the values of two parameters related to
computational execution: the maximum number of boosting
iterations equal to 1000 and the number of rounds to stop
training, if performance does not improve, equal to 50.

The input of the models contained the features listed in
table 6, repeated a specific number of timesteps. The features
importance in these models was calculated considering each
variable from the timesteps sequence, for which these vari-
ables were grouped to compute the total contribution of each
selected feature.

The usual procedure for making forecasts with a clas-
sification model and evaluating its result is to train the
model on a train subset, then we make forecasts with a new
input testX and, finally, we compare the output with the
response variable testY. This comparison is evaluated with
the confusion matrix and its associated metrics, whose result
provides us with the model validation.
5.7. Computing resources

The code related to this experimental research was devel-
oped in R language (R Core Team, 2020). The strucchange
package (Zeileis, Leisch, Hornik & Kleiber, 2002) was used
to segment time series. The packages xgboost (Chen, He,
Benesty, Khotilovich, Tang, Cho, Chen, Mitchell, Cano,
Zhou, Li, Xie, Lin, Geng & Li, 2020) and caret (Kuhn,
2020) were used to conduct the experiments with artifi-
cial intelligence. The tidyverse package collection (Wick-
ham, Averick, Bryan, Chang, McGowan, François, Grole-
mund, Hayes, Henry, Hester, Kuhn, Pedersen, Miller, Bache,
Müller, Ooms, Robinson, Seidel, Spinu, Takahashi, Vaughan,
Wilke, Woo & Yutani, 2019), packages plyr (Wickham,
2011) and data.table (Dowle & Srinivasan, 2020), as well
as packages quantmod (Ryan & Ulrich, 2020), zoo (Zeileis
& Grothendieck, 2005), tidyquant (Dancho & Vaughan,
2020a), timetk (Dancho & Vaughan, 2020b) and tibbletime
(Vaughan & Dancho, 2020) were used to analyze and explore
the data. The last five, related to quantitative financial
modeling and analysis and the specific treatment of time
series. The PerformanceAnalytics package (Peterson & Carl,
2020) was used for performance and risk analysis issues.
The packages lubridate (Grolemund & Wickham, 2011) and
hms (Müller, 2020) were used for aspects related to date
and time formats. The packages DBI (R Special Interest
Group on Databases (R-SIG-DB), Wickham & Müller,
2019) and dbplyr (Wickham & Ruiz, 2020) were used for
the construction, connection and database management. The
statistical tests were performed using the package scmamp
(Calvo & Santafé, 2016).

The experiments whose results are presented in this
scientific article were conducted using the resources pro-
vided by the Centro de Supercomputación y Visualización

de Madrid (CeSViMa), at the Universidad Politécnica de
Madrid. The jobs were run on Magerit-3, a supercomputer
consisting of 68 nodes Lenovo ThinkSystem SD530 , each
of which has 2 processors 20-core Intel Xeon Gold 6230 at
@2.10 GHz (1,344 GFLOPS), 192 GB RAM and intraday
480 GB SSD. The nodes are interconnected by two 25
Gbps low-latency networks, one of them with a flat-tree
architecture dedicated exclusively to the messages passage.

6. Results and discussion
The values of the performance metrics obtained from the

forecasts made with each machine learning model built for
forecasting the variables volatility, duration and direction,
are presented in tables 8, 9 and 10, respectively. The results
are sorted by tickers and performance metric: kappa and F1-
score for each of the three classes. Additionally, the values
that delimit each class region are shown in the columns
named Q33 and Q66. The best results are highlighted in bold
for each measure.

Performance metrics
F1-score Delimiters

Ticker kappa high med low Q33 Q66
B3SA3 0.25 0.50 0.28 0.67 1.45e-06 6.850e-06
BBAS3 0.24 0.52 0.33 0.62 6.30e-07 2.980e-06
BBDC3 0.19 0.35 0.45 0.55 2.20e-07 3.010e-06
BBSE3 0.18 0.46 0.29 0.56 8.60e-07 6.060e-06
BRFS3 0.25 0.56 0.47 0.49 1.87e-06 1.070e-05
BRML3 0.25 0.52 0.47 0.54 1.94e-06 1.645e-05
CIEL3 0.22 0.65 0.39 0.37 3.42e-06 2.185e-05
CSNA3 0.16 0.56 0.35 0.38 9.90e-07 8.090e-06
GGBR4 0.24 0.47 0.38 0.60 1.66e-06 1.018e-05
GOAU4 0.22 0.41 0.48 0.57 2.98e-06 2.610e-05
HYPE3 0.21 0.47 0.36 0.58 7.40e-07 5.630e-06
JBSS3 0.24 0.51 0.50 0.54 2.39e-06 1.677e-05
KROT3 0.30 0.61 0.47 0.52 2.35e-06 1.814e-05
LAME4 0.24 0.48 0.44 0.58 1.23e-06 9.640e-06
MGLU3 0.19 0.48 0.22 0.61 1.76e-06 8.180e-06
PETR3 0.33 0.61 0.30 0.68 5.30e-07 2.950e-06
RAIL3 0.24 0.54 0.44 0.53 2.00e-06 1.343e-05
RENT3 0.17 0.40 0.36 0.57 1.90e-06 8.280e-06
TIMP3 0.28 0.54 0.47 0.55 1.30e-06 1.028e-05
USIM5 0.25 0.47 0.50 0.54 1.74e-06 1.746e-05

Table 8: Volatility results. Performance metrics and class
regions delimiters

The best results were obtained in volatility estimation,
followed by duration and direction, according to the kappa
values from tables 8, 9 and 10. In relation to the first
two variables, the best performances were achieved in the
forecasting of the classes high and low. Regarding direction,
the best performances were accomplished for the medium
class, as indicated by the F1-score figures obtained.

In relation to the values of the quantiles with probabil-
ities 0.3333 and 0.6666, Q33 and Q66, which delimit the
regions of the three classes, they refer to the volatility per
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unit of time, to the duration of the intraday trend in seconds
and return per second, depending on the corresponding
response variable.

In relation to volatility, the best result for kappa was
achieved for the ticker PETR3, with a value of 0.33. Re-
garding the F1-score, the best value was obtained for the low
class and the same ticker, equal to 0.68. For the high class,
the best F1-score figure was reached with the CIEL3 ticker,
while for the medium class the best figure was equal to 0.5.

Regarding duration, the best kappa value was obtained
with the ticker USIM5, equal to 0.26. In relation to the F1-
score, values of 0.69 and 0.77 were reached for the high and
low classes and tickers GOAU4 and CSNA3, respectively.
For the medium class, the best figures were equal to 0.37.

Performance metrics
F1-score Delimiters

Ticker kappa high med low Q33 Q66
B3SA3 0.18 0.52 0.33 0.48 50.857 121.824
BBAS3 0.20 0.49 0.33 0.56 40.395 95.004
BBDC3 0.17 0.44 0.33 0.56 61.709 143.653
BBSE3 0.17 0.52 0.34 0.46 63.140 164.148
BRFS3 0.23 0.49 0.32 0.61 63.015 164.962
BRML3 0.16 0.50 0.37 0.44 107.544 245.928
CIEL3 0.18 0.59 0.36 0.38 73.197 201.058
CSNA3 0.25 0.43 0.27 0.77 139.053 323.325
GGBR4 0.19 0.63 0.28 0.41 76.467 177.293
GOAU4 0.22 0.69 0.29 0.39 163.862 356.536
HYPE3 0.17 0.50 0.28 0.52 65.058 184.884
JBSS3 0.19 0.37 0.26 0.69 103.490 248.070
KROT3 0.17 0.56 0.26 0.46 86.393 206.133
LAME4 0.21 0.55 0.26 0.55 77.553 182.603
MGLU3 0.20 0.60 0.30 0.45 51.846 160.148
PETR3 0.21 0.60 0.31 0.47 60.671 138.369
RAIL3 0.17 0.44 0.37 0.53 82.613 198.650
RENT3 0.18 0.47 0.33 0.55 53.666 131.865
TIMP3 0.19 0.61 0.30 0.41 133.463 327.919
USIM5 0.26 0.63 0.32 0.52 116.463 267.837

Table 9: Duration results. Performance metrics and class
regions delimiters

Performance metrics
F1-score Delimiters

Ticker kappa high med low Q33 Q66
B3SA3 0.14 0.34 0.55 0.38 -5.90e-06 6.01e-06
BBAS3 0.16 0.40 0.49 0.42 -6.72e-06 6.80e-06
BBDC3 0.15 0.42 0.47 0.41 -6.21e-06 6.11e-06
BBSE3 0.14 0.34 0.54 0.38 -4.47e-06 4.50e-06
BRFS3 0.15 0.38 0.52 0.38 -5.49e-06 5.34e-06
BRML3 0.11 0.28 0.58 0.31 -3.91e-06 4.19e-06
CIEL3 0.13 0.35 0.55 0.30 -5.16e-06 5.01e-06
CSNA3 0.12 0.44 0.38 0.44 -4.46e-06 4.61e-06
GGBR4 0.14 0.33 0.59 0.30 -5.22e-06 4.95e-06
GOAU4 0.16 0.32 0.63 0.30 -3.88e-06 3.36e-06
HYPE3 0.13 0.37 0.53 0.35 -4.87e-06 5.10e-06
JBSS3 0.10 0.47 0.36 0.37 -4.30e-06 4.66e-06
KROT3 0.14 0.34 0.57 0.28 -5.36e-06 5.62e-06
LAME4 0.14 0.36 0.54 0.34 -5.25e-06 5.25e-06
MGLU3 0.14 0.33 0.58 0.31 -6.78e-06 6.43e-06
PETR3 0.17 0.31 0.62 0.36 -6.61e-06 6.66e-06
RAIL3 0.14 0.38 0.52 0.36 -4.94e-06 4.87e-06
RENT3 0.13 0.40 0.47 0.39 -6.41e-06 6.58e-06
TIMP3 0.15 0.29 0.57 0.38 -3.00e-06 2.91e-06
USIM5 0.16 0.32 0.58 0.38 -4.70e-06 4.68e-06

Table 10: Direction results. Performance metrics and class
regions delimiters

Finally, the results obtained for the direction variable
were significantly lower than those obtained for the volatility
and duration variables. The maximum value for the kappa
metric was equal to 0.17, achieved with the PETR3 ticker.
In the case of this variable and the measure F1-score, the
best result was achieved with the medium class, reaching a
value of 0.63 with the GOAU4 ticker. Regarding the other
two classes, values of 0.47 and 044 were obtained for the
high and low classes and the JBSS3 and CSNA3 tickers,
respectively.

Figure 13 contains boxplots that represent the summaries
of the importance of variables with values between 0 and 1.
In each response variable, as can be seen in figure 13, there is
uniformity regarding the variable importance for each ticker.

In figure 13, referring to the importance of the variables
used as regressors to forecast volatility linked to future in-
traday trends, the most important variables are the volatility
per unit of time and the total squared log-returns per second,
followed by the average trade duration and the variance of
squared log-returns per second in each interval. This is a
logical result, since the first two variables and the last one are
volatility proxies variables, while duration is directly related
to volatility.

Regarding duration, the highest values are reached with
the different duration metrics: the interval duration, the
average and the variance of durations between trades in
each interval. In addition, the value per second and the
squared returns log-returns per second also are highlighted
as important variables. The result obtained is also logical,
since the interval duration variable is the most important and
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Figure 13: Variable importance

it is the response variable, and the durations between trades
are very closely related to the response variable.

In relation to the direction, the figure 13 contains, as
variables with greater importance, the interval duration, the
return per second, the squared return per second and the
value per second. In this case, it is highlighted that the
response variable is not the most important, since this place
is occupied by the interval duration. However, it must be con-
sidered that the return per second is a function of the interval
duration, since the return of the interval is divided by said
variable. It is also highlighted that in the case of direction,
a large part of the features are of relative importance, which
did not occur with the other two response variables.

In general terms, it is highlighted the greater importance
of the variables extracted from the series of trades, for all the
tickers and response variables, against the features extracted
from the states of the limit order books, which show less
importance. Only in the case of direction, the averages of
the order book imbalance for the first 5 and 10 levels present
a slightly greater importance than that shown in the other
two response variables.

7. Concluding remarks
Using a time series segmentation method, it was devel-

oped a feature engineering that allows extracting features in
high frequency intervals where intraday trends occur. It was

extended the intervals resulting from this segmentation to
order book data, in order to extract features from their states
in these intervals. This methodology facilitates the analysis
of variables in intraday trends and their estimation in future
intervals through artificial intelligence models.

This methodology was applied to forecast three response
variables. To do this, features among those highlighted by
the high frequency financial literature were selected, to
which it was added others that were considered of interest
to explain the variation in each response variable. For the
purpose of extracting features from limit orders, the LOB
at each time of the corresponding trades series was recon-
structed.

Artificial intelligence models with features extracted
from each interval were fed, as a way to estimate the volatil-
ity, duration and direction associated with intraday price
trends in future intervals. The best results were obtained
for volatility forecasting, follow by duration and direction.
The importance of the selected variables was obtained, and
the trades variables provided a better explanation of the
variation in the response variables than the LOB variables.

The feature engineering developed in this research was
applied to extract particular features and forecast three de-
fined response variables, with a certain artificial intelligence
method and using specific data. However, this methodology
is general-purpose for high frequency time series and could
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be applied in a broader scope, depending on the problem to
be solved and within the method specifications.
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Appendix. Features description
For a segment 𝑗 with observations 𝑖, we have the follow-

ing features.
1. Average price

Arithmetic mean of prices 𝑦𝑖 in each segment.

�̄�𝑗 =
1
𝑒𝑗

𝑖𝑗
∑

𝑖𝑗−1+1
𝑦𝑖 (29)

2. Price variance
Variance of prices 𝑦𝑖 in each segment.

𝜎2𝑦𝑗 =
1

𝑒𝑗 − 1

𝑖𝑗
∑

𝑖𝑗−1+1

(

𝑦𝑖 − �̄�𝑗
)2 (30)

3. Fitted price variance
Variance of fitted prices �̂�𝑖 from the linear regression
in each segment.

𝜎2�̂�𝑗 =
1

𝑒𝑗 − 1

𝑖𝑗
∑

𝑖𝑗−1+1

(

�̂�𝑖 − �̄�𝑗
)2 (31)

4. Residual variance
Variance of residuals 𝜖𝑖 from the linear fit in each
segment.

𝜎2𝜖𝑗 =
1

𝑒𝑗 − 1

𝑖𝑗
∑

𝑖𝑗−1+1
𝜖𝑖
2 (32)

5. Mean absolute error
Arithmetic mean of absolute residuals 𝜖𝑖 in each seg-
ment.

𝑚𝑎𝑒𝑗 =
1
𝑒𝑗

𝑖𝑗
∑

𝑖𝑗−1+1
|𝜖𝑖| (33)

6. Average trade duration
Arithmetic mean of trade durations 𝑑𝑖 in seconds for
each segment.
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𝑑𝑗 =
1

𝑒𝑗 − 1

𝑖𝑗−1
∑

𝑖𝑗−1+1
𝑑𝑖 (34)

𝑑𝑖 = 𝑥𝑖+1 − 𝑥𝑖 (35)
7. Trade duration variance

Variance of trades durations 𝑑𝑖 in each segment.

𝜎2𝑑𝑗 =
1

𝑒𝑗 − 2

𝑖𝑗−1
∑

𝑖𝑗−1+1

(

𝑑𝑖 − 𝑑𝑗
)2 (36)

8. Interval observations
Number of observations 𝑒𝑗 in each segment 𝑗.

𝑒𝑗 = 𝑖𝑗 − 𝑖𝑗−1 (37)
9. Interval transactions

The simultaneous observations corresponding to some
prices were registered as a new variable when the data
cleaning procedure was executed, so the number of
transactions in each segment is greater than or equal
to the number of observations in it, since there may
be segments without simultaneous observations. This
variable corresponds to the sum of the transactions
executed in each time interval.

𝑇𝑗 =
𝑖𝑗
∑

𝑖𝑗−1+1
𝑇𝑖 (38)

10. Interval transaction variance
We can have one or more transactions for each obser-
vation in a segment. The variance of transactions in
each segment is calculated as follows.

𝜎2𝑇𝑗 =
1

𝑒𝑗 − 1

𝑖𝑗
∑

𝑖𝑗−1+1

(

𝑇𝑖 − �̄�𝑗
)2 (39)

11. Value per second
Total value 𝑣𝑖𝑦𝑖 of trades in each segment 𝑗 per sec-
ond, where the divisor represents the interval duration
𝐷𝑗 .

𝑉𝑗 =
1

𝑥𝑖𝑗 − 𝑥𝑖𝑗−1+1

𝑖𝑗
∑

𝑖𝑗−1+1
𝑣𝑖𝑦𝑖 (40)

12. Squared log-return per second
Squared log-return divided by the interval duration,
where 𝐷𝑗 is the interval duration and 𝑟𝑗 is the log-
return of the segment 𝑗.

𝑟2𝐷𝑗
=

(

𝑟𝑗
√

𝐷𝑗

)2

=
𝑟2𝑗
𝐷𝑗

(41)

𝑟𝑗 = 𝑙𝑜𝑔(𝑦𝑖𝑗 ) − 𝑙𝑜𝑔(𝑦𝑖𝑗−1+1) (42)
13. Total squared log-returns per second

Sum of squared log-returns per second in each seg-
ment.

𝑆𝑟𝑗𝑖
=

𝑖𝑗−1
∑

𝑖𝑗−1+1

(

𝑟𝑖
√

𝑑𝑖

)2

=
𝑖𝑗−1
∑

𝑖𝑗−1+1

𝑟2𝑖
𝑑𝑖

(43)

14. Squared log-return per second variance
Variance of squared log-returns per second in each
segment.

𝜎2𝑗 = 1
𝑒𝑗 − 2

𝑖𝑗−1
∑

𝑖𝑗−1+1

⎛

⎜

⎜

⎝

(

𝑟𝑖
√

𝑑𝑖

)2

− 𝜇𝑟2𝑥

⎞

⎟

⎟

⎠

2

(44)

𝜇𝑟2𝑥 = 1
𝑒𝑗 − 1

𝑖𝑗−1
∑

𝑖𝑗−1+1

(

𝑟𝑖
√

𝑑𝑖

)2

(45)

= 1
𝑒𝑗 − 1

𝑖𝑗−1
∑

𝑖𝑗−1+1

𝑟2𝑖
𝑑𝑖

15. Average buy market
For every time 𝑥𝑖, we have buy prices and volumes for
each level of the order book. We multiply each price
by its corresponding volume, then we add the products
obtained from all levels. Finally, we calculate the
arithmetic mean of the sums obtained for timestamps
𝑥𝑖 in each segment 𝑗, where 𝑃𝑏𝑉𝑏 is the sum of the
price-volume products from all order book levels at
times 𝑥𝑖.

𝑉𝑏𝑗 =
1
𝑒𝑗

𝑖𝑗
∑

𝑖𝑗−1+1
(𝑃𝑏𝑉𝑏)𝑖 (46)

16. Average sell market
Calculated in the same way as the average buy market,
but for the sell side of the order book.

𝑉𝑠𝑗 =
1
𝑒𝑗

𝑖𝑗
∑

𝑖𝑗−1+1
(𝑃𝑠𝑉𝑠)𝑖 (47)
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17. Average buy volume
First, we add the buy volumes from the order book for
each timestamp 𝑥𝑖 from the trades series. Lastly, we
calculate the arithmetic mean of these sums, where 𝑉𝑏is the sum of buy volumes at each timestamp.

𝑉𝑏𝑗 =
1
𝑒𝑗

𝑖𝑗
∑

𝑖𝑗−1+1
(𝑉𝑏)𝑖 (48)

18. Average sell volume
Calculated as in the feature average buy volume, but
with sell volumes.

𝑉𝑠𝑗 =
1
𝑒𝑗

𝑖𝑗
∑

𝑖𝑗−1+1
(𝑉𝑠)𝑖 (49)

19. Average five levels OBI
It is a type of order book imbalance (OBI). First, we
add the volumes from the first five levels for each
side of the order book at each timestamp from each
segment. Then we divide the difference between the
volumes obtained, buy minus sell, by the sum of these
volumes. Finally, we calculate the arithmetic mean of
these fractions at each timestamp from each segment.

𝑂𝐵𝐼5𝑗 =
1
𝑒𝑗

𝑖𝑗
∑

𝑖𝑗−1+1

𝑉5𝑏𝑖 − 𝑉5𝑠𝑖
𝑉5𝑏𝑖 + 𝑉5𝑠𝑖

(50)

20. Average ten levels OBI
It is calculated in a similar way as the average five
levels OBI, but with ten levels.

𝑂𝐵𝐼10𝑗 =
1
𝑒𝑗

𝑖𝑗
∑

𝑖𝑗−1+1

𝑉10𝑏𝑖 − 𝑉10𝑠𝑖
𝑉10𝑏𝑖 + 𝑉10𝑠𝑖

(51)

21. Average total levels OBI
Similarly as in the two previous features, the average
total levels OBI is obtained for all levels from the order
book in each segment.

𝑂𝐵𝐼 𝑗 =
1
𝑒𝑗

𝑖𝑗
∑

𝑖𝑗−1+1

𝑉𝑏𝑖 − 𝑉𝑠𝑖
𝑉𝑏𝑖 + 𝑉𝑠𝑖

(52)
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