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ABSTRACT
Objectives During the COVID- 19 pandemic, convolutional 
neural networks (CNNs) have been used in clinical 
medicine (eg, X- rays classification). Whether CNNs could 
inform the epidemiology of COVID- 19 classifying street 
images according to COVID- 19 risk is unknown, yet it 
could pinpoint high- risk places and relevant features of the 
built environment. In a feasibility study, we trained CNNs 
to classify the area surrounding bus stops (Lima, Peru) into 
moderate or extreme COVID- 19 risk.
Design CNN analysis based on images from bus stops 
and the surrounding area. We used transfer learning and 
updated the output layer of five CNNs: NASNetLarge, 
InceptionResNetV2, Xception, ResNet152V2 and 
ResNet101V2. We chose the best performing CNN, which 
was further tuned. We used GradCam to understand the 
classification process.
Setting Bus stops from Lima, Peru. We used five images 
per bus stop.
Primary and secondary outcome measures Bus stop 
images were classified according to COVID- 19 risk into 
two labels: moderate or extreme.
Results NASNetLarge outperformed the other CNNs 
except in the recall metric for the moderate label 
and in the precision metric for the extreme label; the 
ResNet152V2 performed better in these two metrics (85% 
vs 76% and 63% vs 60%, respectively). The NASNetLarge 
was further tuned. The best recall (75%) and F1 score 
(65%) for the extreme label were reached with data 
augmentation techniques. Areas close to buildings or with 
people were often classified as extreme risk.
Conclusions This feasibility study showed that CNNs 
have the potential to classify street images according 
to levels of COVID- 19 risk. In addition to applications in 
clinical medicine, CNNs and street images could advance 
the epidemiology of COVID- 19 at the population level.

INTRODUCTION
In COVID- 19 research, deep learning tools 
applied to image analysis (ie, computer 
vision) have informed the diagnosis and prog-
nosis of patients through the classification of 
X- ray and computer tomography images of 
the chest.1–3 These tools have helped practi-
tioners treating COVID- 19 patients.

On the other hand, the application of 
computer vision to study the epidemiology 
of COVID- 19 has been limited. One relevant 
example is the use of Google Street View 
images to extract features of the built envi-
ronment and associate these with COVID- 19 
cases in the USA.4 This work showed that 
unstructured and non- conventional data 
sources, such as street images, can deliver 
relevant information to characterise the 
epidemiology of COVID- 19 at the population 
level.4 In a similar vein, though not exclusively 
addressing COVID- 19, other researchers have 
leveraged on street images to study health- 
related social inequalities,5 air polution,6 
walkability,7 as well as the built environment 
and health outcomes.8 9 These examples show 
the potential of computer vision for popula-
tion health research, above and beyond its 
multiple applications in clinical medicine 
with diagnostic and prognostic models.

However, to the best of our knowledge, 
computer vision models to classify street 
images based on their COVID- 19 risk do 
not exist. From a public health perspective, 
such models could be relevant to understand 
unique local features of the built environ-
ment related to high COVID- 19 risk. In addi-
tion, these models could be applied to places 
where observed data are not available to 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ We used five images per bus stop and the outcome 
information was provided by an official government 
institution.

 ⇒ We leveraged on five well- known convolutional neu-
ral networks (transfer learning).

 ⇒ The analysis focused on street images from one city 
only.

 ⇒ Original data (street images) cannot be shared be-
cause of restricted access.
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identify whether this place is at moderate or high risk of 
COVID- 19 and inform potential interventions. This could 
be particularly helpful in low- income and middle- income 
countries where limited resources do not allow massive 
COVID- 19 testing, leaving places with no observed infor-
mation about the COVID- 19 epidemiology, though the 
local epidemiology could be estimated based on available 
images or alternative sources.

In this pilot feasibility study, we aimed to ascertain 
whether a convolutional neural network (CNN) (deep 
learning) model could classify street images of bus stops 
according to their COVID- 19 risk (binary outcome: 
moderate vs extreme risk) in Lima, Peru. We also aimed 
to understand what features of the images were most 
influential in the classification process.

METHODS
Study design
We used CNNs to study street images of bus stops and 
their surroundings in Lima, Peru. We implemented a clas-
sification model to classify the bus stops into two labels: 
moderate or extreme risk of COVID- 19. We addressed a 
classification problem.

Rationale
We used 5 images per bus stop covering 360° around the 
bus stop. Therefore, we targeted the bus stop and the 
surrounding area. We did not target the bust stop itself 
alone. The bus stop was the anchor for the outcome label 
(moderate or extreme risk of COVID- 19) in the imme-
diate surrounding area. It is unlikely that COVID- 19 risk 
would be confined to the bus stop itself. Rather, the bus 
stop would be a proxy of the risk in the immediate nearby 
area.

We combined the five images before randomly split-
ting into the train, test and validation dataset. We used 
the function train_test_split which randomly splits the data 
with equal distribution of the target outcome. We did not 
condition the random split on the bus stops because we 
did not target the bus stop itself only. A random split would 
provide data to have different profiles of the built envi-
ronment, green areas, bus stops and other street features 
relevant for the model to learn and classify according to 
COVID- 19 risk.

We deemed this a pilot feasibility proof- of- concept 
study because we aimed to provide preliminary data on 
whether CNNs could classify street images according 
to COVID- 19 risk. While there is evidence about CNNs 
being used for classification of X- rays and other clinical 
images for COVID- 19 diagnosis,1–3 there is less evidence 
on CNNs being used for population health and COVID- 
19. Future research could leverage on this idea with more 
images, classifying into multiple outcome labels and 
implementing more sophisticated networks.

Public health and epidemiological research usually rely 
on structured data sources such as health surveys and 
measurements from patients including samples such as 

blood. Unstructured data sources, such as images, are 
gaining attention in clinical medicine and have been used 
to develop diagnosis and prognostic models; however, the 
use of images, including street images, in public health 
and epidemiological research is limited. This work elab-
orates on this premise and on the current burden by 
COVID- 19 and was conceived to study whether street 
images can ascertain the COVID- 19 risk in the commu-
nity. If successful, a deep learning model to classify street 
images according to COVID- 19 risk could be used for 
disease surveillance, and to estimate the risk in places 
where observed data lack.

Data sources
The labels (observed data) of the bus stops were down-
loaded from the website of the Authority for Urban Trans-
port in Lima and Callao (Autoridad de Transporte Urbano 
para Lima y Callao, name in Spanish). This government 
office manages the public transportation service in Lima, 
and publishes a classification map in which all bus stops in 
Lima are set into four categories of COVID- 19 risk: moder-
ate<high<very high<extreme.10 Although this is an official 
source of information from a government branch, details 
of how the bus stops were classified are not available; 
please, refer to the discussion section where we further 
elaborate on this caveat. In this pilot feasibility study, 
we only worked with the bus stops deemed as moderate 
(label 0) and extreme (label 1) risk of COVID- 19. We 
used the classification profile released on 24 May 2021.11 
We conducted a pilot feasibility study considering two 
outcome labels only. This, because we aimed to ascertain 
whether our hypothesis was possible and lead to relevant 
results while studying, from a public health perspective, 
the most important outcomes signalling the extremes of 
the risk distribution. Developing a model to identify areas 
at moderate risk could signal places where restrictions can 
be relaxed or suspended. Similarly, developing a model 
to identify areas at extreme risk would signal places where 
restrictions should be kept or strengthened. Therefore, 
a model focusing on two labels only, where these labels 
represent the extremes of the risk distribution, would be 
relevant and provide actional evidence. Our study could 
demonstrate that CNNs could successfully classify street 
images according to COVID- 19 risk, with not addition 
information such as number of cases or health determi-
nants. This has not been studied before. Future work will 
leverage on this preliminary experience to develop a four- 
outcome model, using larger datasets and incorporating 
more sophisticated networks.

We used the location (longitude and latitude coordi-
nates) of the bus stops to download their street images 
through the application programming interface (API) of 
Google Street View. That is, we downloaded all the images 
in one batch through the API, rather than each one at the 
time through the API or from the standard Google Street 
View website. For each bus stop (ie, from each coordi-
nate), we downloaded five images: when the camera was 
facing at 0°, at 90°, at 180° and at 270°; in addition, we 
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also downloaded one image in which the direction of the 
camera was not specified (ie, the heading parameter in 
the API request was set at default). In other words, for 
each bus stop we had five images. We did this to maximise 
the available data and to cover the surrounding area of 
the bus stop.12 Our rationale was that the bus stop itself 
would not be responsible for the classification (moderate 
or extreme risk), but the whole nearby environment. 
Consequently, if the bus stop was labelled as moderate 
or extreme risk, the same label applied to the images of 
the surrounding area. For example, if bust stop X was 
labelled as moderate risk, all five images for such bus stop 
were labelled as moderate risk (ie, image of the bus top 
itself plus the four images of the surrounding area).

Original dataset
Overall, after downloading both the labels and the images, 
there were 1788 bus stops with their corresponding label: 
1173 in the moderate category and 615 in the extreme 
category (1173+615 = 1788). Because we used 5 images per 
bus stop, the analysis included 8940 (1788×5) images and 
their corresponding label. The training dataset included 
a random sample of 60% (5364) of the original dataset. 
As further explained in the next section (data preparation 
and class imbalance), after correcting for class imbalance 
by introducing duplicates of the class with fewer obser-
vations, the training data included 7024 observations 
(3519 for moderate and 3505 for extreme labels). The 
validation and test datasets included a random sample of 
20% of the original dataset each (0.20×8940=1788); the 
validation and test datasets were not corrected for class 
imbalance.

Data preparation and class imbalance
We combined the images and the labels in one dataset, 
which was further divided into three datasets: the training 
dataset including 60% of the data, the validation dataset 
including 20% and the test dataset including the remaining 
20%. Data allocation to each of these three datasets was 
at random. After splitting the data, we corrected for class 
imbalance in the train dataset only. We randomly multi-
plied the number of images in the imbalanced outcome 
by 0.9. This led to virtually the same number of images for 
the moderate and extreme risks labels.

There were two outcomes of interest: moderate and 
extreme risk. However, there were more observations 
in the moderate category than in the extreme category. 
That is, there was class imbalance. After splitting the data 
into the training, test and validation sets, we corrected for 
class imbalance in the training dataset only. We randomly 
increased the number of observations in the extreme 
category by 90% in the training dataset (not in valida-
tion and test datasets). The original (before correction 
for class imbalance) training set had 3519 observations in 
the moderate category and 1845 in the extreme category 
(3519+1845=5364). After correcting for class imbalance 
as described before, the training dataset had 3519 obser-
vations in the moderate category (this number did not 

change) and 3505 (1.9×1845) observations in the extreme 
category. Therefore, there were 3519 (moderate)+3505 
(extreme after class imbalance correction)=7024 images 
and labels in total in the training dataset.

Analysis
In- depth details about the analysis are available in online 
supplemental materials pp. 03–06. The analysis code 
(Python Jupyter notebooks) is also available in online 
supplemental materials.

In brief, in a prespecified protocol we decided to elab-
orate on five deep CNNs pretrained with ImageNet (ie, 
transfer learning). We chose these five networks because 
they have the best top five accuracy of all models available 
in the Keras library12: NASNetLarge, InceptionResNetV2, 
Xception, ResNet152V2 and ResNet101V2. We imple-
mented these five models with the same hyperparameters, 
and then we selected the one with the best performance 
which was further tuned and tested. The image classifi-
cation model was based on the latter model only (ie, the 
one with the best performance out of the five candidate 
models). We reported the loss and accuracy in the vali-
dation and test datasets; we also used the test dataset 
to report the accuracy, recall and F1 score for each of 
the two possible outcomes (moderate or extreme risk). 
Finally, we used GradCam (class activation maps) to iden-
tify which areas of the input image were more relevant to 
inform the classification process13; for this, we randomly 
selected four images per outcome (ie, four images from 
the moderate label and four images from the extreme 
label). Areas most activated as shown by brighter colours, 
would be decisively in the classification process.

Patient and public involvement
Human subjects did not participate nor were involved in 
this study.

RESULTS
Selection of the pretrained model out of five candidate models
We used transfer learning and updated the output layer 
of five CNNs to predict our two classes of interest. The 
NASNetLarge architecture and weights outperformed 
the other candidate CNNs, except in the recall metric 
for the moderate label: 76% vs 85% in NASNetLarge and 
ResNet152V2, respectively, (table 1). The ResNet152V2 
also performed better than the NASNetLarge in the 
precision metric for the extreme label (60% vs 63%). 
Further experiments were only conducted with NASNet-
Large because, overall, it performed better than the other 
pretrained networks.

Model performance
We further tuned NASNetLarge with different hyperpa-
rameters aiming to improve the accuracy (table 2).

First, building on the initial hyperparameters, we imple-
mented two data augmentation options: horizontal flip 
and zoom range. We chose these two data augmentation 

 on S
eptem

ber 19, 2022 by guest. P
rotected by copyright.

http://bm
jopen.bm

j.com
/

B
M

J O
pen: first published as 10.1136/bm

jopen-2022-063411 on 19 S
eptem

ber 2022. D
ow

nloaded from
 

https://dx.doi.org/10.1136/bmjopen-2022-063411
https://dx.doi.org/10.1136/bmjopen-2022-063411
https://dx.doi.org/10.1136/bmjopen-2022-063411
https://dx.doi.org/10.1136/bmjopen-2022-063411
http://bmjopen.bmj.com/


4 Carrillo- Larco RM, et al. BMJ Open 2022;12:e063411. doi:10.1136/bmjopen-2022-063411

Open access 

methods because they appropriately fit the images under 
analysis; for example, because we were working with 
street images, a vertical flip would not seem appropriate. 
The new model with horizontal flip improved the recall 
and F1 score for the extreme label; from 68% with the 
original NASNetLarge to 75%, and from 64% to 65% 
(figure 1). The new model with horizontal flip and zoom 
range at 30% had better performance than the original 

NASNetLarge model in 6 out of 10 parameters, including 
precision for the extreme label.

Second, also building on the initial hyperparame-
ters (ie, without data augmentation), the decay in the 
stochastic gradient descendent optimiser was changed 
from 1/25 (25 was the number of epochs) to 1/10 (the 
number of epochs was not changed). This model did not 
substantially improve the performance of the model.

Table 1 Performance of the five candidate convolutional neural networks

NASNetLarge InceptionResNetV2 Xception ResNet152V2 ResNet101V2

Loss, validation 0.526799 0.554040 0.533278 0.793147 0.744385

Accuracy, validation 0.742046 0.713636 0.730682 0.721023 0.723295

Loss, test 0.539906 0.557637 0.555917 0.800661 0.726274

Accuracy, test 0.731818 0.721591 0.706818 0.722727 0.718750

Precision, label 0 (moderate) 0.82 0.78 0.82 0.76 0.80

Recall, label 0 (moderate) 0.76 0.81 0.71 0.85 0.76

F1 score, label 0 (moderate) 0.79 0.79 0.76 0.80 0.78

Precision, label 1 (extreme) 0.60 0.61 0.56 0.63 0.58

Recall, label 1 (extreme) 0.68 0.56 0.70 0.48 0.64

F1 score, label 1 (extreme) 0.64 0.58 0.62 0.54 0.61

Green colour highlights the best metric, yellow colour highlights the second best metric and red colour highlights the third best metric row- 
wise. The precision, recall and F1 score are presented as proportions (multiply by 100 to have percentages). The precision, recall and F1 
score were computed with the test dataset. Receiver operating characteristic curves for each model are available in online supplemental 
materials.

Table 2 Further tuning of the selected model (NASNetLarge) and the performance metrics

New model specifications

Original model 
(as in table 1)

horizontal_flip=True//
epochs=25 (stopped 
at 12 epochs)

horizontal_flip=True//
zoom_range=0.30//
epochs=25
(stopped at 15 
epochs)

decay=0.1/10//
epochs=25 
(stopped at 12 
epochs)

decay=0.1/10//
factor=0.3//
epochs=25 
(stopped at 12 
epochs)

Loss, validation 0.526799 0.534797 0.537553 0.532246 0.532246

Accuracy, validation 0.742046 0.737500 0.739773 0.732386 0.732386

Loss, test 0.539906 0.550286 0.528204 0.538252 0.538252

Accuracy, test 0.731818 0.719318 0.735795 0.725568 0.725568

Precision, label 0 
(moderate)

0.82 0.85 0.76 0.83 0.83

Recall, label 0 
(moderate)

0.76 0.71 0.87 0.74 0.74

F1 score, label 0 
(moderate)

0.79 0.77 0.81 0.78 0.78

Precision, label 1 
(extreme)

0.60 0.57 0.66 0.59 0.59

Recall, label 1 
(extreme)

0.68 0.75 0.47 0.71 0.71

F1 score, label 1 
(extreme)

0.64 0.65 0.55 0.64 0.64

Green colour highlights the best metric, yellow colour highlights the second best metric and red colour highlights the third best metric row- 
wise considering only the new model specifications. The precision, recall and F1 score are presented as proportions (multiply by 100 to have 
percentages). receiver operating characteristic curves for each model are available in online supplemental materials.
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Third, building on the last specification (ie, model 
with a decay of 1/10), we updated the monitoring 
factor which updated the learning rate when it did not 
improve through epochs. Originally, this factor was 0.1, 
and we updated it to 0.3. This model did not substantially 
improve the performance of the model.

GradCam
In the GradCam (ie, class activation maps) analysis, we 
used the NASNetLarge model with one data augmen-
tation technique (horizontal flip). Even though the 
performance of the NASNetLarge model with two data 
augmentation techniques (horizontal flip and zoom 
range) was better in more metrics, the model with hori-
zontal flip only had better recall and F1 score for the 
extreme label. The main indications for a moderate risk 
classification were the presence of green areas and lack of 
close nearby buildings. That is, images with several open 
spaces such as parks, open streets or wide avenues would 
most likely be classified as moderate risk. Conversely, 
areas close to buildings, with a considerable presence of 
people, and with meeting points (eg, street vendors) were 
often classified as extreme COVID- 19 risk. In other words, 
bus stops with one or multiple street vendors, newspapers 
stand or any other point for people to gather around 
would most likely be classified as extreme risk. The pres-
ence of cars did not seem to impact the classification 
process.

DISCUSSION
Main findings
With almost all research on computer vision and 
COVID- 19 focusing on diagnostic models based on X- rays 
and other clinical images, our work is novel because it 
borrows techniques from computer vision into epidemi-
ology and population health leveraging on available data 
(street images). In this study, we showed that deep CNNs 
can classify street images according to their COVID- 19 risk 
with acceptable accuracy. Future work should strengthen 
available CNNs or develop a new architecture which could 
maximise the accuracy classification, not only for a binary 
outcome but also covering multiple outcomes. This work 
could spark interest to use CNNs—and other artificial 
intelligence tools—to advance population health and 
the epidemiological knowledge of COVID- 19 (and other 
diseases), above and beyond the applications of CNNs for 
diagnosis and prognosis of individual patients (eg, classi-
fication of X- rays and compute tomography images of the 
chest1–3).

Results in context
This work signalled that a deep neural network is 
moderately accurate to classify street images according 
to COVID- 19 risk levels. These results are encouraging 
because the task we pursued was difficult: to classify street 
images into levels for which there is no unique intrinsic 
information in the images. Classification of, for example, 
X- ray images of the chest into healthy or ill could be 
easier for a CNN because the X- ray of someone with a 
disease (eg, pneumonia) would have unique features (eg, 
infiltrate spots at the bottom of the lungs) that an X- ray 
of the chest of someone healthy would not have at all. 
Conversely, in our case, the street images did not have 
a unique underlying pattern to guide the classification 
process. Our model had to work harder to find those 
unique characteristics to decide between moderate and 
extreme risk.

Further tuning of the selected model (NASNetLarge) 
suggested that data augmentation methods improved 
the performance of the model. When we updated the 
learning rate optimiser (decay and factor parameters), 
the model performance did not substantially improve. 
This could suggest that, for this particular task, we may 
need a large number of images. Alternatively, several 
combinations of data augmentation techniques would 
need to be tested. Data augmentations should be care-
fully considered to select those most suitable for these 
images; for example, vertical flip may not be a reasonable 
choice for street images.

Nguyen et al used Google Street View images to asso-
ciate features of the built environment with COVID- 19 
cases in several states in the USA.4 Although we could have 
followed the same approach, there would be some unique 
local features of the built environment that may not have 
been identified by available object detection tools (eg, 
street vendors and newspaper stands). We are not aware 
of other peer- reviewed papers in which street images have 

Figure 1 Confusion matrix for the best NASNetLarge 
model. This NASNetLarge model corresponds to the one with 
data augmentation of horizontal flip (first column in the new 
model specification section of table 2). The figure shows the 
absolute number of images in each label: observed (true) on 
the y- axis and predicted on the x- axis.
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been classified according to COVID- 19 outcomes devel-
oping a new model or leveraging on transfer learning 
from an established neural network. Our work contrib-
utes to the available literature with a newly trained model 
benefiting from transfer learning from a large and well- 
known architecture (NASNetLarge), based on images 
from a city in an upper- middle- income country (Lima, 
Peru).

The activation maps (GradCam results) are not only 
useful to analyse the model’s interpretation capability, but 
they also bolster the existing evidence of crowded places 
or indoor venues (such as nearby buildings) as COVID- 19 
high- risk areas. For example, areas with street vendors 
would activate more than open spaces for the extreme 
risk classification; on the other hand, open areas would 
play a major role in classifying moderate risk images. 
Overall, our findings agree with the evidence describing 
crowded areas, such as restaurants, gyms, hotels and cafes, 
as having high COVID- 19 transmission risk.14 Further-
more, our work advances the field by showing that street 
images with no other clinical or epidemiological data 
have moderate accuracy to predict COVID- 19 risk.

Public health implications
Our work could have pragmatic applications to better 
understand the epidemiology of COVID- 19 and to inform 
public health interventions. For example, our model—
and future work improving this analysis—could be used to 
characterise bus stops and other public places for which 
labelled data are not available. We worked with images 
from bus stops in Lima, and our model could be applied 
to bus stops in other cities to characterise their COVID- 19 
risk, particularly where observed data are not available. 
Furthermore, our work could spark interest to conduct 
more sophisticated analyses, like semantic segmentation 
whereby some unique elements of the local environment 
could be identified as potential high- risk places. For 
example, bus stops in Lima often host food street vendors 
and newspaper stands where people usually gather. 
Perhaps, the bus stops themselves are not high- risk places, 
but those surrounding shops. This could inform policies 
and interventions to reduce the COVID- 19 risk in these 
places. Overall, deep learning techniques, including 
CNNs, could be adopted by epidemiological research to 
advance the evidence about risk factors as well as disease 
outcomes and distribution, in addition to their current 
use in clinical medicine.1–3

Our work was designed to understand whether and 
how well street images, without complementary data, 
can predict COVID- 19 risk. Our results support the idea 
that the built environment alone is a health determi-
nant because the street images were not complemented 
with other epidemiological data such as number of 
cases or COVID- 19 transmission. Measuring COVID- 19 
throughout a country can be challenging and barriers 
include lack of access to tests as well as laboratory facil-
ities to process the samples, and limited health or 
trained personnel to take the samples. Our work suggests 

that street images could serve as proxy to estimate the 
COVID- 19 risk in places where this information does 
not exist based on observed data. Therefore, we provide 
preliminary evidence suggesting that street images can be 
instrumental in COVID- 19 surveillance.

Finally, as argued before, this is a pilot feasibility proof- 
of- concept study to study whether CNNs could classify 
street images according to COVID- 19 indicators. This 
work complements the current use of CNNs for COVID- 19 
classification of clinical images (eg, X- rays). This work 
should be regarded as the first step in the use of CNNs in 
epidemiology and population health relevant to COVID- 
19; this work is not the ultimate work on this subject and 
future research should improve our approach and results.

Ongoing and future work
Ongoing and future work includes the development of 
a classification model for the four outcome labels (ie, 
moderate, high, very high and extreme COVID- 19 risk). 
We will implement techniques that can potentiate the 
classification capacity of the neural networks, including 
ensemble models,15 novel loss functions not currently 
implemented in the Keras environment (eg, squared 
earth mover’s distance- based loss function),16 and we may 
try other architectures (eg, SqueezeNet17) with similar 
precision yet less computationally expensive. Because 
most of our bus stop images also depicted buildings, we 
may try to use a network already trained on images of 
buildings and other city landscapes (eg, Places- 365).

Strengths and limitations
We followed a predefined protocol which included 
transfer learning leveraging on large and deep neural 
networks trained with millions of images (ImageNet). 
We still had to train the parameters of the output layer, 
for which we did not have a massive number of images. 
Future work could expand our analysis with information 
and images from more bus stops or other public spaces 
to train a more robust model. Ideally, these images 
should come from different cities. This information may 
be available in other countries. There are further limita-
tions we must acknowledge. First, the images and labels 
were not synchronic; that is, the figures and the labels 
were not collected on the same date. This is a shared 
limitation with other studies working with street images 
from open sources (eg, Google Street View), because 
these images are not taken continuously or in real time. 
This should not be a major limitation because the anal-
ysis mostly focused on the built environment, which has 
not changed substantially in recent years. Because this 
feasibility study showed that the classification model 
performed moderately well, researchers could collect 
new images in a prospective work to verify our find-
ings with synchronic data. In this line, satellite images 
collected daily could be useful. Second, we did not have 
exact details on how the bus stops were classified by the 
local authorities. Nevertheless, we used official informa-
tion which is provided to the public for their safety and 

 on S
eptem

ber 19, 2022 by guest. P
rotected by copyright.

http://bm
jopen.bm

j.com
/

B
M

J O
pen: first published as 10.1136/bm

jopen-2022-063411 on 19 S
eptem

ber 2022. D
ow

nloaded from
 

http://bmjopen.bmj.com/


7Carrillo- Larco RM, et al. BMJ Open 2022;12:e063411. doi:10.1136/bmjopen-2022-063411

Open access

to inform them about the progression of the COVID- 19 
pandemic. Because it is an official source of public infor-
mation, we trust their method for classification is sound 
and based on the best available evidence. This limitation 
should not substantially bias our model or results because 
the labels were clearly available from the data provider 
(transport authority), and we did not have to make any 
assumptions nor manual labelling. However, this may 
limit the external reproducibility of our work because 
other researchers may not label their images following 
the same criteria by our data source. We argue that this 
should not rest importance to our work because which 
could serve as basis for future research in the area in 
which the underlying labelling criteria are clearer. Third, 
we had five images per bus stop: the fifth image did not 
look at a specific angle, unlike the other four images that 
looked at 0°, 90°, 180° and 270° around the bus stop. 
Therefore, the fifth image had some overlap with the 
other images. We took this decision to maximise the 
available data. Researchers with access to more labelled 
information, perhaps from public places overseas, could 
use the four images without overlap and not signifi-
cantly reducing the dataset size. In this line, the data-
sets (training, test and validation) were split randomly 
and, just by chance although improbably, all images of 
one particular bus stop could have fallen in a subset (eg, 
test dataset). If so, the model would have poor accuracy 
to predict this specific bus stop because the model did 
not have any information/images about that bus stop in 
the training dataset. However, because we trained the 
model to classify moderate and extreme risk of COVID- 
19, the model learnt patterns and profiles of the bus 
stops and their surrounding areas. This training could 
then be applied to other bus stops with similar charac-
teristics. The GradCam analysis helped us to exemplify 
the patterns most influential in the selection process. 
Arguably, the influential patterns would be in all or most 
images. Fourth, our model cannot be independently 
reproduced because we could not make the underlying 
data available because these images do not belong to us. 
Google Street View images are available through the API, 
though they need personal login credentials. Although 
this would not replace the raw underlying data, to 
increase the transparency of our work we made available 
the Jupyter notebooks used in the analysis (online supple-
mental materials). These notebooks show the codes and 
results. Fifth, we did not report or discuss the algorithms 
or computations behind the CNNs we used for transfer 
learning. As per our protocol, we chose and applied a 
set of established CNNs to solve a classification problem. 
Disentangling the underlying mechanisms underneath 
each CNN was beyond the scope of this work. Neverthe-
less, it is relevant to understand the areas of the images 
most influential in the classification process. This way, we 
can verify if the classification process followed a logical 
path. We therefore reported the GradCam analysis.

Conclusions
This study showed that a CNN has moderate accuracy to 
classify street images into moderate and extreme risk of 
COVID- 19. In addition to applications in clinical medi-
cine, deep CNNs have the potential to also advance 
the epidemiology of COVID- 19 at the population level 
exploding unstructured and non- conventional data 
sources.
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