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Abstract Global targets to reduce salt intake have been proposed, but their monitoring is chal-
lenged by the lack of population-based data on salt consumption. We developed a machine learning 
(ML) model to predict salt consumption at the population level based on simple predictors and 
applied this model to national surveys in 54 countries. We used 21 surveys with spot urine samples 
for the ML model derivation and validation; we developed a supervised ML regression model based 
on sex, age, weight, height, and systolic and diastolic blood pressure. We applied the ML model 
to 54 new surveys to quantify the mean salt consumption in the population. The pooled dataset 
in which we developed the ML model included 49,776 people. Overall, there were no substantial 
differences between the observed and ML-predicted mean salt intake (p<0.001). The pooled dataset 
where we applied the ML model included 166,677 people; the predicted mean salt consumption 
ranged from 6.8 g/day (95% CI: 6.8–6.8 g/day) in Eritrea to 10.0 g/day (95% CI: 9.9–10.0 g/day) in 
American Samoa. The countries with the highest predicted mean salt intake were in the Western 
Pacific. The lowest predicted intake was found in Africa. The country-specific predicted mean salt 
intake was within reasonable difference from the best available evidence. An ML model based on 
readily available predictors estimated daily salt consumption with good accuracy. This model could 
be used to predict mean salt consumption in the general population where urine samples are not 
available.

Editor's evaluation
Salt intake is a major determinant of volume status, blood pressure values, and congestion, but its 
estimation is challenging because of the need of measuring 24-h urinary sodium excretion over a 
number of days, which is unfeasible in most countries. The demonstration of the feasibility of esti-
mating accurately salt intake at the population level using artificial intelligence starting from simple 
and widely available variable is therefore important for epidemiological and intervention studies 
in which salt intake is a major player, particularly, but not only, in countries experiencing economic 
hardships.
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Introduction
The association between high sodium/salt intake and high blood pressure, a major risk factor of 
cardiovascular diseases (CVDs), is well-established (He et  al., 2013; World Health Organization, 
2021a; Poggio et al., 2015). More than 1.7 million CVD deaths were attributed to a diet high in 
sodium in 2019, with ~90% of these deaths occurring in low- and middle-income countries (LMICs) 
(GBD 2019 Risk Factors Collaborators, 2020; GBD Results Tool, 2021). Consequently, salt reduc-
tion has been included in international goals: the World Health Organization (WHO) recommendation 
of limiting salt consumption to <5 g/day (World Health Organization, 2021a), and the agreement by 
the WHO state members of a 30% relative reduction in mean population salt intake by 2025 (WHO. 
World Health Organization, 2021). Because available evidence suggests that sodium/salt consump-
tion is higher than the global targets (Powles et al., 2013; Carrillo-Larco and Bernabe-Ortiz, 2020; 
Oyebode et al., 2016) we need timely and consistent data of sodium/salt consumption in the general 
population to track progress of salt reduction targets.

Global efforts have been made to produce comparable estimates of sodium/salt intake for all 
countries (Powles et al., 2013). Similarly, researchers have summarized all the available evidence in 
specific world regions (Carrillo-Larco and Bernabe-Ortiz, 2020, Oyebode et al., 2016). Although 
the global endeavor was based on the gold standard method to assess sodium/salt intake (i.e., 24 hr 
urine sample), their estimates were up to 2010 (Powles et al., 2013). Therefore, robust and compa-
rable sodium/salt intake estimates for all countries lack for the last 10 years. The regional endeavors 
summarized population-based evidence, yet they conducted study-level meta-analyses in which the 
original studies could have followed different laboratory methods, and they did not study all coun-
tries in the region. Therefore, comparability across studies could be limited and evidence lacks for 
many countries. Finding a method to estimate sodium/salt consumption in national samples lever-
aging on available data is needed to update and complement the existing evidence (Powles et al., 
2013; Carrillo-Larco and Bernabe-Ortiz, 2020; Oyebode et al., 2016; Thout et al., 2019). Quan-
tifying sodium/salt intake based on 24 hr urine samples is costly and burdensome, limiting its use in 
population-based studies or national health surveys. As an alternative, equations have been devel-
oped to estimate sodium/salt intake based on spot urine (SU) samples (Brown et al., 2013; Kawasaki 
et al., 1993; Toft et al., 2014; Tanaka et al., 2002). Although these equations may not deliver iden-
tical results to those based on 24 hr urine samples at the individual level, at the population level the 
difference between SU samples and 24 hr samples appears to be small (Huang et al., 2016; Santos 
et al., 2020). However, these equations have been used in few WHO STEPS and other national health 
surveys (World Health Organization, 2021b), leaving several countries without data to quantify the 
local sodium/salt consumption because they do not have access to SU samples (World Health Orga-
nization, 2021c).

If we could (accurately) estimate sodium/salt intake at the population level based on variables that 
are routinely available in national health surveys (e.g., weight or blood pressure), mean sodium/salt 
intake at the population level in countries that currently lack urine data (i.e., 24 hr or spot) could be 
computed using these available predictors. Advanced analytic techniques like machine learning (ML) 
could make accurate predictions and inform about the mean sodium/salt intake at the population 
level. We developed an ML predictive model to estimate mean salt intake at the population level (not 
at the individual level) using routinely available variables in national health surveys. We applied this 
ML model to other national health surveys without urine data to compute the mean salt intake in the 
general population.

Results
Study population for model derivation and validation
The pooled dataset included 49,776 people from 21 surveys in 19 countries (i.e., two countries, Bhutan 
and Mongolia, had two surveys) conducted between 2013 and 2019 (Appendix 1—table 1). Overall, 
the mean age ranged from 33 (95% confidence interval [95% CI]: 33–34) years in Zambia to 43 (95% 
CI: 42–44) years in Belarus. The proportion of men ranged from 35.7% in Tonga to 61.4% in Solomon 
Islands. The mean SBP was lowest in Jordan (117.7 mmHg [95% CI: 115.7–119.8 mmHg]) and highest 
in Belarus (134.6 mmHg [95% CI: 133.6–135.5 mmHg]). The mean DBP was lowest in Chile (73.6 mmHg 
[95%  CI: 72.5–74.6  mmHg]) and highest in Belarus (84.9  mmHg [95%  CI: 84.4–85.5  mmHg]). The 
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mean weight ranged from 54.6 kg (95% CI: 53.8–55.5 kg) in Nepal to 98.6 kg (95% CI: 97.7–99.5 kg) 
in Tonga. The mean height ranged from 1.55 m (95% CI: 1.55–1.56 m) in Nepal to 1.71 m (95% CI: 
1.70–1.71 m) in Tokelau.

Observed and predicted mean salt intake during the ML model 
derivation and validation
In the test dataset including 20 WHO STEPS surveys and one national health survey (Chile) (i.e., 21 
surveys in total), the observed mean salt intake computed as per the INTERSALT equation was higher 
in men than in women in all countries; it ranged from 8.5 g/day (95% CI: 8.2–8.8 g/day; Zambia) to 
10.4 g/day (95% CI: 10.1–10.7 g/day; Azerbaijan) in men and from 6.8 g/day (95% CI: 6.7–6.8 g/day; 
Turkmenistan) to 8.3 g/day (95% CI: 8.0–8.6 g/day; Malawi) in women. Across countries, the predicted 
mean salt intake was also higher in men than in women. Results for each survey are presented in 
Figure 1 and Appendix 1—table 2.

The mean observed salt intake was higher in people aged  ≥30  years (7.9  g/day vs. 8.4  g/day, 
p<0.05 for independent t-test), and so was for people with raised blood pressure (≥140/90 mmHg) 
(8.7 g/day vs. 8.2 g/day, p<0.05). The mean salt consumption was also different across body mass 
index (BMI) categories (p<0.05 for ANOVA test). The same profile was found for predicted mean salt 
intake (Appendix 1—table 3).

In men across all countries in the test dataset including 20 WHO STEPS surveys (representing 18 
countries) and 1 national health survey (Chile), the mean difference between observed and predicted 
mean salt intake was –0.02 g/day (p<0.001 for paired t-test). Across all surveys, the positive mean 
difference farthest from zero was 0.54 g/day (Nepal, p<0.001 for paired t-test), and the negative mean 
difference farthest from zero was –1.31 g/day (Tonga, p<0.001 for paired t-test). The mean difference 
closest to zero was –0.03 g/day (Morocco, p=0.308 for paired t-test) (Appendix 1—table 4).

Figure 1. Observed and predicted mean salt intake (g/day) by sex in each survey included in the machine learning (ML) model development. Exact 
estimates (along with their 95% CI) are presented in Appendix 1—table 2. These results were computed with the test dataset only. Results are for the 
HuR algorithm, which was the model with the best performance.
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In women across all countries in the test dataset including 20 WHO STEPS surveys (representing 
18 countries) and 1 national health survey (Chile), the mean difference between the observed and 
predicted mean salt intake was 0.01 g/day (p<0.001 for paired t-test). The positive mean difference 
farthest from zero was 1.23 g/day (Malawi, p<0.001 for paired t-test) and the negative mean differ-
ence farthest from zero was in –1.22 g/day (Tonga, p<0.001 for paired t-test). The mean difference 
closest to zero was 0.01 g/day (Armenia, p=0.195 for paired t-test) (Appendix 1—table 4).

None of the countries herein analyzed, regardless of the method of sodium intake assessment (i.e., 
observed or predicted), showed a mean salt intake below the WHO recommended level of <5 g/day 
(Figure 1, Appendix 1—table 2). The same occurred for the mean salt intake estimates using the 
Kawasaki, Toft, and Tanaka formulas (Appendix 1—table 5).

Implementation of the developed ML model to predict salt 
consumption in 54 countries
The pooled dataset where we applied the ML model included 166,677 people from 54 countries in 54 
WHO STEPS surveys conducted between 2004 and 2018 (Appendix 1—table 6). Overall, the mean 
age ranged from 31 (95% CI: 31–32) years in Ethiopia to 43 (95% CI: 40–47) years in Barbados. The 
proportion of men ranged from 17.2% in Eritrea to 63.8% in Timor-Leste. The mean SBP was lowest 
in Cambodia (116.2 mmHg [95% CI: 115.6–116.9 mmHg]) and highest in Mozambique (138.7 mmHg 
[95%  CI: 136.3–141.0  mmHg]). The mean DBP was lowest in Cambodia (72.4  mmHg [95%  CI: 

Figure 2. Predicted mean salt intake (g/day) by sex in each of the 54 national surveys included in the application of the model herein developed. Exact 
estimates (along with their 95% CI) are presented in Appendix 1—table 7. Countries are presented in ascending order based on their overall mean salt 
intake (i.e., countries with the highest mean salt intake are at the bottom).
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71.8–73.0  mmHg]) and highest in Kyrgyzstan (86.8  mmHg [95%  CI: 85.9–87.8  mmHg]). The mean 
weight ranged from 51.8 kg (95% CI: 51.2–52.4 kg) in Eritrea to 100.4 kg (95% CI: 100.1–100.8 kg) in 
American Samoa. The mean height ranged from 1.54 m (95% CI: 1.54–1.55 m) in Lao People’s Demo-
cratic Republic to 1.70 m (95% CI: 1.70–1.71 m) in British Virgin Islands.

Across the 54 countries, the overall predicted mean salt intake ranged from 6.8 g/day (95% CI: 
6.8–6.8 g/day) in Eritrea to 10.0 g/day (95% CI: 9.9–10.0 g/day) in American Samoa. The mean was 
always higher in men than in women. None of the countries herein analyzed, regardless of sex, 
showed a predicted mean salt intake below the WHO recommended level of <5 g/day (Figure 2, 
Appendix 1—table 7).

In men, the countries with the highest predicted mean salt intakes were Nauru (11.0 g/day), Amer-
ican Samoa and Cook Islands (both with 10.9 g/day), and Niue and Tuvalu (both with 10.4 g/day); 
remarkably, all of these countries are in the Western Pacific. In contrast, the lowest predicted mean 
salt intake in men was in Eritrea (8.3 g/day), Ethiopia (8.5 g/day), and Niger (8.6 g/day); remarkably, 
all of these countries are in Africa.

In women, the countries with the highest predicted mean salt intake were American Samoa (9.0 g/
day), Nauru (8.8 g/day), and Cook Islands and Tuvalu (both with 8.7 g/day); all of these countries are in 
the Western Pacific. Conversely, the lowest predicted mean salt intake in women was in Eritrea (6.5 g/
day), Ethiopia (6.6 g/day), and Niger (6.7 g/day); all of these countries are in Africa.

Discussion
Main findings
This work leveraged on 21 national health surveys and readily available predictors to develop an ML 
model to predict salt consumption; this model was then applied to national surveys in 54 countries. 
It should be noted that we analyzed SU samples. These are not the gold standard to assess salt 
consumption. Results should be interpreted in light of this limitation, considering that our model 
aimed to deliver estimates at the population level (not individual level) (Huang et al., 2016; Santos 
et al., 2020). The HuR ML algorithm yielded the predictions closest to the observed salt intake: the 
mean difference between predicted and observed salt consumption across surveys was –0.02 g/day 
in men and 0.01 g/day in women. We used this novel ML model to predict salt consumption in 54 
countries, where the mean salt consumption ranged from 8.3 g/day (Eritrea) to 11.0 g/day (Nauru) in 
men; these numbers in women ranged from 6.5 g/day (Eritrea) to 9.0 g/day (American Samoa). This 
work aimed to elaborate on novel analytical tools to predict salt consumption where national surveys 
have not collected this information, limiting their ability to keep track of mean sodium consumption in 
the general population. Pending external independent validation, our model could be used in moni-
toring frameworks of salt consumption because most countries do not collect sodium samples in their 
national health surveys. Our model could contribute to the global surveillance of salt consumption, 
a relevant cardiometabolic risk factor (He et al., 2013; World Health Organization, 2021a; Poggio 
et al., 2015).

Public health implications
ML models have been used extensively to predict relevant clinical outcomes (e.g., mortality) and 
epidemiological indicators (e.g., forecasting COVID-19 cases) (Wang et al., 2020; Wynants et al., 
2020; Groot et al., 2021; Watson et al., 2021; Mohan et al., 2021). Furthermore, ML algorithms 
have proven to be useful for understanding complex outcomes (e.g., identifying clusters of people 
with diabetes) based on simple predictors (e.g., BMI) in nationally representative survey data (Oh 
et al., 2019; García de la Garza et al., 2021; Carrillo-Larco et al., 2021). Our work complements 
the current evidence on ML algorithms by demonstrating its use in a relevant field: population salt 
consumption. In so doing, we delivered a pragmatic tool that could be used to inform the surveillance 
of salt consumption in countries where national surveys do not objectively collect this information 
(e.g., SU samples). Moreover, this work provided preliminary evidence to update the global estimates 
of population-based sodium consumption (Powles et al., 2013) by informing about the mean sodium 
consumption in 54 countries. Our results suggest that mean salt consumption is above the WHO 
recommended level in all the 54 countries herein analyzed, and it was the highest among countries in 
the Western Pacific, and the lowest among countries in Africa. This finding, which is consistent with 
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a global work (Powles et al., 2013), calls for urgent actions to reduce salt consumption in these 54 
countries, especially those in the Western Pacific.

We do not believe that our – or any other – ML model should replace a comprehensive population-
based nationally representative health survey with 24 hr or SU samples. However, until such surveys 
are available in many countries and periodically conducted, we could suggest using an estimation 
approach to shed lights about the mean salt consumption in the population. Our ML model seems 
to be a reasonably good alternative and could become a pragmatic tool for surveillance systems that 
keep track of sodium consumption in accordance with global goals (World Health Organization, 
2021a; WHO. World Health Organization, 2021).

Research in context
A global effort provided mean sodium/salt consumption estimates for 187 countries in 1990 and 2010 
(Powles et al., 2013); they used 24 hr urine samples and dietary reports from surveys conducted in 66 
countries. Unfortunately, their results were until 2010. Our results advanced this evidence by providing 
more recent salt consumption estimates because most of the surveys in which we applied our ML 
model were conducted after 2010 (Appendix 1—table 6).

Compared to the global estimates for the same countries in 2010, (Powles et  al., 2013), our 
mean salt consumption estimates were very similar. For example, our 2010 mean salt consumption 
estimates for Cambodia, Eritrea, and the Gambia were 7.8 g/day, 6.8 g/day, and 8.1 g/day, whereas 
the estimates by Powles et al., 2013 were 11.0 g/day, 5.9 g/day, and 7.7 g/day (Appendix 1—table 
8; Powles et al., 2013). We further compared our estimates for surveys conducted between 2007 
and 2013 (±3 years around 2010) with the 2010 estimates provided by Powles et al., 2013, and our 
results were also within reasonable difference. The largest differences were in Tajikistan (8.5 by our ML 
model vs. 13.5 by Powles et al., 2013), as well as in Kyrgyzstan (8.6 vs. 13.4 by Powles et al., 2013) 
and Samoa (9.5 vs. 5.2 by Powles et al., 2013). It appears that our predictions were higher than those 
provided by Powles et al., 2013 in countries with presumably low salt consumption (e.g., Samoa); 
conversely, in countries with presumably high salt consumption (e.g., Kyrgyzstan), our predictions 
revealed smaller estimates than those by Powles et al., 2013 (Appendix 1—table 8). These differ-
ences could be explained by the fact that our ML model was developed based on SU samples rather 
than 24 hr urine samples as Powles et al., 2013 did. Strong evidence indicates that estimates based 
on SU may overestimate salt intake at lower levels of consumption and underestimate salt intake at 
higher levels of consumption (Huang et al., 2016).

In addition to the global work by Powles et al., 2013, there are other reports from some specific 
countries. For example, a survey conducted between 2012 and 2016 with 24  hr urine samples in 
Fiji and Samoa showed that the mean salt consumption was 10.6 g/day and 7.1 g/day, respectively 
(Santos et al., 2019). The estimates from our ML model for Fiji (2011) and Samoa (2013) suggested 
that the mean salt consumption was 8.7 g/day and 9.5 g/day, respectively. A survey in Vanuatu in 2016 
based on 24 hr urine sample informed that the mean salt intake was 5.9 g/day (Paterson et al., 2019); 
our estimate for the year 2011 was 8.4 g/day. In 2009 in Vietnam, a survey with SU samples revealed 
that the mean salt consumption was 9.9 g/day (Jensen et al., 2018); our prediction for the year 2015 
was 7.9. These comparisons suggest that our ML-predicted estimates are plausible and close to the 
best available evidence.

Although these comparisons do not validate our predictions in the 54 national surveys, they suggest 
that our salt consumption estimates are within reasonable distance from the best available evidence. 
Until better data are available (e.g., national survey with spot or 24 hr urine sample), our model could 
provide preliminary evidence to inform the national mean salt consumption. Careful interpretation is 
warranted to understand the strengths and limitations of our ML-based predictions.

Strengths and limitations
We followed sound and transparent methods to develop an ML model to predict salt consumption 
at the individual level. We leveraged on open-access national data collected following standard and 
consistent protocols (World Health Organization, 2021b; Departamento de Epidemiologia. Minis-
terio de Salud, 2021). Most of the surveys we analyzed were conducted after 2010, providing more 
recent evidence than the latest global effort to quantify salt consumption in all countries (Powles 
et al., 2013). Notwithstanding, we must acknowledge some limitations. First and foremost, urine data 
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was based on a spot sample, which is not the gold standard (24 hr urine sample) to measure daily salt 
consumption. Future work should verify and advance our results using on 24 hr urine samples available 
in nationally representative samples; in the meantime, our work has led the foundations and hope-
fully sparked interest to use available data and novel analytical techniques to deliver estimates of salt 
consumption in the general population. While SU samples may not be the best approach to estimate 
salt consumption at the individual level, at the population level the means estimated based on SU 
samples and 24 hr urine samples are similar (Huang et al., 2016; Santos et al., 2020). Therefore, the 
limitation of using SU samples only may have had little impact on our mean estimates, which are the 
country level, not at the individual level. While this – reanalysis of SU sample rather than 24 hr urine 
samples – is a limitation of our work, it is also an observation showing the lack of nationally represen-
tative surveys with 24 hr urine samples available for independent reanalyses. Second, even though we 
analyzed 21 national surveys (representing 19 countries) to develop our ML model, the sample size 
could still be limited for a data-driven ML algorithm (i.e., 24,889 observations were included in model 
development). A larger and global work in which all relevant data sources are pooled is needed; 
while this endeavor takes place, our work has provided recent estimates of salt consumption at the 
population level in 54 countries. In this line, there are still countries that were not herein included. 
Researchers in these countries, along with local (e.g., ministries of health) and international health 
authorities (e.g., WHO), should conduct studies/surveys to collect data on salt consumption. This 
would inform global targets but also local needs and interventions.

An ML model based on readily available variables was accurate to predict daily salt consumption. 
This ML model applied to 54 national surveys with no urine samples to compute daily salt consumption 
revealed high levels of salt intake particularly in the Western Pacific region. Pending further validation, 
this ML model could be used to keep track of the overall sodium consumption where resources are 
not available to conduct national surveys with urine samples.

Methods
Study design
This is an individual-level data pooling ML analysis.

Data sources
We sought surveys that met these two criteria: (i) nationally representative health surveys (i.e., commu-
nity or subnational surveys were not included); and (ii) surveys that were open access or that could be 
accessed without significant administrative burden (e.g., data sharing agreements that may involve 
institutional signatures).

First, we downloaded 20 WHO STEPS surveys and 1 national health survey with SU samples; these 
surveys were used for the training, validation, and testing of the ML model. These 21 surveys repre-
sented 19 countries; two countries contributed with two surveys: Bhutan 2014 and 2019 as well as 
Mongolia 2013 and 2019. Second, we downloaded 54 new WHO STEPS surveys that had the variables 
included in the ML prediction model (see ‘Variables’ section), but did not have SU samples. The ML 
model herein developed was applied to these 54 surveys to estimate the mean salt consumption in 
the population.

To identify additional data sources, we searched the original publications included in one global 
analysis (Powles et al., 2013) and three systematic reviews about sodium/salt consumption at the 
population level (Carrillo-Larco and Bernabe-Ortiz, 2020; Oyebode et  al., 2016; Thout et  al., 
2019). This search led to the identification of the national health survey included in the model deri-
vation. All other data sources included in those references (Powles et al., 2013; Carrillo-Larco and 
Bernabe-Ortiz, 2020; Oyebode et al., 2016; Thout et al., 2019) did not meet our selection criteria.

In conclusion, our ML model was developed based on 21 surveys (20 WHO STEPS and 1 national 
health survey). Then, our ML model was applied to 54 WHO STEPS survey to compute the mean daily 
salt consumption at the population level.

According to the World Bank classification (Appendix  1—table 9), there were 9 high-income 
countries (2 in model derivation and 7 in model application), 16 low-income countries (1 in model 
derivation and 15 in model application), 26 lower-middle-income countries (9 in model derivation 
and 17 in model application), and 18 upper-middle-income countries (6 in model derivation and 12 
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model application). There were four countries (one in model derivation and three in model applica-
tion) without income classification (British Virgin Islands, Cook Islands, Niue, and Tokelau).

Rationale
We hypothesized that an ML model could accurately predict salt consumption at the individual level, 
to then inform the overall mean in the underlying population. In addition, we endeavored to develop 
an ML model with simple predictors; that is, variables that are routinely available in national health 
surveys contrary to urine sample that are seldom collected in national health surveys. If the model 
were indeed accurate, then it could be applied to national surveys without urine samples but with 
the relevant predictors to inform about the mean salt consumption in the overall population. These 
model-driven estimates could be preliminary until a national health survey is conducted to study mean 
salt consumption with urine samples. Ideally, salt consumption should be informed by 24 hr urine 
samples, which are seldom available in large population-based and nationally representative health 
surveys. The fact that we analyzed SU samples is a limitation of our work, and the results should be 
interpreted accordingly. However, we aimed to develop an ML model that can be used to predict 
mean estimates at the population level, not at the individual level. In other words, our model should 
not be applied to a patient to estimate his/her salt consumption. We did not develop a diagnostic 
tool to replace SU or 24 hr urine samples. Our model should be applied to survey data to compute 
the mean sodium/salt consumption in the population (not in individuals). Empirical evidence suggests 
that, at the population level, mean estimates based on SU samples and on 24 hr urine samples are 
similar (Huang et al., 2016; Santos et al., 2020).

Variables
The predictors we used in the ML model were sex, age (years), weight (kg), height (m), systolic blood 
pressure (SBP, mmHg), and diastolic blood pressure (DBP, mmHg).

The analyzed surveys collect anthropometric and three blood pressure measurements. These are 
taken by trained fieldworkers following a standard protocol (World Health Organization, 2021b; 
Departamento de Epidemiologia. Ministerio de Salud, 2021). We used measured weight and 
height to compute the BMI (kg/m2). We used the mean SBP and mean DBP of the second and third 
blood pressure measurements (i.e., the first blood pressure measurement was discarded).

The outcome was salt intake as per the INTERSALT equation (Brown et al., 2013). We chose this 
equation because it has been used by WHO STEPS surveys. There is a specific INTERSALT equation for 
each sex, and they both include the following variables: age (years), BMI (kg/m2), SU sodium (mmol/L), 
and SU creatinine (mmol/L) (Brown et al., 2013). We used the following sex-specific formulas:

	﻿‍ Men :
{

23.51 +
[
0.45 x NaSU

]
-
[
3.09 x CrSU

]
+
[
4.16 x BMI

]
+
[
0.22 x age

]}
‍�

	﻿‍
Women :

{
3.74 +

[
0.33 x NaSU

]
-
[
2.44 x CrSU

]
+
[
2.42 x BMI

]
+
[
2.34 x age

]
-
[
0.03 x age2

]}
‍�

where the subscript SU indicates spot urine, Na is sodium, Cr is creatinine, and BMI is body mass 
index. Because some STEPS surveys had SU creatinine in mg/dL, these values were multiplied by 
0.00884 to obtain SU creatinine in mmol/L. No conversion was needed for sodium in SU samples 
because all surveys herein included already had urinary sodium in mmol/L. The INTERSALT equation 
computes 24 hr sodium intake, which is then divided by 17.1 to obtain the salt intake in grams per 
day (g/d) (Brown et al., 2013). For descriptive purposes, we also computed salt intake based on the 
Kawasaki et al., 1993, Toft et al., 2014, and Tanaka et al., 2002 equations. Of note, our outcome 
variable was informed by SU samples and not by 24 hr urine samples (gold standard to assess salt 
consumption). Results should be interpreted according to this limitation.

Analysis
Data preparation
Our complete-case analysis was restricted to men and nonpregnant women aged between 15 and 
69 years because of data availability. We dropped participants with implausible BMI levels (outside 
the range 10–80 kg/m2) or with implausible weight (outside the range 12–300 kg) or height records 
(outside the range 1.00–2.50  m). Participants with SBP outside the range 70–270  mmHg were 
discarded, and so were participants with DBP outside the range 30–150  mmHg. We excluded 

https://doi.org/10.7554/eLife.72930
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records with SU creatinine <1.8 or > 32.7 mmol/L for males and <1.8 or >28.3 for females (Santos 
et al., 2019; Paterson et al., 2019). In addition, we excluded participants with estimated salt intake 
(using the four equations) above or below 3 standard deviations from the equation-specific mean 
(Appendix 1—figure 1; Jensen et al., 2018). After completing data preparation, observations were 
randomly assigned from the pooled dataset (100%) into three datasets for the ML analysis: training 
dataset (50%), test dataset (30%), and validation dataset (20%).

Machine learning modeling
Our research aim was a regression problem where we had a known outcome attribute (salt consump-
tion at the subject level). Therefore, we planned a supervised ML regression analysis. Details about the 
modeling process are available in the ‘Extended methods’ (Appendix 2). In brief, we designed a work 
pipeline with five steps. First, data analysis, where we dropped missing observations, we explored the 
available data to choose scaling and transformation methods to secure all variables were in the same 
scale or units, and we also planned transformations for categorical variables (e.g., one-hot encoding). 
Second, feature importance analysis, where we investigated the contribution of each predictor to 
the regression model through methods like Random Forest (RF) and Recursive Feature Elimination. 
The aim of this second step was to exclude any predictor that would not contribute to the regression 
model. Notably, all predictors (see ‘Variables’ section) chosen following expert knowledge were kept 
in the analysis (i.e., the feature importance analysis did not suggest the exclusion of any predictor). 
Third, data processing, having explored the available data (first step in the work pipeline), we imple-
mented different scaling and transformation methods (e.g., Box-Cox, principal component analysis 
and polynomial features). Fourth, data modeling, where we implemented 10 ML algorithms: (i) linear 
regression (LiR); (ii) Hubber regressor (HuR); (iii) ridge regressor (RiR); (iv) multilayer perceptron (MLP); 
(v) support vector regressor (SVR); (vi) k-nearest neighbors (KNN); (vii) RF; (viii) gradient boost machine 
(GBM); (ix) extreme gradient boosting (XBG); and (x) a customized neural network. All these ML algo-
rithms performed similarly, so the decision to choose one was postponed to the fifth (last) step in the 
work pipeline. Up to this point, we used the training and validations datasets. Five, forecasting of 
the predicted attribute in new data (i.e., data not used for model training); in this step, we used the 
test dataset to choose the model that yielded predictions closest to the observed salt intake. Results 
comparing the observed and the predicted salt intake were computed in the test dataset alone. For 
each country, we ran a paired t-test between the observed and predicted salt consumption, where a 
difference was deemed significant at a p<0.05. We also computed the absolute difference between 
the observed and predicted salt intake. We chose the HuR algorithm because it showed the mean 
difference closest to zero in both sexes combined (observed – predicted = 0) (Appendix 2—table 2, 
Appendix 2—figure 3) . All summary estimates (e.g., mean salt intake) were computed accounting 
for the complex survey design of the surveys included in the analysis.

Application of the developed ML model
Having developed the ML model following the steps above described, we applied the model to 54 
WHO STEPS national surveys that did not have urine samples but included the predictors in the ML 
model (see ‘Variables’ section). In each of these 54 surveys, we computed the mean daily salt intake 
accounting for the complex survey design. These surveys were preprocessed following the same 
procedures described in the ‘Data preparation’ section.

Role of the funding source
The funder had no role in the study design, analysis, interpretation, or decision to publish. The authors 
are collectively responsible for the accuracy of the data. The arguments and opinions in this work are 
those of the authors alone, and do not represent the position of the institutions to which they belong.
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Appendix 1 

Appendix 1—table 1. Weighted distribution of predictors in each survey included in the machine 
learning model development.

Country Year Sample size
Mean age 
(years)

Age range 
(years)

Proportion 
of men (%)

Mean, 
minimum and 
maximum 
values of SBP 
(mmHg)

Mean, 
minimum, 
and 
maximum 
values 
of DBP 
(mmHg)

Mean, 
minimum, 
and maximum 
values of 
weight (kg)

Mean, 
minimum, 
and 
maximum 
values of 
height (m)

Mean, 
minimum, 
and maximum 
values of 
urinary 
sodium 
(mmol/L)

Mean, 
minimum, 
and 
maximum 
values of 
urinary 
creatinine 
(mmol/L)

Armenia 2016 1074 40 18–69 49.7 129 (86–238)
85 
(49–148) 70.9 (35–139)

1.66 
(1.27–1.89)

128.6 (10.6–
237.6)

10.1 
(1.9–27.3)

Azerbaijan 2017 2359 39 18–69 49.5 126 (82–230)
81 
(48–142) 73.1 (36–174)

1.67 
(1.15–1.98) 167.7 (2–389)

11.9 
(1.8–31.8)

Bangladesh 2018 6200 39 18–69 46.9 121 (72–251)
79 
(32–147) 55.9 (28–111)

1.56 
(1–2.11) 119.6 (4–422)

8.4 
(2.2–32.3)

Belarus 2017 4503 43 18–69 47.1 135 (88–257)
85 
(54–147) 77.7 (41–144)

1.7 
(1.05–1.99)

149.5 (10.5–
371.4)

12.2 
(1.8–32.7)

Bhutan 2014 6163 38 18–69 59.2 126 (75–228)
85 
(46–142) 61.4 (23–115)

1.6 
(1.11–1.96) 142.1 (6–388)

8.1 
(1.9–29.7)

Bhutan 2019 6163 34 15–69 56.8 124 (85–224)
82 
(44–137) 61.9 (28.5–140)

1.58 
(1.07–1.92)

129.9 (4.7–
444.9)

10.4 
(1.8–32.7)

Brunei 
Darussalam 2016 1635 35 18–69 51.4 123 (76–218)

78 
(46–138) 69 (31.2–138.3)

1.59 
(1.32–1.84)

122.6 (19.9–
329)

12.6 
(1.8–32.6)

Chile 2017 2952 39 15–69 49.8 120 (81–226)
74 
(44–130) 75.7 (38.3–146.9)

1.63 
(1.34–1.96) 135.8 (10–324)

12.1 
(1.8–32.2)

Jordan 2019 1040 37 18–69 50.2 118 (75–200)
78 
(50–120) 76.3 (35.5–159.5)

1.66 
(1.36–1.95) 165.4 (13–365)

13.6 
(1.8–32.5)

Lebanon 2017 998 42 17–69 48.7 129 (80–214)
77 
(35–123) 78.3 (40–141)

1.68 
(1.2–1.96) 124.4 (4–385)

11.5 
(1.9–32)

Malawi 2017 1601 35 18–69 56.4 122 (74–222)
76 
(40–142) 58.5 (33.6–119)

1.61 
(1.36–1.96)

186.5 (11–
399.9)

10.7 
(1.9–32.4)

Mongolia 2013 7505 42 15–64 50.3 129 (88–220)
82 
(50–134) 71 (30.6–138)

1.62 
(1.27–1.92)

134.1 (13.1–
515)

10.9 
(1.8–31.9)

Mongolia 2019 7505 36 15–69 50.9 120 (76–254)
77 
(48–143) 68.4 (29–159)

1.64 
(1.34–1.98) 117 (2.1–348.9)

7.5 
(1.8–28.3)

Morocco 2017 3435 40 18–69 50.6 128 (83–228)
78 
(40–139) 70.9 (35–168)

1.66 
(1.34–1.95)

122.3 (26.3–
575.2)

10.3 
(1.8–31.4)

Nepal 2019 2560 36 15–69 41 124 (81–239)
81 
(55–146) 54.6 (26–160)

1.55 
(1.21–2.03) 140.9 (3–437)

5.6 
(1.8–25.5)

Solomon
Islands 2015 172 38 18–69 61.4 121 (88–188)

77 
(52–104) 67.9 (38.5–122)

1.61 
(1.41–1.8) 99.3 (7–250)

9.7 
(1.9–28.4)

Sudan 2016 571 36 18–69 55.9 128 (89–231)
85 
(58–132) 72.2 (35.6–174)

1.67 
(1.42–1.92) 128.5 (5–459)

14 (1.9–
32.4)

Tokelau 2014 181 35 18–63 56 125 (76–184)
79 
(53–128) 94.8 (58–158.3)

1.71 
(1.16–1.88) 62.4 (20–265) 5 (2–7.7)

Tonga 2017 755 40 18–69 35.7 131 (96–208)
83 
(53–148) 98.6 (48.1–181)

1.69 
(1.4–1.94) 101.9 (4–327)

15.3 
(1.8–32.7)

Turkmenistan 2018 3584 37 18–69 52.7 127 (88–268)
83 
(54–149) 72.4 (39–142)

1.68 
(1.16–1.98) 109.2 (10–163)

11.1 
(4.5–18.3)

Zambia 2017 2488 33 18–69 50.3 125 (73–248)
77 
(36–148) 60.9 (33.8–150)

1.62 
(1.01–2.07) 137.2 (10–375)

12.2 
(1.8–32.4)

Appendix 1—table 2. Observed and predicted mean salt intake (g/day) by sex in each survey 
included in the machine learning model development.

Country Year Sex
Mean salt 
intake

Mean salt 
intake lower 
95% confidence 
interval

Mean salt 
intake upper 
95% confidence 
interval Category

Armenia 2016 Men 9.24 9.04 9.45 ML predicted

Armenia 2016 Men 9.46 9.11 9.81 Observed

Appendix 1—table 2 Continued on next page
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Country Year Sex
Mean salt 
intake

Mean salt 
intake lower 
95% confidence 
interval

Mean salt 
intake upper 
95% confidence 
interval Category

Armenia 2016 Women 7.43 7.3 7.57 ML predicted

Armenia 2016 Women 7.44 7.26 7.62 Observed

Azerbaijan 2017 Men 9.43 9.33 9.53 ML predicted

Azerbaijan 2017 Men 10.39 10.06 10.72 Observed

Azerbaijan 2017 Women 7.43 7.31 7.55 ML predicted

Azerbaijan 2017 Women 7.94 7.75 8.14 Observed

Bangladesh 2018 Men 8.87 8.8 8.93 ML predicted

Bangladesh 2018 Men 8.59 8.42 8.75 Observed

Bangladesh 2018 Women 7.18 7.13 7.24 ML predicted

Bangladesh 2018 Women 7.27 7.17 7.37 Observed

Belarus 2017 Men 9.49 9.42 9.56 ML predicted

Belarus 2017 Men 10.14 9.94 10.35 Observed

Belarus 2017 Women 7.53 7.45 7.61 ML predicted

Belarus 2017 Women 7.56 7.41 7.72 Observed

Bhutan 2014 Men 9.14 9.04 9.25 ML predicted

Bhutan 2014 Men 9.58 9.27 9.88 Observed

Bhutan 2014 Women 7.38 7.3 7.46 ML predicted

Bhutan 2014 Women 8.1 7.94 8.27 Observed

Bhutan 2019 Men 9.33 9.25 9.41 ML predicted

Bhutan 2019 Men 9.1 8.85 9.35 Observed

Bhutan 2019 Women 7.43 7.36 7.49 ML predicted

Bhutan 2019 Women 7.53 7.33 7.73 Observed

Brunei Darussalam 2016 Men 9.78 9.57 9.99 ML predicted

Brunei Darussalam 2016 Men 8.95 8.66 9.25 Observed

Brunei Darussalam 2016 Women 7.64 7.5 7.77 ML predicted

Brunei Darussalam 2016 Women 7.3 7.05 7.54 Observed

Chile 2017 Men 9.65 9.56 9.75 ML predicted

Chile 2017 Men 9.75 9.18 10.31 Observed

Chile 2017 Women 7.86 7.8 7.93 ML predicted

Chile 2017 Women 7.64 7.45 7.83 Observed

Jordan 2019 Men 9.31 9.03 9.6 ML predicted

Jordan 2019 Men 10.2 9.52 10.88 Observed

Jordan 2019 Women 7.78 7.53 8.03 ML predicted

Jordan 2019 Women 8.1 7.75 8.45 Observed

Lebanon 2017 Men 9.88 9.62 10.14 ML predicted

Lebanon 2017 Men 9.53 9.06 9.99 Observed
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Country Year Sex
Mean salt 
intake

Mean salt 
intake lower 
95% confidence 
interval

Mean salt 
intake upper 
95% confidence 
interval Category

Lebanon 2017 Women 7.63 7.39 7.86 ML predicted

Lebanon 2017 Women 7.51 7.07 7.95 Observed

Malawi 2017 Men 8.76 8.66 8.86 ML predicted

Malawi 2017 Men 9.54 9.16 9.91 Observed

Malawi 2017 Women 7.1 6.97 7.24 ML predicted

Malawi 2017 Women 8.34 8.03 8.64 Observed

Mongolia 2013 Men 9.5 9.32 9.68 ML predicted

Mongolia 2013 Men 9.83 9.34 10.32 Observed

Mongolia 2013 Women 7.63 7.51 7.74 ML predicted

Mongolia 2013 Women 7.79 7.6 7.97 Observed

Mongolia 2019 Men 9.32 9.23 9.42 ML predicted

Mongolia 2019 Men 9.68 9.5 9.85 Observed

Mongolia 2019 Women 7.39 7.32 7.46 ML predicted

Mongolia 2019 Women 7.46 7.34 7.59 Observed

Morocco 2017 Men 9.06 8.97 9.15 ML predicted

Morocco 2017 Men 9.03 8.82 9.24 Observed

Morocco 2017 Women 7.49 7.43 7.56 ML predicted

Morocco 2017 Women 7.47 7.35 7.59 Observed

Nepal 2019 Men 9 8.83 9.18 ML predicted

Nepal 2019 Men 9.55 9.22 9.87 Observed

Nepal 2019 Women 7.07 6.98 7.15 ML predicted

Nepal 2019 Women 7.84 7.65 8.04 Observed

Solomon Islands 2015 Men 9.42 9.25 9.59 ML predicted

Solomon Islands 2015 Men 8.74 8.08 9.4 Observed

Solomon Islands 2015 Women 7.54 7.29 7.79 ML predicted

Solomon Islands 2015 Women 7.03 6.42 7.64 Observed

Sudan 2016 Men 9.07 8.76 9.37 ML predicted

Sudan 2016 Men 8.53 7.73 9.33 Observed

Sudan 2016 Women 7.62 7.27 7.97 ML predicted

Sudan 2016 Women 7.49 7.09 7.88 Observed

Tokelau 2014 Men 10.64 10.34 10.93 ML predicted

Tokelau 2014 Men 10.29 10.18 10.4 Observed

Tokelau 2014 Women 8.96 8.71 9.21 ML predicted

Tokelau 2014 Women 8.12 7.61 8.63 Observed

Tonga 2017 Men 10.5 10.31 10.69 ML predicted

Tonga 2017 Men 9.19 8.89 9.48 Observed
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Country Year Sex
Mean salt 
intake

Mean salt 
intake lower 
95% confidence 
interval

Mean salt 
intake upper 
95% confidence 
interval Category

Tonga 2017 Women 8.85 8.65 9.04 ML predicted

Tonga 2017 Women 7.63 7.45 7.81 Observed

Turkmenistan 2018 Men 9.38 9.28 9.48 ML predicted

Turkmenistan 2018 Men 8.94 8.79 9.09 Observed

Turkmenistan 2018 Women 7.2 7.13 7.27 ML predicted

Turkmenistan 2018 Women 6.76 6.68 6.83 Observed

Zambia 2017 Men 8.92 8.84 9 ML predicted

Zambia 2017 Men 8.45 8.15 8.75 Observed

Zambia 2017 Women 7.04 6.96 7.12 ML predicted

Zambia 2017 Women 7.01 6.81 7.22 Observed

ML: machine learning; SBP: systolic blood pressure; DBP: diastolic blood pressure.

Appendix 1—table 3. Observed and predicted mean salt intake (g/day) by age, body mass index 
(BMI) category, and blood pressure status across all surveys included in the machine learning model 
development dataset.

Attributed

Salt consumption (g/day) observed 
using surveys included in the 
derivation model

Salt consumption (g/day) estimated using 
the surveys included in the derivation 
model

Mean

p-Value for 
independent t-test 
or ANOVA test Mean

p-Value for 
independent t-test 
or ANOVA test

Age <30 years 7.9

<0.001

8.0

< 0.001Age ≥ 30 years 8.4 8.3

BMI <18.5 kg/m2 7.0

< 0.001

7.0

< 0.001

BMI 18.5–24.9 kg/m2 7.8 7.7

BMI 25.0–29.9 kg/m2 8.6 8.4

BMI ≥ 30 kg/m2 9.3 9.3

Raised blood pressure ( ≥ 
140/90 mmHg) 8.7

< 0.001

8.6

< 0.001No raised blood pressure 8.2 8.1

These results do not consider the survey sampling design.

Appendix 1—table 4. Mean difference (g/day) between observed and predicted salt intake by sex 
in each survey included in the machine learning (ML) model development.

Country Year Sex
Mean 
difference

Mean difference 
lower 95% 
confidence interval

Mean 
difference 
upper 95% 
confidence 
interval p-Value

Armenia 2016 Men 0.22 –0.06 0.5 0.0007

Armenia 2016 Women 0.01 –0.12 0.13 0.1953

Azerbaijan 2017 Men 0.96 0.67 1.26 < 0.0001

Azerbaijan 2017 Women 0.52 0.37 0.66 < 0.0001
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Country Year Sex
Mean 
difference

Mean difference 
lower 95% 
confidence interval

Mean 
difference 
upper 95% 
confidence 
interval p-Value

Bangladesh 2018 Men –0.28 –0.44 –0.12 < 0.0001

Bangladesh 2018 Women 0.09 –0.01 0.19 0.0004

Belarus 2017 Men 0.66 0.47 0.84 < 0.0001

Belarus 2017 Women 0.03 –0.09 0.16 0.6258

Bhutan 2014 Men 0.43 0.17 0.7 < 0.0001

Bhutan 2014 Women 0.72 0.57 0.88 < 0.0001

Bhutan 2019 Men –0.23 –0.48 0.02 0.0007

Bhutan 2019 Women 0.1 –0.08 0.28 0.7508

Brunei Darussalam 2016 Men –0.82 –1.06 –0.58 < 0.0001

Brunei Darussalam 2016 Women –0.34 –0.55 –0.13 < 0.0001

Chile 2017 Men 0.1 –0.39 0.58 0.0001

Chile 2017 Women –0.22 –0.36 –0.08 < 0.0001

Jordan 2019 Men 0.89 0.31 1.46 0.0065

Jordan 2019 Women 0.32 0 0.64 0.4142

Lebanon 2017 Men –0.36 –0.85 0.14 0.2074

Lebanon 2017 Women –0.12 –0.45 0.22 0.1591

Malawi 2017 Men 0.77 0.39 1.16 < 0.0001

Malawi 2017 Women 1.23 0.95 1.51 < 0.0001

Mongolia 2013 Men 0.33 –0.02 0.68 0.0184

Mongolia 2013 Women 0.16 –0.03 0.35 0.2655

Mongolia 2019 Men 0.35 0.23 0.48 < 0.0001

Mongolia 2019 Women 0.08 –0.01 0.17 0.5155

Morocco 2017 Men –0.03 –0.21 0.14 0.3083

Morocco 2017 Women –0.02 –0.13 0.09 0.7259

Nepal 2019 Men 0.54 0.25 0.83 < 0.0001

Nepal 2019 Women 0.78 0.61 0.94 < 0.0001

Solomon Islands 2015 Men –0.68 –1.26 –0.1 0.0477

Solomon Islands 2015 Women –0.51 –1.1 0.09 0.0539

Sudan 2016 Men –0.53 –1.15 0.08 0.2111

Sudan 2016 Women –0.13 –0.45 0.19 0.0674

Tokelau 2014 Men –0.35 –0.53 –0.16 0.2248

Tokelau 2014 Women –0.84 –1.22 –0.45 0.0026

Tonga 2017 Men –1.31 –1.58 –1.05 < 0.0001

Tonga 2017 Women –1.22 –1.39 –1.05 < 0.0001

Turkmenistan 2018 Men –0.44 –0.52 –0.36 < 0.0001

Turkmenistan 2018 Women –0.45 –0.51 –0.39 < 0.0001
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Country Year Sex
Mean 
difference

Mean difference 
lower 95% 
confidence interval

Mean 
difference 
upper 95% 
confidence 
interval p-Value

Zambia 2017 Men –0.47 –0.74 –0.19 < 0.0001

Zambia 2017 Women –0.02 –0.21 0.17 0.3438

p-Value for paired t Student test between observed and predicted.

Appendix 1—table 5. Observed mean salt intake (g/day) by equation and sex in each survey 
included in the machine learning (ML) model development.

Country Year Sex
Mean salt 
intake

Mean salt 
intake 
lower 95% 
confidence 
interval

Mean salt 
intake 
upper 95% 
confidence 
interval Category

Armenia 2016 Men 9.46 9.11 9.81 Observed_intersalt

Armenia 2016 Men 14.58 13.71 15.44 Observed_kawasaki

Armenia 2016 Men 10.21 9.71 10.7 Observed_tanaka

Armenia 2016 Men 12.71 12.19 13.23 Observed_toft

Armenia 2016 Women 7.44 7.26 7.62 Observed_intersalt

Armenia 2016 Women 12.48 11.87 13.09 Observed_kawasaki

Armenia 2016 Women 9.98 9.59 10.36 Observed_tanaka

Armenia 2016 Women 8.41 8.26 8.57 Observed_toft

Azerbaijan 2017 Men 10.39 10.06 10.72 Observed_intersalt

Azerbaijan 2017 Men 14.82 14.21 15.42 Observed_kawasaki

Azerbaijan 2017 Men 10.31 9.98 10.64 Observed_tanaka

Azerbaijan 2017 Men 12.81 12.45 13.18 Observed_toft

Azerbaijan 2017 Women 7.94 7.75 8.14 Observed_intersalt

Azerbaijan 2017 Women 12.65 12.22 13.08 Observed_kawasaki

Azerbaijan 2017 Women 10.14 9.87 10.41 Observed_tanaka

Azerbaijan 2017 Women 8.45 8.33 8.56 Observed_toft

Bangladesh 2018 Men 8.59 8.42 8.75 Observed_intersalt

Bangladesh 2018 Men 12.59 12.25 12.93 Observed_kawasaki

Bangladesh 2018 Men 8.81 8.62 9.01 Observed_tanaka

Bangladesh 2018 Men 11.62 11.4 11.85 Observed_toft

Bangladesh 2018 Women 7.27 7.17 7.37 Observed_intersalt

Bangladesh 2018 Women 12.09 11.78 12.4 Observed_kawasaki

Bangladesh 2018 Women 9 8.82 9.19 Observed_tanaka

Bangladesh 2018 Women 8.33 8.25 8.42 Observed_toft

Belarus 2017 Men 10.14 9.94 10.35 Observed_intersalt

Belarus 2017 Men 14.22 13.85 14.6 Observed_kawasaki

Belarus 2017 Men 10.16 9.95 10.38 Observed_tanaka

Belarus 2017 Men 12.46 12.24 12.69 Observed_toft
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Country Year Sex
Mean salt 
intake

Mean salt 
intake 
lower 95% 
confidence 
interval

Mean salt 
intake 
upper 95% 
confidence 
interval Category

Belarus 2017 Women 7.56 7.41 7.72 Observed_intersalt

Belarus 2017 Women 11.43 11.1 11.75 Observed_kawasaki

Belarus 2017 Women 9.59 9.37 9.8 Observed_tanaka

Belarus 2017 Women 8.09 8 8.18 Observed_toft

Bhutan 2014 Men 9.58 9.27 9.88 Observed_intersalt

Bhutan 2014 Men 15.05 14.23 15.87 Observed_kawasaki

Bhutan 2014 Men 10.06 9.64 10.48 Observed_tanaka

Bhutan 2014 Men 13 12.51 13.49 Observed_toft

Bhutan 2014 Women 8.1 7.94 8.27 Observed_intersalt

Bhutan 2014 Women 14.24 13.72 14.76 Observed_kawasaki

Bhutan 2014 Women 10.54 10.22 10.86 Observed_tanaka

Bhutan 2014 Women 8.85 8.72 8.99 Observed_toft

Bhutan 2019 Men 9.1 8.85 9.35 Observed_intersalt

Bhutan 2019 Men 12.81 12.23 13.39 Observed_kawasaki

Bhutan 2019 Men 8.81 8.51 9.11 Observed_tanaka

Bhutan 2019 Men 11.62 11.28 11.97 Observed_toft

Bhutan 2019 Women 7.53 7.33 7.73 Observed_intersalt

Bhutan 2019 Women 11.59 11.22 11.96 Observed_kawasaki

Bhutan 2019 Women 8.9 8.67 9.12 Observed_tanaka

Bhutan 2019 Women 8.18 8.07 8.28 Observed_toft

Brunei 
Darussalam 2016 Men 8.95 8.66 9.25 Observed_intersalt

Brunei 
Darussalam 2016 Men 11.51 10.95 12.08 Observed_kawasaki

Brunei 
Darussalam 2016 Men 8.17 7.89 8.45 Observed_tanaka

Brunei 
Darussalam 2016 Men 10.79 10.44 11.14 Observed_toft

Brunei 
Darussalam 2016 Women 7.3 7.05 7.54 Observed_intersalt

Brunei 
Darussalam 2016 Women 10.52 10.02 11.01 Observed_kawasaki

Brunei 
Darussalam 2016 Women 8.38 8.08 8.69 Observed_tanaka

Brunei 
Darussalam 2016 Women 7.88 7.73 8.03 Observed_toft

Chile 2017 Men 9.75 9.18 10.31 Observed_intersalt

Chile 2017 Men 12.86 12.07 13.66 Observed_kawasaki

Chile 2017 Men 9.25 8.84 9.66 Observed_tanaka
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Country Year Sex
Mean salt 
intake

Mean salt 
intake 
lower 95% 
confidence 
interval

Mean salt 
intake 
upper 95% 
confidence 
interval Category

Chile 2017 Men 11.66 11.14 12.17 Observed_toft

Chile 2017 Women 7.64 7.45 7.83 Observed_intersalt

Chile 2017 Women 11.11 10.81 11.4 Observed_kawasaki

Chile 2017 Women 9.13 8.93 9.32 Observed_tanaka

Chile 2017 Women 8.06 7.97 8.15 Observed_toft

Jordan 2019 Men 10.2 9.52 10.88 Observed_intersalt

Jordan 2019 Men 13.98 12.73 15.23 Observed_kawasaki

Jordan 2019 Men 9.84 9.17 10.51 Observed_tanaka

Jordan 2019 Men 12.29 11.56 13.02 Observed_toft

Jordan 2019 Women 8.1 7.75 8.45 Observed_intersalt

Jordan 2019 Women 12.1 11.48 12.72 Observed_kawasaki

Jordan 2019 Women 9.74 9.34 10.13 Observed_tanaka

Jordan 2019 Women 8.34 8.17 8.5 Observed_toft

Lebanon 2017 Men 9.53 9.06 9.99 Observed_intersalt

Lebanon 2017 Men 12.72 11.65 13.79 Observed_kawasaki

Lebanon 2017 Men 9.22 8.61 9.84 Observed_tanaka

Lebanon 2017 Men 11.48 10.82 12.14 Observed_toft

Lebanon 2017 Women 7.51 7.07 7.95 Observed_intersalt

Lebanon 2017 Women 11.35 10.45 12.25 Observed_kawasaki

Lebanon 2017 Women 9.37 8.75 10 Observed_tanaka

Lebanon 2017 Women 8.03 7.76 8.3 Observed_toft

Malawi 2017 Men 9.54 9.16 9.91 Observed_intersalt

Malawi 2017 Men 14.02 13.4 14.64 Observed_kawasaki

Malawi 2017 Men 9.43 9.08 9.77 Observed_tanaka

Malawi 2017 Men 12.4 12.04 12.77 Observed_toft

Malawi 2017 Women 8.34 8.03 8.64 Observed_intersalt

Malawi 2017 Women 13.43 12.76 14.11 Observed_kawasaki

Malawi 2017 Women 10.17 9.75 10.58 Observed_tanaka

Malawi 2017 Women 8.64 8.47 8.82 Observed_toft

Mongolia 2013 Men 9.83 9.34 10.32 Observed_intersalt

Mongolia 2013 Men 13.37 12.74 14.01 Observed_kawasaki

Mongolia 2013 Men 9.48 9.13 9.83 Observed_tanaka

Mongolia 2013 Men 12.04 11.64 12.45 Observed_toft

Mongolia 2013 Women 7.79 7.6 7.97 Observed_intersalt

Mongolia 2013 Women 11.92 11.34 12.5 Observed_kawasaki

Mongolia 2013 Women 9.54 9.16 9.92 Observed_tanaka

Appendix 1—table 5 Continued

Appendix 1—table 5 Continued on next page

https://doi.org/10.7554/eLife.72930


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health | Medicine

Guzman-Vilca et al. eLife 2022;11:e72930. DOI: https://​doi.​org/​10.​7554/​eLife.​72930 � 21 of 38

Country Year Sex
Mean salt 
intake

Mean salt 
intake 
lower 95% 
confidence 
interval

Mean salt 
intake 
upper 95% 
confidence 
interval Category

Mongolia 2013 Women 8.24 8.08 8.4 Observed_toft

Mongolia 2019 Men 9.68 9.5 9.85 Observed_intersalt

Mongolia 2019 Men 14.83 14.49 15.17 Observed_kawasaki

Mongolia 2019 Men 10.14 9.95 10.32 Observed_tanaka

Mongolia 2019 Men 12.84 12.64 13.05 Observed_toft

Mongolia 2019 Women 7.46 7.34 7.59 Observed_intersalt

Mongolia 2019 Women 12.13 11.81 12.44 Observed_kawasaki

Mongolia 2019 Women 9.63 9.43 9.84 Observed_tanaka

Mongolia 2019 Women 8.31 8.23 8.4 Observed_toft

Morocco 2017 Men 9.03 8.82 9.24 Observed_intersalt

Morocco 2017 Men 13.04 12.63 13.44 Observed_kawasaki

Morocco 2017 Men 9.33 9.1 9.56 Observed_tanaka

Morocco 2017 Men 11.75 11.5 12 Observed_toft

Morocco 2017 Women 7.47 7.35 7.59 Observed_intersalt

Morocco 2017 Women 11.72 11.41 12.04 Observed_kawasaki

Morocco 2017 Women 9.48 9.28 9.68 Observed_tanaka

Morocco 2017 Women 8.18 8.09 8.26 Observed_toft

Nepal 2019 Men 9.55 9.22 9.87 Observed_intersalt

Nepal 2019 Men 16.6 15.92 17.27 Observed_kawasaki

Nepal 2019 Men 10.69 10.33 11.04 Observed_tanaka

Nepal 2019 Men 14.04 13.64 14.44 Observed_toft

Nepal 2019 Women 7.84 7.65 8.04 Observed_intersalt

Nepal 2019 Women 15.35 14.82 15.88 Observed_kawasaki

Nepal 2019 Women 10.9 10.57 11.24 Observed_tanaka

Nepal 2019 Women 9.12 8.99 9.25 Observed_toft

Solomon 
Islands 2015 Men 8.74 8.08 9.4 Observed_intersalt

Solomon 
Islands 2015 Men 12.99 11.06 14.93 Observed_kawasaki

Solomon 
Islands 2015 Men 8.87 7.97 9.77 Observed_tanaka

Solomon 
Islands 2015 Men 11.62 10.43 12.8 Observed_toft

Solomon 
Islands 2015 Women 7.03 6.42 7.64 Observed_intersalt

Solomon 
Islands 2015 Women 11.38 8.78 13.98 Observed_kawasaki

Solomon 
Islands 2015 Women 8.98 7.34 10.61 Observed_tanaka
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Country Year Sex
Mean salt 
intake

Mean salt 
intake 
lower 95% 
confidence 
interval

Mean salt 
intake 
upper 95% 
confidence 
interval Category

Solomon 
Islands 2015 Women 7.95 7.26 8.64 Observed_toft

Sudan 2016 Men 8.53 7.73 9.33 Observed_intersalt

Sudan 2016 Men 11.66 10.66 12.66 Observed_kawasaki

Sudan 2016 Men 8.49 7.91 9.08 Observed_tanaka

Sudan 2016 Men 10.83 10.17 11.5 Observed_toft

Sudan 2016 Women 7.49 7.09 7.88 Observed_intersalt

Sudan 2016 Women 11.3 10.6 12.01 Observed_kawasaki

Sudan 2016 Women 9.31 8.85 9.78 Observed_tanaka

Sudan 2016 Women 8.09 7.89 8.3 Observed_toft

Tokelau 2014 Men 10.29 10.18 10.4 Observed_intersalt

Tokelau 2014 Men 14.33 13.16 15.5 Observed_kawasaki

Tokelau 2014 Men 10.1 9.48 10.72 Observed_tanaka

Tokelau 2014 Men 12.42 11.71 13.14 Observed_toft

Tokelau 2014 Women 8.12 7.61 8.63 Observed_intersalt

Tokelau 2014 Women 11.4 9.85 12.95 Observed_kawasaki

Tokelau 2014 Women 9.71 8.69 10.72 Observed_tanaka

Tokelau 2014 Women 8.15 7.76 8.54 Observed_toft

Tonga 2017 Men 9.19 8.89 9.48 Observed_intersalt

Tonga 2017 Men 10.06 9.17 10.95 Observed_kawasaki

Tonga 2017 Men 7.72 7.22 8.22 Observed_tanaka

Tonga 2017 Men 9.77 9.19 10.35 Observed_toft

Tonga 2017 Women 7.63 7.45 7.81 Observed_intersalt

Tonga 2017 Women 9.37 8.88 9.87 Observed_kawasaki

Tonga 2017 Women 8.41 8.06 8.76 Observed_tanaka

Tonga 2017 Women 7.53 7.37 7.68 Observed_toft

Turkmenistan 2018 Men 8.94 8.79 9.09 Observed_intersalt

Turkmenistan 2018 Men 12.11 11.93 12.3 Observed_kawasaki

Turkmenistan 2018 Men 8.85 8.74 8.96 Observed_tanaka

Turkmenistan 2018 Men 11.2 11.09 11.32 Observed_toft

Turkmenistan 2018 Women 6.76 6.68 6.83 Observed_intersalt

Turkmenistan 2018 Women 10.1 9.93 10.26 Observed_kawasaki

Turkmenistan 2018 Women 8.53 8.41 8.65 Observed_tanaka

Turkmenistan 2018 Women 7.78 7.73 7.83 Observed_toft

Zambia 2017 Men 8.45 8.15 8.75 Observed_intersalt

Zambia 2017 Men 12.7 12.09 13.3 Observed_kawasaki
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Country Year Sex
Mean salt 
intake

Mean salt 
intake 
lower 95% 
confidence 
interval

Mean salt 
intake 
upper 95% 
confidence 
interval Category

Zambia 2017 Men 8.8 8.46 9.13 Observed_tanaka

Zambia 2017 Men 11.48 11.11 11.86 Observed_toft

Zambia 2017 Women 7.01 6.81 7.22 Observed_intersalt

Zambia 2017 Women 11.11 10.66 11.56 Observed_kawasaki

Zambia 2017 Women 8.8 8.52 9.09 Observed_tanaka

Zambia 2017 Women 8 7.86 8.13 Observed_toft

Appendix 1—table 6. Weighted distribution of predictors in each of the 54 national surveys 
included in the application of the model herein developed.

Country Year Sample size
Mean age 
(years)

Age range 
(years)

Proportion of 
men (%)

Mean, 
minimum, 
and maximum 
values of SBP 
(mmHg)

Mean, 
minimum, 
and maximum 
values of DBP 
(mmHg)

Mean, 
minimum, 
and maximum 
values of 
weight (kg)

Mean, 
minimum, 
and maximum 
values of 
height (m)

American Samoa 2004 2043 40 25–64 50.3 131 (84–230) 82 (46–134)
100.4 (38.6–
219.1) 1.69 (1.36–2.19)

Benin 2015 4841 34 18–69 49.6 126 (74–254) 82 (45–142) 62.3 (30–167) 1.64 (1.21–1.98)

Bahamas 2012 1400 42 24–64 49.9 127 (73–248) 82 (32–140)
84.8 (27.9–
184.9) 1.67 (1.15–2.03)

Barbados 2007 282 43 25–69 51.9 122 (86–191) 80 (55–115)
77.5 (40.6–
232.1) 1.67 (1.17–1.93)

British Virgin 
Islands 2009 1067 43 25–64 54.1 130 (81–226) 80 (48–126)

83.2 (39.6–
176.9) 1.7 (1.14–2.26)

Botswana 2014 3894 33 15–69 52.1 128 (84–262) 80 (47–148)
63.9 (31.7–
171.1) 1.66 (1.02–2)

Cook Islands 2015 879 39 18–64 46.5 128 (92–194) 79 (45–118)
98.6 (49.1–
205.1) 1.69 (1.07–1.96)

Comoros 2011 5029 39 25–64 52.6 128 (82–236) 79 (48–144) 64.2 (23.5–166) 1.61 (1–2.15)

Cabo Verde 2007 1723 38 25–64 50.3 133 (86–234) 80 (48–140) 68.3 (35–150) 1.68 (1.23–1.96)

Cayman Islands 2012 1229 42 24–64 50.7 125 (84–208) 76 (46–127) 82.3 (31–196) 1.69 (1–2.1)

Algeria 2017 6536 38 18–69 51.7 127 (77–227) 75 (32–137) 73.3 (25–174) 1.67 (1.02–2.05)

Ecuador 2018 4466 40 18–69 49.4 120 (78–220) 76 (42–130)
69.2 (33.4–
198.4) 1.59 (1.24–1.93)

Eritrea 2010 5651 42 25–69 17.2 117 (72–230) 74 (46–130) 51.8 (28.1–99.1) 1.6 (1.16–1.89)

Ethiopia 2015 9270 31 15–69 56.1 120 (71–250) 78 (30–142) 54.4 (20–99.5) 1.63 (1.05–2)

Fiji 2011 2492 42 25–64 51 130 (84–228) 80 (39–143)
78.6 (30.3–
198.1) 1.68 (1.03–1.94)

Gambia 2010 3496 38 25–64 50.4 130 (85–252) 80 (44–144)
64.8 (26.5–
168.9) 1.64 (1-2)

Grenada 2011 1055 41 25–64 50.7 131 (71–212) 80 (50–128)
77.6 (40.8–
158.8) 1.7 (1.32–2.49)

Guyana 2016 2625 37 18–69 52 126 (74–245) 78 (37–149) 69.9 (26.4–198) 1.63 (1.01–2.07)

Iraq 2015 3655 35 18–69 53.6 128 (78–225) 83 (45–150)
76.5 (36.6–
187.2) 1.65 (1.01–1.97)

Kenya 2015 4270 34 16–69 50.6 125 (76–262) 81 (46–146) 63.2 (30–171.3) 1.65 (1.01–1.95)

Kyrgyzstan 2013 2539 41 25–64 51.9 133 (82–244) 87 (56–150)
71.7 (36.6–
162.4) 1.64 (1.38–1.95)

Cambodia 2010 5223 40 25–64 49.4 116 (70–226) 72 (42–138) 53.7 (21.1–111) 1.57 (1.24–1.85)

Kiribati 2016 1240 40 18–69 42.8 128 (85–220) 85 (49–148) 81.1 (30–219) 1.64 (1.22–1.89)

Kuwait 2014 2871 36 18–69 49.5 120 (70–240) 77 (50–130) 80.5 (37.3–195) 1.65 (1.04–1.96)
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Country Year Sample size
Mean age 
(years)

Age range 
(years)

Proportion of 
men (%)

Mean, 
minimum, 
and maximum 
values of SBP 
(mmHg)

Mean, 
minimum, 
and maximum 
values of DBP 
(mmHg)

Mean, 
minimum, 
and maximum 
values of 
weight (kg)

Mean, 
minimum, 
and maximum 
values of 
height (m)

Lao People’s 
Democratic 
Republic 2013 2464 39 16–65 42.3 119 (72–240) 76 (30–130) 54.2 (27–103.1) 1.54 (1.16–1.97)

Liberia 2011 2242 40 25–64 50.7 129 (88–232) 80 (32–138) 65.4 (32–163) 1.58 (1–2.5)

Libya 2009 3223 37 25–64 51.5 133 (74–238) 79 (44–148)
77 (31.7–
186.2) 1.67 (1–1.97)

Sri Lanka 2015 4566 39 18–69 51.5 125 (74–258) 81 (36–150)
58 (26.2–
156.9) 1.59 (1.02–1.9)

Lesotho 2012 2162 38 25–64 49.8 126 (78–250) 83 (46–146)
66.2 (21.5–
164.6) 1.61 (1.02–1.97)

Republic of 
Moldova 2013 4077 39 18–69 52.5 133 (83–257) 85 (49–148)

75 (32.5–
166) 1.68 (1.2–1.98)

Marshall Islands 2018 2657 39 17–69 48.5 120 (70–220) 75 (40–134) 74.4 (27–226.5) 1.58 (1.01–2.15)

Myanmar 2014 7892 42 25–64 50.4 126 (70–252) 82 (35–144) 57.1 (26.3–173) 1.59 (1–2.18)

Mozambique 2005 723 41 24–64 46 139 (85–220) 82 (46–143)
56.7 (33.4–
109.5) 1.6 (1.02–1.89)

Namibia 2005 752 41 25–64 41.3 137 (87–230) 86 (50–132)
63.7 (26.5–
134.3) 1.63 (1.12–2)

Niger 2007 2638 37 15–64 54.1 134 (70–260) 82 (40–145)
59.5 (24.3–
162.2) 1.67 (1.01–2.1)

Niue 2012 779 40 15–69 50.1 128 (89–223) 76 (44–117)
91.5 (44.7–
165.9) 1.69 (1.17–1.96)

Nauru 2016 1037 36 18–69 50 123 (76–223) 80 (46–125)
92.4 (43.4–
197.9) 1.63 (1.41–1.86)

Palau 2013 2148 43 25–64 53 138 (87–236) 85 (40–135) 79.4 (32–180.6) 1.62 (1.02–2.03)

French Polynesia 2010 2239 36 18–64 50.7 125 (86–230) 79 (48–150) 86.2 (41–193) 1.7 (1.41–2)

Qatar 2012 2287 35 18–64 50.9 119 (78–203) 79 (46–130)
79.1 (34.4–
190.5) 1.64 (1.35–2)

Rwanda 2013 6882 32 15–64 48.8 121 (75–250) 78 (45–140)
57 (23.1–
165.8) 1.6 (1–1.91)

Sierra Leone 2009 4473 40 25–64 50.3 131 (72–220) 81 (42–148) 60 (28–185) 1.62 (1–2.34)

Sao Tome and 
Principe 2008 2272 40 25–64 48.4 135 (78–240) 82 (34–143) 66.1 (30–186.2) 1.64 (1.01–1.98)

Eswatini 2014 3042 31 15–69 47.4 124 (72–252) 80 (42–150)
67.8 (22.2–
227.6) 1.63 (1.01–2.02)

Togo 2011 3995 32 15–64 49.3 123 (70–251) 77 (31–142) 61.6 (26–165) 1.64 (1.02–1.99)

Tajikistan 2017 2643 32 18–69 53.8 129 (81–267) 84 (54–150) 66.7 (27.8–148) 1.63 (1.09–2)

Timor-Leste 2014 2480 36 18–69 63.8 130 (72–235) 84 (42–136) 52 (27–165) 1.57 (1.24–1.83)

Tuvalu 2015 1024 39 18–69 54.9 134 (92–246) 84 (48–145)
91.9 (35.8–
181.8) 1.68 (1.17–2.06)

United Republic of 
Tanzania 2012 5381 39 25–64 50.6 129 (80–240) 80 (40–146) 60.6 (29–171.1) 1.63 (1.13–1.97)

Uganda 2014 3673 35 18–69 50.5 125 (83–249) 81 (50–148) 59.4 (30.2–165) 1.62 (1.15–2.03)

Uruguay 2014 2207 38 15–64 47.8 125 (82–232) 79 (44–134) 74.6 (34.3–158) 1.67 (1.36–2.05)

Vietnam 2015 3033 39 18–69 50.4 120 (71–224) 77 (40–128)
54.7 (27.8–
106.4) 1.58 (1.01–1.98)

Vanuatu 2011 4420 40 25–64 47.7 130 (77–269) 80 (38–139)
69.4 (28.3–
199.8) 1.63 (1.02–2.1)

Samoa 2013 1490 37 18–64 54.1 125 (80–222) 75 (44–132) 90.3 (32.1–160) 1.68 (1.22–1.97)

SBP: systolic blood pressure; DBP: diastolic blood pressure.
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Appendix 1—table 7. Predicted mean salt intake (g/day) by sex in each of the 54 national surveys 
included in the application of the model herein developed.

Country Year Sex Mean salt intake

Mean salt 
intake lower 
95% confidence 
interval

Mean salt 
intake upper 
95% confidence 
interval

Algeria 2017 Men 9.26 9.22 9.3

Algeria 2017 Women 7.54 7.5 7.58

Algeria 2017 Total 8.43 8.39 8.47

American Samoa 2004 Men 10.9 10.8 10.99

American Samoa 2004 Women 9.03 8.96 9.11

American Samoa 2004 Total 9.97 9.93 10.01

Bahamas 2012 Men 10.09 9.83 10.35

Bahamas 2012 Women 8.11 7.81 8.4

Bahamas 2012 Total 9.1 8.9 9.29

Barbados 2007 Men 9.42 9.25 9.6

Barbados 2007 Women 7.85 7.54 8.17

Barbados 2007 Total 8.67 8.45 8.89

Benin 2015 Men 8.96 8.9 9.03

Benin 2015 Women 7.01 6.89 7.12

Benin 2015 Total 7.98 7.81 8.15

Botswana 2014 Men 8.74 8.68 8.79

Botswana 2014 Women 7.2 7.14 7.26

Botswana 2014 Total 8 7.94 8.06

British Virgin 
Islands 2009 Men 9.73 9.66 9.81

British Virgin 
Islands 2009 Women 7.85 7.82 7.88

British Virgin 
Islands 2009 Total 8.87 8.82 8.92

Cabo Verde 2007 Men 8.98 8.93 9.03

Cabo Verde 2007 Women 7.13 7.03 7.23

Cabo Verde 2007 Total 8.06 7.97 8.16

Cambodia 2010 Men 8.83 8.8 8.86

Cambodia 2010 Women 6.83 6.81 6.86

Cambodia 2010 Total 7.82 7.78 7.86

Cayman Islands 2012 Men 9.73 9.69 9.77

Cayman Islands 2012 Women 7.92 7.61 8.23

Cayman Islands 2012 Total 8.84 8.75 8.92

Comoros 2011 Men 9.06 9.02 9.1

Comoros 2011 Women 7.43 7.38 7.47

Comoros 2011 Total 8.29 8.24 8.33

Cook Islands 2015 Men 10.87 10.73 11.01

Cook Islands 2015 Women 8.74 8.63 8.86
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Country Year Sex Mean salt intake

Mean salt 
intake lower 
95% confidence 
interval

Mean salt 
intake upper 
95% confidence 
interval

Cook Islands 2015 Total 9.73 9.59 9.88

Ecuador 2018 Men 9.6 9.55 9.65

Ecuador 2018 Women 7.65 7.6 7.69

Ecuador 2018 Total 8.61 8.55 8.68

Eritrea 2010 Men 8.32 8.27 8.37

Eritrea 2010 Women 6.48 6.43 6.52

Eritrea 2010 Total 6.79 6.75 6.84

Eswatini 2014 Men 9.11 9.02 9.2

Eswatini 2014 Women 7.62 7.56 7.68

Eswatini 2014 Total 8.33 8.27 8.39

Ethiopia 2015 Men 8.52 8.49 8.54

Ethiopia 2015 Women 6.62 6.59 6.65

Ethiopia 2015 Total 7.68 7.65 7.72

Fiji 2011 Men 9.53 9.44 9.62

Fiji 2011 Women 7.84 7.76 7.91

Fiji 2011 Total 8.7 8.6 8.8

French Polynesia 2010 Men 10.1 10 10.2

French Polynesia 2010 Women 8 7.9 8.1

French Polynesia 2010 Total 9.06 8.98 9.15

Gambia 2010 Men 9.05 8.94 9.17

Gambia 2010 Women 7.17 7.1 7.25

Gambia 2010 Total 8.12 8.03 8.22

Grenada 2011 Men 9.21 9.12 9.31

Grenada 2011 Women 7.74 7.64 7.84

Grenada 2011 Total 8.49 8.4 8.58

Guyana 2016 Men 9.26 9.16 9.35

Guyana 2016 Women 7.67 7.6 7.74

Guyana 2016 Total 8.5 8.43 8.56

Iraq 2015 Men 9.66 9.58 9.75

Iraq 2015 Women 7.94 7.88 8.01

Iraq 2015 Total 8.87 8.8 8.93

Kenya 2015 Men 8.82 8.73 8.9

Kenya 2015 Women 7.13 7.04 7.21

Kenya 2015 Total 7.98 7.89 8.07

Kiribati 2016 Men 9.92 9.74 10.09

Kiribati 2016 Women 8.27 8.14 8.39
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Country Year Sex Mean salt intake

Mean salt 
intake lower 
95% confidence 
interval

Mean salt 
intake upper 
95% confidence 
interval

Kiribati 2016 Total 8.97 8.86 9.09

Kuwait 2014 Men 10.06 9.99 10.12

Kuwait 2014 Women 7.95 7.91 8

Kuwait 2014 Total 8.99 8.94 9.05

Kyrgyzstan 2013 Men 9.45 9.34 9.55

Kyrgyzstan 2013 Women 7.62 7.56 7.67

Kyrgyzstan 2013 Total 8.57 8.5 8.63

Lao People’s 
Democratic 
Republic 2013 Men 9.03 8.98 9.08

Lao People’s 
Democratic 
Republic 2013 Women 7.07 7.02 7.12

Lao People’s 
Democratic 
Republic 2013 Total 7.9 7.83 7.97

Lesotho 2012 Men 9.08 8.99 9.17

Lesotho 2012 Women 7.7 7.6 7.79

Lesotho 2012 Total 8.38 8.31 8.46

Liberia 2011 Men 9.43 9.32 9.55

Liberia 2011 Women 7.58 7.48 7.69

Liberia 2011 Total 8.52 8.41 8.63

Libya 2009 Men 9.51 9.44 9.59

Libya 2009 Women 7.81 7.73 7.89

Libya 2009 Total 8.69 8.63 8.75

Marshall Islands 2018 Men 9.92 9.86 9.99

Marshall Islands 2018 Women 8.16 8.1 8.21

Marshall Islands 2018 Total 9.01 8.96 9.07

Mozambique 2005 Men 8.72 8.62 8.83

Mozambique 2005 Women 6.92 6.84 7

Mozambique 2005 Total 7.75 7.63 7.87

Myanmar 2014 Men 8.81 8.74 8.88

Myanmar 2014 Women 7.07 6.97 7.17

Myanmar 2014 Total 7.95 7.88 8.02

Namibia 2005 Men 8.74 8.59 8.89

Namibia 2005 Women 7.24 6.93 7.56

Namibia 2005 Total 7.86 7.63 8.09

Nauru 2016 Men 10.98 10.87 11.1

Nauru 2016 Women 8.79 8.63 8.94
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Country Year Sex Mean salt intake

Mean salt 
intake lower 
95% confidence 
interval

Mean salt 
intake upper 
95% confidence 
interval

Nauru 2016 Total 9.89 9.74 10.03

Niger 2007 Men 8.56 8.52 8.6

Niger 2007 Women 6.67 6.63 6.71

Niger 2007 Total 7.69 7.65 7.74

Niue 2012 Men 10.39 10.28 10.51

Niue 2012 Women 8.39 8.27 8.51

Niue 2012 Total 9.4 9.29 9.5

Palau 2013 Men 10.18 10.07 10.28

Palau 2013 Women 7.99 7.9 8.08

Palau 2013 Total 9.15 9.05 9.25

Qatar 2012 Men 10.02 9.93 10.11

Qatar 2012 Women 7.94 7.85 8.04

Qatar 2012 Total 9 8.9 9.09

Republic of 
Moldova 2013 Men 9.51 9.45 9.57

Republic of 
Moldova 2013 Women 7.46 7.41 7.52

Republic of 
Moldova 2013 Total 8.54 8.48 8.6

Rwanda 2013 Men 8.87 8.85 8.9

Rwanda 2013 Women 7.02 6.99 7.05

Rwanda 2013 Total 7.92 7.89 7.96

Samoa 2013 Men 10.23 10.09 10.37

Samoa 2013 Women 8.61 8.51 8.71

Samoa 2013 Total 9.49 9.41 9.57

Sao Tome and 
Principe 2008 Men 9.05 8.97 9.12

Sao Tome and 
Principe 2008 Women 7.21 7.1 7.32

Sao Tome and 
Principe 2008 Total 8.1 7.99 8.2

Sierra Leone 2009 Men 8.85 8.76 8.94

Sierra Leone 2009 Women 7 6.9 7.11

Sierra Leone 2009 Total 7.93 7.82 8.04

Sri Lanka 2015 Men 8.91 8.86 8.95

Sri Lanka 2015 Women 7.07 7.03 7.1

Sri Lanka 2015 Total 8.01 7.97 8.06

Tajikistan 2017 Men 9.41 9.34 9.49

Tajikistan 2017 Women 7.35 7.3 7.41
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Country Year Sex Mean salt intake

Mean salt 
intake lower 
95% confidence 
interval

Mean salt 
intake upper 
95% confidence 
interval

Tajikistan 2017 Total 8.46 8.38 8.55

Timor-Leste 2014 Men 8.91 8.79 9.02

Timor-Leste 2014 Women 6.8 6.75 6.86

Timor-Leste 2014 Total 8.15 7.86 8.43

Togo 2011 Men 8.82 8.79 8.86

Togo 2011 Women 7.01 6.96 7.06

Togo 2011 Total 7.9 7.85 7.96

Tuvalu 2015 Men 10.37 10.24 10.5

Tuvalu 2015 Women 8.72 8.62 8.83

Tuvalu 2015 Total 9.63 9.53 9.73

Uganda 2014 Men 8.8 8.76 8.84

Uganda 2014 Women 7.02 6.96 7.07

Uganda 2014 Total 7.92 7.86 7.98

United Republic of 
Tanzania 2012 Men 8.71 8.63 8.79

United Republic of 
Tanzania 2012 Women 7.13 7.05 7.21

United Republic of 
Tanzania 2012 Total 7.93 7.88 7.98

Uruguay 2014 Men 9.55 9.48 9.63

Uruguay 2014 Women 7.47 7.41 7.52

Uruguay 2014 Total 8.46 8.39 8.53

Vanuatu 2011 Men 9.38 9.33 9.43

Vanuatu 2011 Women 7.45 7.4 7.5

Vanuatu 2011 Total 8.37 8.31 8.43

Vietnam 2015 Men 8.91 8.86 8.95

Vietnam 2015 Women 6.84 6.81 6.88

Vietnam 2015 Total 7.88 7.83 7.94

Appendix 1—table 8. Comparison between mean salt intake (g/day) predictions and global 
estimates across national surveys included in the application of our machine learning model.

Country
Year (machine learning 
predictions)

Machine learning predicted 
mean salt intake and 95% 
confidence interval

Year (global 
estimates)

Estimated mean salt intake and 
95% confidence interval

Ratio between machine 
learning predicted and 
global estimates

Algeria 2017 8.4 (8.4–8.5) 2010 10.7 (9–12.5) 0.8

Bahamas 2012 9.1 (8.9–9.3) 2010 7.5 (6.2–8.8) 1.2

Barbados 2007 8.7 (8.4–8.9) 2010 8.6 (7.8–9.4) 1

Benin 2015 8 (7.8–8.2) 2010 7.1 (6.2–8.1) 1.1

Botswana 2014 8 (7.9–8.1) 2010 6.3 (5.4–7.4) 1.3

Cabo Verde 2007 8.1 (8–8.2) 2010 8.1 (6.8–9.7) 1

Cambodia 2010 7.8 (7.8–7.9) 2010 11 (9.3–12.9) 0.7

Comoros 2011 8.3 (8.2–8.3) 2010 4.2 (3.5–5) 2
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Country
Year (machine learning 
predictions)

Machine learning predicted 
mean salt intake and 95% 
confidence interval

Year (global 
estimates)

Estimated mean salt intake and 
95% confidence interval

Ratio between machine 
learning predicted and 
global estimates

Ecuador 2018 8.6 (8.6–8.7) 2010 7.6 (6.4–8.9) 1.1

Eritrea 2010 6.8 (6.8–6.8) 2010 5.9 (5–7) 1.2

Ethiopia 2015 7.7 (7.7–7.7) 2010 5.7 (4.9–6.7) 1.4

Fiji 2011 8.7 (8.6–8.8) 2010 7.2 (6–8.5) 1.2

Gambia 2010 8.1 (8–8.2) 2010 7.7 (6.5–8.9) 1.1

Grenada 2011 8.5 (8.4–8.6) 2010 6.5 (5.5–7.7) 1.3

Guyana 2016 8.5 (8.4–8.6) 2010 6.1 (5.1–7.3) 1.4

Iraq 2015 8.9 (8.8–8.9) 2010 9.4 (8–11.2) 0.9

Kenya 2015 8 (7.9–8.1) 2010 3.7 (3.4–4) 2.2

Kiribati 2016 9 (8.9–9.1) 2010 5.6 (4.6–6.7) 1.6

Kuwait 2014 9 (8.9–9.1) 2010 9.7 (8.7–10.8) 0.9

Kyrgyzstan 2013 8.6 (8.5–8.6) 2010 13.4 (11.4–15.8) 0.6

Lao People’s Democratic 
Republic 2013 7.9 (7.8–8) 2010 11.1 (9.4–13.2) 0.7

Lesotho 2012 8.4 (8.3–8.5) 2010 6.6 (5.5–7.8) 1.3

Liberia 2011 8.5 (8.4–8.6) 2010 6.7 (5.6–7.9) 1.3

Libya 2009 8.7 (8.6–8.8) 2010 10.6 (8.9–12.5) 0.8

Marshall Islands 2018 9 (9–9.1) 2010 6.4 (5.4–7.5) 1.4

Mozambique 2005 7.8 (7.6–7.9) 2010 5.6 (4.7–6.6) 1.4

Myanmar 2014 8 (7.9–8) 2010 11.2 (9.4–13.2) 0.7

Namibia 2005 7.9 (7.6–8.1) 2010 6.6 (5.6–7.7) 1.2

Niger 2007 7.7 (7.7–7.7) 2010 7.3 (6.2–8.6) 1.1

Qatar 2012 9 (8.9–9.1) 2010 10.5 (8.3–12.9) 0.9

Republic of Moldova 2013 8.5 (8.5–8.6) 2010 9.9 (8.3–11.6) 0.9

Rwanda 2013 7.9 (7.9–8) 2010 4 (3.3–4.9) 2

Samoa 2013 9.5 (9.4–9.6) 2010 5.2 (4.6–5.8) 1.8

Sao Tome and Principe 2008 8.1 (8–8.2) 2010 5.9 (4.9–6.9) 1.4

Sierra Leone 2009 7.9 (7.8–8) 2010 6.3 (5.3–7.3) 1.3

Sri Lanka 2015 8 (8–8.1) 2010 9.7 (8.2–11.3) 0.8

Tajikistan 2017 8.5 (8.4–8.6) 2010 13.5 (11.6–15.7) 0.6

Timor-Leste 2014 8.2 (7.9–8.4) 2010 11.2 (9.3–13.3) 0.7

Uganda 2014 7.9 (7.9–8) 2010 5.3 (4.4–6.3) 1.5

United Republic of Tanzania 2012 7.9 (7.9–8) 2010 6.9 (6.1–7.7) 1.1

Uruguay 2014 8.5 (8.4–8.5) 2010 6.8 (5.8–8) 1.2

Vanuatu 2011 8.4 (8.3–8.4) 2010 5.6 (4.8–6.6) 1.5

Vietnam 2015 7.9 (7.8–7.9) 2010 11.5 (9.5–13.7) 0.7

There are 43 countries in this table; that is, countries included in our analysis that were not available in the previous global work were not included in this table (Powles et al., 2013).

Appendix 1—table 9. Countries included in the analysis by income group according to the World 
Bank classification.

Analysis World region Country Year Income group

Model application Africa Algeria 2017 Upper-middle

Model application Western Pacific American Samoa 2004 Upper-middle

Model application Americas Bahamas 2012 High

Model application Americas Barbados 2007 High

Appendix 1—table 8 Continued

Appendix 1—table 9 Continued on next page
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Analysis World region Country Year Income group

Model application Africa Benin 2015 Lower

Model application Africa Botswana 2014 Upper-middle

Model application Americas British Virgin Islands 2009 No data

Model application Africa Cabo Verde 2007 Lower-middle

Model application Western Pacific Cambodia 2010 Lower

Model application Americas Cayman Islands 2012 High

Model application Africa Comoros 2011 Lower

Model application Western Pacific Cook Islands 2015 No data

Model application Americas Ecuador 2018 Upper-middle

Model application Africa Eritrea 2010 Lower

Model application Africa Eswatini 2014 Lower-middle

Model application Africa Ethiopia 2015 Lower

Model application Western Pacific Fiji 2011 Lower-middle

Model application Western Pacific French Polynesia 2010 High

Model application Africa Gambia 2010 Lower

Model application Americas Grenada 2011 Upper-middle

Model application Americas Guyana 2016 Upper-middle

Model application Eastern Mediterranean Iraq 2015 Upper-middle

Model application Africa Kenya 2015 Lower-middle

Model application Western Pacific Kiribati 2016 Lower-middle

Model application Eastern Mediterranean Kuwait 2014 High

Model application Eastern Mediterranean Kyrgyzstan 2013 Lower-middle

Model application Western Pacific
Lao People’s Democratic 
Republic 2013 Lower-middle

Model application Africa Lesotho 2012 Lower-middle

Model application Africa Liberia 2011 Lower

Model application Eastern Mediterranean Libya 2009 Upper-middle

Model application Western Pacific Marshall Islands 2018 Upper-middle

Model application Africa Mozambique 2005 Lower

Model application Southeast Asia Myanmar 2014 Lower-middle

Model application Africa Namibia 2005 Lower-middle

Model application Western Pacific Nauru 2016 Upper-middle

Model application Africa Niger 2007 Lower

Model application Western Pacific Niue 2012 No data

Model application Western Pacific Palau 2013 Upper-middle

Model application Eastern Mediterranean Qatar 2012 High

Model application Europe Republic of Moldova 2013 Lower-middle

Model application Africa Rwanda 2013 Lower

Model application Western Pacific Samoa 2013 Lower-middle

Appendix 1—table 9 Continued on next page
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Analysis World region Country Year Income group

Model application Africa Sao Tome and Principe 2008 Lower-middle

Model application Africa Sierra Leone 2009 Lower

Model application Southeast Asia Sri Lanka 2015 Lower-middle

Model application Europe Tajikistan 2017 Lower

Model application Southeast Asia Timor-Leste 2014 Lower-middle

Model application Africa Togo 2011 Lower

Model application Western Pacific Tuvalu 2015 Upper-middle

Model application Africa Uganda 2014 Lower

Model application Africa United Republic of Tanzania 2012 Lower

Model application Americas Uruguay 2014 High

Model application Western Pacific Vanuatu 2011 Lower-middle

Model application Western Pacific Vietnam 2015 Lower-middle

Model derivation Europe Armenia 2016 Lower-middle

Model derivation Europe Azerbaijan 2017 Upper-middle

Model derivation Southeast Asia Bangladesh 2018 Lower-middle

Model derivation Europe Belarus 2017 Upper-middle

Model derivation Southeast Asia Bhutan 2014 Lower-middle

Model derivation Southeast Asia Bhutan 2019 Lower-middle

Model derivation Western Pacific Brunei Darussalam 2016 High

Model derivation Americas Chile 2017 High

Model derivation Eastern Mediterranean Jordan 2019 Upper-middle

Model derivation Eastern Mediterranean Lebanon 2017 Upper-middle

Model derivation Africa Malawi 2017 Lower

Model derivation Western Pacific Mongolia 2013 Lower-middle

Model derivation Western Pacific Mongolia 2019 Lower-middle

Model derivation Eastern Mediterranean Morocco 2017 Lower-middle

Model derivation Southeast Asia Nepal 2019 Lower-middle

Model derivation Western Pacific Solomon Islands 2015 Lower-middle

Model derivation Eastern Mediterranean Sudan 2016 Lower-middle

Model derivation Western Pacific Tokelau 2014 No data

Model derivation Western Pacific Tonga 2017 Upper-middle

Model derivation Europe Turkmenistan 2018 Upper-middle

Model derivation Africa Zambia 2017 Lower-middle

Source: World Bank (https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-​
and-lending-groups).

Appendix 1—table 9 Continued
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Appendix 1—figure 1. Flowchart of data cleaning and inclusion criteria for model derivation.
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Appendix 2
Expanded methods
Characteristics of the surveys included in the analysis
We analyzed WHO STEPS surveys and one national health survey (Chile) (World Health 
Organization, 2021b; Wang et al., 2020). These surveys included a random sample of the general 
population and can deliver nationally representative estimates. These are household surveys 
that stratify by the first administrative level in the country (e.g., region); within this level, further 
stratification may occur by, for example, urban/rural location. Then, a random sample of census 
tracts, villages, neighborhoods, or other similar division is selected. In each of these primary 
sampling units, households are randomly sampled for the interview.

All surveys followed standard procedures (World Health Organization, 2021b; Wang et al., 
2020). Briefly, participants were given a small container along with instructions for the urine 
collection; the next day, participants brought the urine sample to a designated place. Then, urine 
samples were analyzed at a laboratory by a trained technician.

Overview
We worked with a structured dataset that mostly had numeric attributes (variables). Given our 
study problem, we opted for a supervised learning model because there was a target attribute 
(i.e., salt consumption at the subject level); specifically, we conducted a supervised regression 
because the target attribute was a numeric variable. For the machine learning analyses, we used 
Python and the Scikit-Learn library.

First, we developed a pipeline for data management and model development. This way, we 
followed a consistent and transparent methodology to secure an optimal model for the training 
set and that would adequately generalize to other (unseen) datasets. Appendix 2—figure 1 
depicts the pipeline we developed: (i) we studied the available data and where needed, we did a 
one-hot encoding; (ii) we did feature importance analysis; (iii) we chose and tried different scaling 
and transformation methods, so that all variables would be in the same scale or units; (iv) we tried 
a set of machine learning models, including a customized neural network; and (v) we forecasted 
(predicted) the attribute of interest (salt consumption at the subject level) in an unseen dataset 
(i.e., not used for model training). Notably, we went backward and forward (see arrows in the 
figure) between the four first stages until we reached the best combinations and results for each 
model. In the following sections, we will describe each of these five stages.

Appendix 2—figure 1. Pipeline for data management and model development. PCA, primary 
component analysis; LiR, linear regression; HuR, Hubber regressor; RiR, ridge regressor; MLP, 
multilayer perceptron; SVR, support vector regressor; KNN, k-nearest neighbors; RF, random forest; 
GBM, gradient boost machine; XGB, extreme gradient boosting; NN, neural network.

https://doi.org/10.7554/eLife.72930
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Data analysis
This was an exploratory analysis to understand the dataset and its characteristics. We worked 
with a complete-case dataset; in other words, we excluded missing observations in the variables 
considered in the analysis. Consequently, we did not do any data imputation analysis.

We explored the distribution of all numerical variables, which were in different units and 
scales; this exploratory analysis informed the choices of data processing methods (e.g., Box-Cox) 
implemented in the third stage.

Feature importance analysis
Even though we followed expert knowledge to select a reduced, though relevant number of 
predictors to be included in the regression model, we conducted feature importance analyses 
to understand the role each predictor would play in the model. This process aimed to eliminate 
variables that would not carry substantial information for the model. We used random forest, 
recursive feature elimination, and extra trees. Consistently, these three methods suggested that all 
the chosen predictors would contribute to a better model.

Data processing
As described in the data analysis section (first stage), numeric variables were in different units and 
scales; therefore, these variables needed to be scaled or transformed. This scaling would also 
help to find a better prediction model. It is common knowledge that machine learning models 
would perform differently (and better) depending on data transformation methods. We did (i) min-
max whereby numeric variables were scaled to a range between 0 and 1; (ii) standardization; (iii) 
normalization: (iv) polynomial features of degree 2 (quadratic polynomial); (v) principal component 
analysis with three components and explained variance of ≥0.95; and (vi) Box-Cox.

Data modeling
There are several machine learning algorithms for a supervised regression model. Those that 
we used, and that are depicted in Appendix 1—figure 1, yielded much better results and were 
studied in detail. That is, at the beginning of our work we explored other algorithms, though 
these did not perform well and were not considered thereafter. The algorithms we considered 
were (i) linear regression (LiR); (ii) Hubber regressor (HuR); (iii) ridge regressor (RiR); (iv) multilayer 
perceptron (MLP); (v) support vector regressor (SVR); (vi) k-nearest neighbors (KNN); (vii) random 
forest (RF); (viii) gradient boost machine (GBM); and (ix) extreme gradient boosting (XBG).

In addition to these nine machine learning algorithms, we also implemented a neural network 
(see Appendix 2—figure 2). This neural network was optimized empirically. We used a batch size 
= 256; epochs = 300; and optimizer = ‘adam.’ The neural network was implemented in Python 
using the Keras library.

For each model and processing method (see ‘Data processing’ section), we studied the R2, 
mean absolute error (MAE), and root mean square error (RMSE). As shown in Appendix 1—table 
1, all algorithms showed a similar performance. Because all the algorithms had an equivalent 
performance, the chosen one needed to be defined at the forecasting stage; that is, the one that 
would generalize better to new (unseen) data.

Forecasting modeling
This stage implies studying the predicted results in new (unseen) data (i.e., data not used for 
model training). For this stage, we used the validation and test datasets. We chose the model that 
yielded predictions closest to the observed results. In this line, we compared the mean difference 
between the observed and predicted mean salt intake results (i.e., observed – predicted) across all 
prediction algorithms.

We observed there was no unique algorithm that had the mean difference closest to zero in 
men and women at the same time (Appendix 1—table 2). The HuR algorithm had the mean 
difference closest to zero in both sexes combined (mean difference = –0.0019), the RiR algorithm 
performed the best in men (mean difference = 0.0063), and in women the HuR algorithm showed 
the best results (mean difference = 0.0082).

To support our decision process, we plotted the mean differences in men and women for each 
survey (Appendix 2—figure 3); this figure only included the predictions based on the top three 
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algorithms (HuR, MLP, and customized NN). We counted how many times (i.e., number of surveys) 
each algorithm had the mean difference closest to zero.

Because the HuR algorithm had the mean difference closest to zero in both sexes combined and 
it was among the top five algorithms in men and women (Appendix 1—table 2), we decided to 
choose the HuR algorithm. Additionally, predictions based on the HuR algorithm were the closest 
to zero across surveys (Appendix 2—figure 3). These analyses were performed in R (version 4.0.3).

Algorithm application
To make the predictions in the new 54 datasets without information about urine samples, we 
used the HuR model (i.e., ML algorithm and predictors) developed following the methods above 
described (see ‘Forecasting modeling’ section). We re-trained the model with the full dataset used 
for model development and validation (i.e., train, validated, and test dataset pooled), and then 
predicted the outcome (i.e., mean salt intake) in the 54 new datasets.

Appendix 2—figure 2. Neural network implementation.

Appendix 2—table 1. Performance of each algorithm and processing method.

Algorithm Processing R2 MAE RMSE

LiR Polynomial (g = 2) 0.447 1.1138 1.4451

HuR Standardized 0.447 1.1132 1.4442

RiR Polynomial (g = 2) 0.446 1.1147 1.4459

MLP Min-max 0.451 1.1101 1.4395

SVR Min-max 0.446 1.0988 1.4459

KNN Standardized 0.421 1.1426 1.4779

RF Polynomial (g = 2) 0.417 1.1474 1.4835

GBM Min-max 0.447 1.1147 1.4447

XGB Min-max 0.431 1.1293 1.4646

Customized NN Box-Cox 0.461 1.0953 1.4156

MAE: mean absolute error. RMSE: root mean square error. LiR: linear regression. HuR: Hubber regressor. RiR: ridge 
regressor. MLP: multilayer perceptron. SVR: support vector regressor. KNN: k-nearest neighbors. GBM: gradient 
boost machine. XGB: extreme gradient boosting. NN: neural network; RF: random forest.

Appendix 2—table 2. Mean difference between observed and predicted salt intake by sex across 
all machine learning algorithms.

Machine learning 
algorithm

Mean difference 
between observed 
and predicted mean 
salt intake Sex

CNN_boxcox –0.0109 Both sexes

CNN_standardize –0.0075 Both sexes

GBR_boxcox 0.1373 Both sexes

GBR_minmax 0.1198 Both sexes

GBR_orig –0.0252 Both sexes

Appendix 2—table 2 Continued on next page
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Machine learning 
algorithm

Mean difference 
between observed 
and predicted mean 
salt intake Sex

GBR_standardized 0.1231 Both sexes

HuR_boxcox 0.0389 Both sexes

HuR_standardized –0.0019 Both sexes

KNN_boxcox 0.0144 Both sexes

KNN_standardized –0.0172 Both sexes

LiR_poly –0.0292 Both sexes

MLP_boxcox –0.0069 Both sexes

MLP_minmax –0.019 Both sexes

MLP_standardized –0.0174 Both sexes

RF_poly –0.0479 Both sexes

RiR_poly –0.0304 Both sexes

SVR_minmax 0.1137 Both sexes

XGB_boxcox 0.0389 Both sexes

XGB_orig –0.0312 Both sexes

XGB_standardized –0.0329 Both sexes

CNN_boxcox 0.088 Men

CNN_standardize 0.0699 Men

GBR_boxcox 0.1591 Men

GBR_minmax 0.1381 Men

GBR_orig 0.0197 Men

GBR_standardized 0.1444 Men

HuR_boxcox 0.0265 Men

HuR_standardized –0.0119 Men

KNN_boxcox 0.0612 Men

KNN_standardized 0.0179 Men

LiR_poly 0.0069 Men

MLP_boxcox 0.0512 Men

MLP_minmax –0.0104 Men

MLP_standardized –0.0249 Men

RF_poly –0.0129 Men

RiR_poly 0.0063 Men

SVR_minmax 0.1265 Men

XGB_boxcox 0.0265 Men

XGB_orig 0.0147 Men

XGB_standardized 0.0069 Men

CNN_boxcox –0.1097 Women

Appendix 2—table 2 Continued on next page
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Machine learning 
algorithm

Mean difference 
between observed 
and predicted mean 
salt intake Sex

CNN_standardized –0.085 Women

GBR_boxcox 0.1155 Women

GBR_minmax 0.1015 Women

GBR_orig –0.07 Women

GBR_standardized 0.1018 Women

HuR_boxcox 0.0514 Women

HuR_standardized 0.0082 Women

KNN_boxcox –0.0324 Women

KNN_standardized –0.0524 Women

LiR_poly –0.0653 Women

MLP_boxcox –0.0649 Women

MLP_minmax –0.0276 Women

MLP_standardized –0.0098 Women

RF_poly –0.0828 Women

RiR_poly –0.0671 Women

SVR_minmax 0.101 Women

XGB_boxcox 0.0514 Women

XGB_orig –0.0771 Women

XGB_standardized –0.0727 Women

Appendix 2—figure 3. Comparison between mean difference between observed and predicted salt 
intake across the best algorithms. CNN, customized neural network; HuR: Hubber regressor; MLP, 
multilayer perceptron.

Appendix 2—table 2 Continued
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