
Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

© The British Computer Society 2021. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

https://doi.org/10.1093/comjnl/bxab143

An Analysis of Computational
Resources of Event-Driven Streaming
Data Flow for Internet of Things: A

Case Study

Alonso Tenorio-Trigoso1, Manuel Castillo-Cara2,*,
Giovanny Mondragón-Ruiz3, Carmen Carrión4 and

Blanca Caminero4

1Escuela de Posgrado, Universidad Peruana Cayetano Heredia, Lima, Peru.
2Universidad de Lima, Lima, Peru.

3Center of Information and Communication Technologies, Universidad Nacional de Ingenieria, Lima,
Peru.

4Albacete Research Institute of Informatics, Universidad de Castilla-La Mancha, Albacete, Spain.
∗Corresponding author: jmcastil@ulima.edu.pe

Information and communication technologies backbone of a smart city is an Internet of Things
(IoT) application that combines technologies such as low power IoT networks, device management,
analytics or event stream processing. Hence, designing an efficient IoT architecture for real-time IoT
applications brings technical challenges that include the integration of application network protocols
and data processing. In this context, the system scalability of two architectures has been analysed:
the first architecture, named as POST architecture, integrates the hyper text transfer protocol with
an Extract-Transform-Load technique, and is used as baseline; the second architecture, named as
MQTT-CEP, is based on a publish-subscribe protocol, i.e. message queue telemetry transport, and a
complex event processor engine. In this analysis, SAVIA, a smart city citizen security application, has
been deployed following both architectural approaches. Results show that the design of the network
protocol and the data analytic layer impacts highly in the Quality of Service experimented by the
final IoT users. The experiments show that the integrated MQTT-CEP architecture scales properly,
keeps energy consumption limited and thereby, promotes the development of a distributed IoT
architecture based on constraint resources. The drawback is an increase in latency, mainly caused
by the loosely coupled communication pattern of MQTT, but within reasonable levels which stabilize

with increasing workloads.

Keywords: smart city; Internet of Things; real-time stream processing; computing performance;
data-driven analysis; complex event processing.

Received 21 December 2020; Revised 25 June 2021; Editorial Decision 25 August 2021
Handling editor: Dr Fabrizio Messina

1. INTRODUCTION

Internet of Things (IoT) applications are normally classified
considering its utilization domain (i.e. smart services, smart
building, smart transport or smart city) but IoT applications,
even from the same domain, have different quality of ser-
vice (QoS) requirements. Hence, based on these requirements
the IoT applications map into different IoT implementation
technologies [1]. For example, traffic management or citizen

security applications within a smart city are characterized by
requiring an infrastructure that receives and processes data
generated continuously as results of temporary events that
follow a continuous temporal flow structure [2]. In this context,
one of the fundamental characteristics of IoT is that the set of
sensors connected by a wireless network collects information
with the least possible human interaction in order to provide a
new type of application [3]. These applications usually process

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022

https://doi.org/10.1093/comjnl/bxab143


2 A. Tenorio-Trigoso et al.

the information collected by the sensors to make decisions and
analyse past behaviours.

Most of the architectural deployments to enable IoT solu-
tions are based on cloud computing models. Relying on a cloud
approach means offering a secure 24-hour service with high
availability and leveraging the computing and storage capacity
of cloud providers [4–6]. However, using these resources effi-
ciently and composing the best services to achieve the optimal
QoS is a challenge, as recent research shows [7].

One of the most interesting aspects of computing infras-
tructures is to create, manage and integrate services that can
improve system scalability and optimize the use of the infras-
tructure’s computational resources [8]. This fact has led to
the development, among others, of a wide range of event
processing mechanisms, synchronous and asynchronous com-
munication protocols, or virtualized dedicated microservices
[9, 10]. For example, there are different categories of IoT
streaming applications, such as Extract, Transform and Load
(ETL), Stream Machine Learning or Complex Event Process-
ing (CEP), and each of them provides specific QoS [11].

In view of the above, prior to the deployment of an IoT
application some challenging decisions must be made related
to the standard messaging protocol and the real-data processing
layer [12]. The study presented in this paper neither intend
to analyse IoT network protocols nor IoT data processing in
isolation, but application performance of IoT deployments as
a whole [13]. To that end, two alternate implementations of an
IoT application have been developed. In the first one, the stream
processing framework combines the messaging protocol, Mes-
sage Queue Telemetry Transport (MQTT), at the network layer
and CEP at the data processing layer. More precisely, Apache
Flink [14], a framework that provides advanced stream process-
ing capabilities for IoT applications, is used as a CEP engine
[15]. This implementation is compared to a traditional, ETL-
based implementation based on a Hyper Text Transfer Protocol
(HTTP) server and POST requests. Hence, the value of a real-
stream processing framework based on Flink is discussed and
compared to a traditional approach based on ETL.

The experiments focus on evaluating scalability in terms
of latency, resources and energy of a typical IoT application.
According to the obtained results, choosing a proper framework
at both the network and the data analytic layers highly impacts
the QoS experimented by the end users of the IoT applica-
tion. Moreover, the experiments show that the components of
the stream processing framework (MQTT-CEP) work properly
together. This can lead to the development of a distributed IoT
architecture based on constrained resources. All the above has
been outlined in Fig. 1.

Thus, the main contributions of this work can be summarized
in the following highlights:

• Implementation of two architectures based on alternative
protocols for the same IoT application (HTTP-POST
and MQTT-CEP).

FIGURE 1. Overall evaluation of the case study application.

• Development of IoT event-driven data modelling for the
two architectures under evaluation.

• Analysis of contextual transmission of event-driven
streaming data flow for synchronous and asynchronous
communication.

• Evaluation of resource and energy consumption, as well
as latency in global and local terms, for the two architec-
tures under evaluation.

• Identification of relevant criteria for selecting the most
appropriate architecture according to the requirements
of each application.

The paper is organized as follows. Section 2 presents the
related work on IoT architecture solutions and their perfor-
mance. Then, Section 3 depicts the main characteristics of the
use case application. A detailed description of the architec-
tures under study and their stream data flows are provided in
Section 4 and Section 5, respectively. Section 6 shows and dis-
cusses the obtained results. The final section, Section 7, sum-
marizes some conclusions and points out future work related to
this research.

2. RELATED WORK

In this section, some applications based on IoT and their
architectures are reviewed, as well as work related to the
performance evaluation of IoT environments.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



Event-Driven Streaming Data Flow 3

2.1. IoT: architectures and ecosystem

The Information and Communication Technologies backbone
of a smart city is composed of one or more IoT [9] applications
that combine technologies such as low power IoT networks,
device management, analytic or event stream processing [16].
The integration of all the involved technologies makes possible
to extract raw data from smart objects and sensors, process data
and finally extract insight value to improve citizens lives. IoT
designs are usually modelled as a multi-layer architecture [17,
18]. For example, in [17] authors proposed a Smart City Data
Analytics Panel 3-layer architecture including a platform layer,
security layer and data processing layer. Similarly, IBM [18]
adopted a three-layer model including an instrumented layer,
an interconnected layer and an intelligent layer.

In general, application protocols over transmission control
protocol/Internet protocol (TCP/IP) or user datagram proto-
col/IP are required to collect data from IoT devices. For exam-
ple, the framework of the operative project HABITAT (Home
Assistance Based on the IoT for the Autonomy of Everybody)
[19] applies the standard HTTP protocol for IoT communi-
cation. HTTP is based on the representational state transfer
architecture with large text-based overhead and requires regular
polling or posting of updates. Thus, alternate protocols to
HTTP have arisen to overcome its drawbacks in IoT contexts
[20]. In particular, MQTT is an asynchronous, event-driven,
publish/subscribe messaging system which exhibits low band-
width and high latency [21]. A static comparative analysis of
the most well-known message protocols for IoT Systems is
presented in [10], including HTTP, Constrained Application
Protocol, advanced message queuing protocol and MQTT. But
it did not consider dynamic network conditions and overheads
incurred in the retransmission of packets, which may produce
different results.

Regardless of the number of layers, one characteristic of
smart city applications involves the acquisition of data in real-
time and making decisions. However, it is often difficult to
perform real-time analysis on a large amount of heterogeneous
data and sensory information that are provided by various
sources [3]. So, as the classical batch processing ETL tech-
nique is not tailored to real-time processing, modern stream
processing architectures such as Apache Storm [22] or Apache
Flink [14] are used to process the streams. These technologies
are mostly implemented in a cloud-based environment (AWS
EC2, Microsoft Azure). Thus, there are some cloud-based
commercial ready-made IoT solutions, like FIWARE [23, 24],
AWS IoT [25] or IBM Watson IoT platform [26] available to
developers to this end.

2.2. IoT: performance evaluation

Cloud and distributed systems approaches are the basis for big
data solutions provided for smart cities, just as IoT solutions
are the basis for collecting data from sensors and devices in

the city [9] or a health specific application such as Dengue
Infection [27]. In an IoT context, having a single data store
and common processor can be helpful for data analytic as it
enables a global view of the overall system and is a familiar
architecture. However, when millions of IoT devices such as
sensors or smartphones send stream data to a common server,
the communication network and also the server can speedily
become a bottleneck [28, 29].

The analysis of computational resource consumption and
latency in different architectures for IoT, e.g. fog and cloud
computing [8], has attracted a great deal of interest from the
scientific community. In this context, research such as [8]
depicts a comparative study of fog and cloud computing in
CEP-based real-time IoT applications. Specifically, the authors
show that latency in fog computing platforms is reduced by
35% compared to a cloud-based approach without affecting
the QoS. Furthermore, the paper shows how the deployment
of an efficient fog computing ecosystem saves up to 69% of
energy consumption compared to cloud computing, that is,
green energy for IoT.

Moreover, recent research in the literature establishes mech-
anisms for efficient distribution of computational resources
in IoT application development. In [7] an integrated Hidden
Markov and Ant Colony (HMAC) mechanism is proposed
obtaining a QoS improvement over other methods compared
in the same research. The HMAC proposal proves to be a
mechanism with the following benefits: low response time, low
cost, high reliability and low energy consumption.

On the other hand, as is well known, IoT suffers from certain
limitations, such as power consumption, computational limits,
etc., which need to be analysed and optimized. Hence, Heidari
et al. [5] develop an in-depth literature study on the findings
of the whole procedure on IoT offloading. The analysis is very
extensive and focuses on the metric quality of certain param-
eters in different architectures (cloud / fog / edge computing).
More specifically, the QoS parameters analysed are response
time, latency, flexibility, complexity and performance. In addi-
tion, the authors analyse and compare these parameters with
different ideas put forward by other researches in the literature.

From the aforementioned above, extensive analysis of var-
ious QoS parameters within different architectures and proto-
cols for IoT applications has been carried out, which highlights
the interest in this topic.

3. USE CASE: THE SAVIA APPLICATION

The suitability of the IoT technologies analysed will be
performed considering the SAVIA application as a use case.
SAVIA is an IoT application to avoid gender violence within
the scope of a smart city [30]. It should be noted that the
technical requirements of the network protocol and the data
analytic layer are cross-cutting and can be directly extrapolated
to other IoT application domains such as smart parking, smart
farming or smart shopping applications [31, 32].

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



4 A. Tenorio-Trigoso et al.

FIGURE 2. Overall schema of SAVIA system.

SAVIA’s application context is the local environment of a
city. A desirable design goal is to be scalable and with the
necessary QoS to detect possible problems of gender violence
in time. More specifically, the SAVIA system monitors at all
times the distance between a victim of gender violence and her
aggressor. Failure to comply with the departure distance will
generate a real-time alert in SAVIA. The functional details of
SAVIA are described below.

SAVIA comprises a set of applications that address the
problem of citizen security relative to gender violence. The
roles involved in SAVIA are victims (from now on, SAVIApp),
aggressors (from now on, SAVIAtt), and the police (from now
on, SAVIApol).

The SAVIA system consists of three smartphone applica-
tions (one for each role). SAVIApp, SAVIAtt and SAVIApol
applications send position information to the SAVIA server
application, i.e. SAVIAs. The main feature of SAVIAs is real-
time monitoring, via global positioning system location infor-
mation, of SAVIApp and SAVIAtt position information to uphold
restraining orders and identify threatening situations. If the
distance between a SAVIApp and SAVIAtt is close to that defined
by a restraining order, the SAVIAs sends a message to both the
SAVIApp and SAVIAtt (see Fig. 2).

SAVIAs stores the position of each victim and aggressor
because this information can be used in a trial or to study the
user’s behaviour and location. In addition, historical position
data can be used to determine if an aggressor stays relatively
close to a victim but does not violate the restraining order. Such
behavioural profiles can be used to justify further preventive
actions. SAVIAs sends messages to SAVIApol and SAVIApp
when it detects anomalous situations. Similarly to compara-
ble applications, SAVIApp has a panic button for emergen-
cies. Therefore, there are different roles and communications
between them that will be optimized as explained later.

3.1. Ecosystem

In the SAVIA system model, different applications have been
developed, namely, SAVIApp, SAVIAtt and SAVIApol (victim,

FIGURE 3. Overall schema of SAVIA relationship.

aggressor and police mobile applications, respectively), which
constantly communicate with the server, SAVIAs. SAVIAs will
be the core element of the global system since it will process
all information for all roles. SAVIAtt, SAVIApp and SAVIApol
will be only the auxiliary devices/applications that will feed all
the information to SAVIAs to be processed. The applications/de-
vices will process only their own information, i.e. they do not
have direct communication among them.

Given that SAVIAs will be able to exchange all regularized
information among the applications under some specific rules,
we could say an indirect flow of information exists between
them, represented by dot points in Fig. 3. We can see there
the three applications that make up the SAVIA system and the
indirect relationship between them.

3.2. SAVIAtt - SAVIApp

It is shown how SAVIApp must be associated to SAVIAtt. This
association between them, which must not involve information
exchange under any circumstances, is made through SAVIAs.
That is, the two roles are defined in SAVIAs. Then, with identi-
fiers of the application, device and the users’ information, the
users are linked. Hence, once both roles have been associated,
SAVIAs will check the SAVIApp user safety, i.e. checking if a
restraining order issued by a court is being fulfilled.

3.3. SAVIApol–SAVIAtt

Another indirect interaction that exists in the system occurs
between SAVIApol and SAVIAtt. As mentioned before, there
is no direct information exchange between them, but all infor-
mation will be exchanged through SAVIAs. SAVIApol will get
the coordinates of SAVIAtt, in case of an emergency alert when
SAVIAtt could be a potential danger to SAVIApp integrity, i.e.
when SAVIAtt breaks the rules of a restraining order. In these
cases, SAVIApol can see SAVIAtt on the map of its mobile
device because the location of SAVIAtt will be sent by SAVIAs.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



Event-Driven Streaming Data Flow 5

SAVIApol cannot display the location of SAVIAtt if the events
listed above are not given.

3.4. SAVIApp - SAVIApol

SAVIApp continuosly sends its location to SAVIAs and SAVIAs
looks for the SAVIApol closest to the SAVIApp, in case an
alarm is detected. Such alarm will be triggered automatically
by SAVIAs when a violation of the restraining order by SAVIAtt
is detected. In addition, SAVIApp can also send manual alerts,
by pressing the panic button. In any case, SAVIAs looks for
the SAVIApol closest to the SAVIApp. This communication of
sending/receiving the localization through to SAVIAs will be
constant until the alert generated is closed by the SAVIAs system
administrator.

4. IOT ARCHITECTURES UNDER STUDY FOR
SAVIA

As noted before, SAVIA must offer the necessary QoS to
detect possible problems of gender violence in time. However,
a critical aspect in the SAVIA system along with the response
time is its scalability or ability to control the concurrency
given by multiple requests in the underlying architecture of the
application generated for the different roles, that is, SAVIAtt,
SAVIApp and SAVIApol. Also, the restraining order and auto-
matic alerts need to be redefined because many queries are sent
to the system, where the correct distance between these two
roles is verified.

In this context, when developing the architecture and data
model, there was a problem associated with high concurrency
in access to the database. Thus, two different architectures are
proposed and subsequently their evaluation results and perfor-
mance will be compared in terms of latency and consumption
of energy and resources.

4.1. IoT event-driven data modelling

The first implementation, called POST architecture, consists on
a client-server design with an application server based on the
HTTP. For the data analysis, a classic ETL processing will be
implemented. The data model is preset so that the data is stored
in the database, and subsequently extracted and analysed. Then,
they are processed generating higher order events if they meet
the alarm condition.

In a second implementation, called MQTT-CEP architecture,
data streaming of the data collected by the SAVIAtt and SAVI-
App applications is processed and events are used to establish
the communication between the different components. The
main result of this task is the ability to notify affected parties
of alerts arising from lower-level events. For this, Apache Flink
has been used as a CEP engine for general events and a Broker
in MQTT to send alerts to the different profiles.

MQTT protocol is an easy-to-implement and lightweight
application layer protocol designed for resource-constrained
devices. It uses a topic-based publish-subscribe (or client-
broker) model. So, when a client publishes a message M to a
particular topic T , all the clients subscribed to the topic T will
receive the message M. Like HTTP, MQTT relies on TCP and
IP as its underlying layers. Nevertheless, MQTT was designed
to have lower protocol overhead than HTTP.

4.2. HTTP-POST architecture

A POST architecture is obtained directly through a direct con-
versation between the different applications and the server, i.e.
there is a synchronous communication. This communication
is established through HTTP. In itself, a direct connection is
made from the application to the server for the exchange of
information, cutting off communication when one of the two
users request it.

The HTTP server works in a request-response manner
through TCP connections with client applications. Once
connections are established, the HTTP server listens to certain
ports for requests from SAVIApp and SAVIAtt and starts to
process the received information according to the gender
security algorithm.

For this, a POST communication has been established, that
is, a request method supported by HTTP used by the World
Wide Web. By design, the POST request method requests that
a web server accepts the data enclosed in the body of the
request message, most likely for storing it. It is often used when
uploading a file or when submitting a completed web form.

Figure 4 shows the communication flow procedure between
the different roles for a POST Architecture (from now on,
POST). As can be seen, the three different roles are played by
sending their position information, i.e. latitude/longitude to the
central server, SAVIAs. It must be highlighted that SAVIAs have
a database that stores these values. In order to be able to analyse
the distances between SAVIAtt and SAVIApp, these values are
constantly extracted and analysed. In case the distance between
these two is breached, an alert is generated and this is sent to
the SAVIApol and SAVIApp roles through SAVIAs.

As can be seen, POST has a very high concurrency in two
critical sections on any server: (i) constant concurrency in
the insertion, extraction and analysis database in each new
value of the roles; and (ii) the high concurrency given by the
constant synchronous communication between the different
roles of receiving alerts with SAVIAs. Note that in this type
of communication there are continuous polls for alerts, even
if none has been generated and does not really exist (process
that will be detailed in Section 5.1).

4.3. MQTT-CEP architecture

In contrast to POST, we have an MQTT-CEP architecture
that establishes asynchronous communication. This type of

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



6 A. Tenorio-Trigoso et al.

FIGURE 4. Overall schema of synchronous implementation.

FIGURE 5. Overall schema of asynchronous implementation.

communication is characterized mainly since a connection
is only established when there is a notification, i.e. an alert
is generated. Therefore, the main objective of implementing
MQTT-CEP is to eliminate high concurrency at the connection
and database level, i.e. iterative queries and extractions (process
that will be detailed in 5.2).

Figure 5 shows the different components present in it. To
establish MQTT-CEP, two main mechanisms have been imple-
mented: (i) Flink-CEP as a complex event processing engine
and; (ii) MQTT as a communication protocol between the
different actors.

In this case, it can be seen how in the edge part the ele-
ments of the system have to perform the same tasks as in the
POST architecture, i.e. the roles send the message with the

information to SAVIAs; however, a subscription/publication-
based philosophy is used for its implementation through the
MQTT Broker. Once the message reaches the cloud, SAVIAs,
the processing of simple events is carried out through two
threads of execution in parallel, namely: (i) a first thread of
execution stores the information received in the database; and
(ii) the second thread of execution that forwards the message to
the CEP engine. More precisely, the Apache Flink framework
has been used in SAVIA implementation. Note that in [11]
the authors recommend the use of this framework for CEP
applications.

Thus, as the messages arrive at the CEP engine, they are
queued in its stack in order to analyse the different data that, in
case of complying with the specified behaviour pattern, in this
case analysing the distances, generates an event complex. In
the event of a CEP event, it is sent to the MQTT Broker which,
through a subscription-based protocol, notifies the specified
roles in the form of an alert.

As a summary, it is worth mentioning that in both cases the
objective is the same, i.e. generate an alert under a controlled
behaviour pattern and notify users. Likewise, the procedure and
mechanisms used differ widely, each one having its own pros
and cons, which are detailed in Section 6. Before discussing the
results of the performance analysis on the two possible types of
cases, it is important to detail what the process of communica-
tion between the different roles and the cloud infrastructure.

5. CONTEXTUAL-STREAMING DATA FLOW

As detailed above, our SAVIA application has been imple-
mented following both architectural approaches: the traditional
POST architecture and the MQTT-CEP architecture. In order
to evaluate the performance of these two architectures, ‘In-
situ Events’ [30] has been chosen as a CEP case study. These
types of events are characterized by the generation of complex
events from the analysis of simple events in the same fraction
of time, i.e. real-time analysis. Therefore, the objective for both
architectures, MQTT-CEP and POST, is the same, i.e. evaluate
in real-time the distance between SAVIAtt and SAVIApp, and, if
the distance restraining is broken, send an alert to the nearest
SAVIApol.

It should be noted that, for this experiment, only the
alert generation mechanism has been changed, summarized
as POST or MQTT-CEP, being all the architecture and
applications that underlie the SAVIA ecosystem exactly the
same.

5.1. Synchronous communication

As it has been observed, synchronous communication has the
main component of opening an ordered communication thread
between a transmitter and a receiver, which exchange informa-
tion between them. The implementation in our system can be

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



Event-Driven Streaming Data Flow 7

FIGURE 6. Message flow schema with POST.

seen in Fig. 6. More precisely, the communication process is
established as follows:

1. All three applications send their position in latitude/lon-
gitude to the server. To do this, they open a synchronous
communication using the HTTP protocol. In the case of
SAVIAtt, once you send your position, you do not have
any more interaction with the system.

2. The position sent by the different roles is stored in the
database (BBDD).

3. The positions are extracted from the database and are
stored in main memory.

4. Having the last positions in main memory, these are
analysed verifying our condition of generation of alerts,
that is, the distance between SAVIAtt and SAVIApp.

5. In the event that there is a breach in the distance estab-
lished between SAVIAtt and SAVIApp, an alert is gener-
ated.

6. If the alert is generated, it is sent to the roles estab-
lished for it, namely, SAVIApol and SAVIApp, through
synchronous communication through HTTP.

Thus, in this type of communication it can be observed that
there is constant communication between SAVIApp and SAVI-
Att, i.e. these roles are constantly making requests to the server
to check if there is any notification for them. This means that
communication is being established regardless of whether there
is an alert or not, generating constant unnecessary communica-
tion if there is no alert.

Therefore, in this type of communication, it is possible to
notice a high concurrence that exists both in the communication
phase of alert notifications and also in the constant requests to
the database to extract and analyse the information. Faced with

FIGURE 7. Message flow schema with MQTT-CEP.

this large concurrence, an asynchronous system is proposed in
which these two mechanisms can be created as independent
services (microservices), decongesting the high concurrency
generated in synchronous communication.

5.2. Asynchronous communication

Asynchronous communication differs from the synchronous
one in the fact that data are analysed as soon as they reach the
cloud through CEP, leaving the database as a storage service
only. In addition, this type of communication creates two addi-
tional microservices to be able to analyse and send the informa-
tion, namely, the CEP engine for analysing the information, and
the MQTT Broker to send complex events to the corresponding
roles in the form of an alert. This communication procedure
between users and the cloud through these services is depicted
in Fig. 7. In detail, the communication process is established as
follows:

1. All three applications report their position in latitude/-
longitude to the server through the MQTT Broker. In the
case of SAVIAtt, once you send your position, you do not
have any more interaction with the system.

2. The Broker opens two communication threads in paral-
lel: (i) one for storage in the database; and (ii) another
that sends the CEP engine for analysis.

3. The CEP engine receives information from users as
simple events and analyses it according to established
patterns.

4. In the event of a breach in the distance established
between SAVIAtt and SAVIApp, CEP generates a complex
event in the form of an alert. This alert is sent to the
MQTT Broker.

5. If the alert is generated, it is notified to the roles estab-
lished for it, i.e. SAVIApol and SAVIApp through the
MQTT Broker.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



8 A. Tenorio-Trigoso et al.

5.3. Discussion about asynchronous vs. synchronous
communications

This section will compare the operation of the two architec-
tures previously described. In the asynchronous communica-
tion mechanism, in addition to eliminating high concurrency
through database queries, optimization can be seen in the
communication procedure. This optimization consists of the
advantage provided by the MQTT Broker, which, by means of
the subscription procedure, when a complex event is generated
by the CEP engine in the form of an alert, publishes it by
notifying those who subscribe to it. This eliminates the constant
question/answer process that occurs with POST.

Now, this improved asynchronous communication process
implies the use of specific services that must be evaluated.
First, two additional services have been integrated, such as
the MQTT Broker and the CEP engine. Then, and in relation
to the integration of these services, according to their own
specifications, they make use of a data buffer to store the events.
For example, the CEP engine queues the simple events that
it receives from users to be analysed and, once the complex
event is analysed and generated, it is sent to the MQTT Broker.
Thus, the MQTT Broker also uses a buffer that stores these
complex events sent by the CEP engine in order to be notified to
users. It is important to highlight that the MQTT Broker uses
a subscription/publication process that does not immediately
notify the user as in POST.

Thus, these additional services must be evaluated, not only in
the computational consumption they need, but also to identify
the latency involved in using these services that make use of
their own internal buffer.

6. PERFORMANCE EVALUATION

In this section, the main outcomes of the evaluation analysis
are presented considering the two architectures described in the
previous sections. The analysis is based on a real deployment
of both POST and MQTT-CEP architectures. Besides, the
behaviour of the authorized users of the system has been mod-
elled (see details in next section) to better analyse the scalability
of the system with the number of generated alarms. The perfor-
mance evaluation covers both a cost and performance analysis
including the use of the computational resources, latency and
energy consumption, see Table 1 [7].

6.1. Testbed description

A real testbed has been designed so that a performance analysis
of both architectures can be carried out, focusing on the appli-
cation selected as use case, namely, SAVIA. To that end, the
behaviour of the application end-points (SAVIApp, SAVIAtt y
SAVIApol) has been modelled with two entities: SAVIA-Source
and SAVIA-Receiver. The model allows to be able to stress-test
the system, i.e. by issuing a large number of alarms. Besides,

TABLE 1. Definition and representation of the performance parame-
ters considered.

Parameter Data type Unit of measure Sample values

CPU Usage Quatitative Percentage (1, 5, etc)
RAM Usage Quatitative Percentage (15, 30, etc)
CPU Energy Quatitative Joules (0.21, 0.4, etc)
RAM Energy Quatitative Joules (0.1, 0.4, etc)
Latency Quatitative Seconds (0.5, 2, etc)

the application back-end is implemented in the SAVIA-Node
entity. Next, the main features of these entities are detailed:

• SAVIA-Source: This entity is in charge of sending the
information collected by the sensors to SAVIA-Node.
So, it actually will play part of the roles of SAVIApp,
SAVIAtt and SAVIApol. For the tests, Source has been
written as a script in Python that allows us to modify
some parameters such as the number of authorized users,
the load of the system or the number of alerts that should
be generated per unit of time. More precisely, SAVIA has
a total of 450 authenticated users that provide sensor data
to the system. So, in every experiment, data flow from
these users are sent, and a controlled number of alerts is
generated, depending on the particular case. This entity
has been implemented in a computer located in the same
network as SAVIA-Node. The entire alert package is
fully controlled knowing exactly the numbers of alerts
generated. Thus, in the course of these tests, a stress test
has been carried out taking as a case study the generation
of 1, 30, 60, 90, 120, 150, 180, 210, 240, 270 and 300
alerts evenly for a minute. For example, when 450 data
records are sent, 30 alerts are generated every minute
for a total time of 15 minutes. This allows to obtain the
average performance in those 15 minutes. Once the test
with 30 alerts is completed, all the services are restarted
and the same procedure is carried out for the other cases,
although the number of alerts is changed. Therefore, the
number of alerts generated is controlled in advance.

• SAVIA-Node: This entity will execute all the components
of SAVIAs, that were described in detail in Section 3.
Moreover, it will also be instrumented with the moni-
toring tools required for the performance analysis. This
includes resource usage and energy consumption. More
precisely, SAVIA-Node has been deployed in a com-
puter with Intel i7 3.60 GHz × 8 processor and 8 GB
RAM. The use of resources has been measured thanks to
the PERF tool [33]. It should be noted that the MQTT-
CEP implementation, based on Apache Flink, has two
critical processes that should be fine-tuned in order to
optimize the performance of the CEP engine, namely,
the JobManager and the TaskManager [14]. On one

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



Event-Driven Streaming Data Flow 9

FIGURE 8. Graphs regarding the generation of alerts/min based on the percentage of consumption in RAM and CPU for POST and MQTT-CEP.

hand, the JobManager coordinates job’s distributed exe-
cution, task scheduling, failure management, etc. On the
other hand, the TaskManager executes the tasks and sub-
tasks on the data flow, as scheduled by the JobManager.
The latency-optimized values for the SAVIA application
are a buffer size of 512 MB with 175 total threads.

• SAVIA-Receiver: This entity will receive all the gener-
ated alarms and will send back a message to SAVIA-
Node including its departure time that will be used
to compute the latency. The Receiver has been imple-
mented in a computer located in the same network as
SAVIA-Node.

6.2. Computational resources

The use of computational resources has been analysed, both
in terms of RAM memory and CPU usage percentage, with
different number of generated alarms. The results obtained for
the different implementations carried out are shown in Figs
8a and 8b respectively. First, there are clear differences in the
results obtained for the architectures under analysis that we will
analyse in detail below.

On the one hand, in the consumption of RAM it can be seen
that the use of this is constant for both types of architecture, i.e.
they do not vary with respect to the number of alerts generated.
This is due to the fact that the RAM consumption is established
with the service as such and not with the number of alerts
that are generated. However, we can see the great difference
that exists in terms of POST, which is minor, compared to
MQTT-CEP. This makes sense since the CEP engine and the
MQTT Broker each have an internal buffer so they need RAM
memory. In this way, the CEP engine can store both simple
and complex events; as well as the MQTT Broker can store
the alerts generated to be notified to the recipient users. On the

other hand, in terms of CPU consumption, we can see that it
increases with the number of alarms generated. However, in the
case of MQTT-CEP we can see the variation is minimal. This is
because the CEP engine is optimized for the analysis of simple
events and generation of complex events. However, for POST,
we can see that from 150 alerts generated the CPU consumption
increases drastically. This is because the calculations made for
the generation of alarms are based on distance comparisons that
are executed directly in the CPU.

6.3. Latency analysis

Figure 9 shows the latency for the different architectures anal-
ysed with a variable number of alerts generated. In this case, a
notable difference can be observed with respect to the values of
each architecture. On the one hand, POST has a constant and
minimal latency regardless of the number of alerts generated;
while the latency for MQTT-CEP grows as the number of
processed alerts increases.

It should be remembered that in these tests the number of
users of the system is fixed throughout the experiment, so
the latency due to the communication established between
SAVIAtt and SAVIAs should not first be an aspect that affects
the observed behaviour. However, the increase in the number
of alarms generated affects the computational load of the Apps
and increases the use of outgoing network bandwidth. For
POST the time used to process an alert is minimal since, as
mentioned, this architecture makes a synchronous connection
for each user so there is no type of latency other than the users’
internet connection (although in the tests remember that Source
and Receiver are in the same local network). However, for
MQTT-CEP, the high latency can be generated by the MQTT
Broker, when notifying the users, or by the CEP engine, when
comparing the simple events that arrive and generating the

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



10 A. Tenorio-Trigoso et al.

FIGURE 9. Graphs regarding the generation of alerts/min based on
the Latency for POST and MQTT-CEP.

complex events or be a combined effect of both. To understand
better this result, we need to analyse the time consumed in each
part of the process. This will be tackled in the next section.

Anyway, it should be noted that the latency values observed
in the MQTT-CEP implementation seem to stabilize under 5
seconds, which is reasonable enough for the SAVIA use case
(and other applications alike, that do not have too demanding
latency requirements).

6.4. MQTT-CEP latency analysis

In this section, we are going to focus our attention on the latency
of CEP-Broker architectures. Therefore, a flow data analysis
specific for this context will be performed. The objective is to
detect the bottleneck in latency.

So, having into account the system abstraction model and
the MQTT-CEP architecture, the CEP-Broker has been instru-
mented to send back a message coming from Source, as well
as a message from Receiver, in order to calculate an estimation
of the one-way latency of the messages (see Fig. 10).

We assume here that the upward and backward latency are
the same. So, the total time or latency (in seconds), Ltotal, from
SAVIA-Source to SAVIA-Receiver can be defined as the sum of
times of three sectors, as shown in the following equation:

Latency = Ltotal = Lsource + LCEP + LBroker

where,

• Lsource will be the time from the generation of a message
from Source until it arrives at SAVIA-Node. It should be
noted that, for the calculation of this value, and due to the
fact that the MQTT Broker that receives the packets has
its own messaging manager and is unfeasible to know
exactly the time in which the alarm is distributed, a
confirmation message will be sent. The shipment from

FIGURE 10. SAVIA abstraction model for testing with the interac-
tion of the different entities.

SAVIA-Source will be made by subscription to the Bro-
ker and carrying its departure time. Then, as the CEP-
Broker has been instrumented to send back a message
to the SAVIA-Source, LSource is measured as half of the
round-trip time for the message to travel from Source
and back again.

• LCEP will be the time in CEP, that is, the time in which
the data reach the CEP engine T

′′
1 , is analysed and the

complex event in the form of an alarm, T
′′
2 is obtained as

output.
• LBroker will be measured as the half of the round-trip

time since the event leaves CEP, the alarm is published
through the Broker and reaches the SAVIA-receiver and
a confirmation message is back to SAVIA-Node.

As it can be seen from the latency graph, the time using
MQTT-CEP is much higher compared to POST used in this
study (see Fig. 9). In this sense, what is shown in this section
is how this time difference between one system and another
can be justified, and in what part exactly this increase occurs.
This study only assesses the behaviour of MQTT-CEP with
respect to latency, in order to verify if the point of loss is in:
(i) sending/receiving, (ii) CEP engine or (iii) MQTT Broker.

Regarding the sending/receiving of the data, it has not been
represented since it is a minimum and constant value regardless
of the amount of data sent. This value has been, for all the
alarms generated, 10−5 seconds. In this sense, the analysis will
be carried out in the data analysis sections in the CEP engine
and in the MQTT Broker.

The times obtained for LCEP and LBroker can be seen in
Fig. 11. It must be taken into account that both the MQTT
Broker and CEP Engine have their own Buffer and queue

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



Event-Driven Streaming Data Flow 11

FIGURE 11. Representation of time for the MQTT-CEP architecture,
specifically, the time in the Broker and CEP.

manager that distribute the packages according to their own
internal management. In some initial tests, the configuration
of these managers has been optimized in order to obtain the
shortest response times. The values shown in the graphs are
the results obtained after optimizing the configuration of the
different internal processes of these two services (explained in
Section 6.1).

On the one hand, it can be observed that the time taken to
notify users of an alarm, LBroker, increases as the system has to
manage a greater number of alarms. This is because, as men-
tioned above, the broker sends an asynchronous notification to
users. In addition, the MQTT Broker’s own buffer distributes
complex events as it queues them, so that with a greater number
of events it can be observed that the distribution slows down.

However, LCEP experiences a slight increase as there are
more simple events to process in the buffer, presenting an
almost constant behaviour, which indicates that the Apache
Flink CEP engine is capable of adequately handling received
alarms and is not the neck of bottle.

6.5. Energy consumption

Finally, results on energy consumption are reported in Fig. 12.
Regarding the consumption of RAM (see Fig. 12a) and CPU
(see Fig. 12b) it can be seen how MQTT-CEP remains almost
constant while POST can be seen to have a point where the
increase occurs abruptly from 150 alerts. This increase occurs
since POST, when using a synchronous architecture, must open
the different connections not only for receiving data, but also
for sending data (or simple communication establishment).

On the other hand, it must be taken into account that to
generate an alert in POST the CPU is constantly verifying
distances as data arrives and in memory writing and reading
both data. Therefore, the process of opening many connections
in a small-time frame produces that there is a greater demand
of RAM and CPU with respect to constant reading and writing
in RAM and analysis of distances in CPU.

In the case of MQTT, having the CEP engine, which is
a device that analyses simple events, we see that it remains
constant. This makes sense since on the one hand we have an
asynchronous communication given by the MQTT Broker so
that multiple synchronized connections are not generated as
POST, but as a complex event is generated, i.e. an alert, it is
published in the Broker to send it to the recipient by subscribing
to this.

6.6. Discussions

Having into account the results of the previous section, and in
order to provide meaningful information that might be extrap-
olated to similar applications, Table 2 summarizes the main
findings of the evaluation that has been carried out. Details will
be discussed next.

Evaluation shows that when SAVIA is implemented as a
MQTT-CEP architecture 3,2GB of RAM are needed, for this
particular software deployment. So, this is a minimal com-
pulsory requirement for the IoT nodes of SAVIA. Note that
Apache Flink framework is based on stateful stream processing
and SAVIA data are located in memory to yield good access
time. This means that this can be a limiting factor for other
similar applications, specially when run on devices with scarce
resources.

From the aforementioned, results show that MQTT-CEP
has a low computational overhead in the system. Moreover,
this overhead remains at low levels even when the number of
alerts increases; MQTT-CEP architecture is a good solution
to be implemented in fog architectures where computational
resources are limited. On the other hand, CPU usage in the
POST architecture exhibits an increasing trend. However, the
maximum CPU usage is around 3,5% for the range of tested
alarm rates, which is not critical.

Regarding latency, SAVIA human-scale real-time require-
ments are a critical parameter in the MQTT-CEP architecture.
Recall that HTTP works as a client-server model while MQTT
uses a model of publication-subscription to a topic through a
MQTT Broker. This MQTT Broker is an agent that manages
the messages received and, according to the tests carried out,
its performance significantly degrades as the number of mes-
sages published in a topic increases. This is in our case the
number of alerts generated. Nevertheless, maximum latency
values stabilize under 5 seconds, which is reasonable for the
SAVIA use case. If SAVIA latency requirements were tighter
(i.e. in control systems applications) these results could made
the MQTT-CEP architecture unfeasible to meet the stringent
timing requirements. In that case, the POST implementation
yields lower and more predictable latency values.

Considering energy consumption, and since it may be a
critical design aspect in fog architectures, it is observed that
the MQTT-CEP architecture presents better performance. This
architecture keeps energy consumption limited when faced
with a high number of alarms. Hence, POST energy consump-

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



12 A. Tenorio-Trigoso et al.

FIGURE 12. Graphs regarding the generation of alerts/min as a function of the energy in RAM and CPU for POST and MQTT-CEP.

TABLE 2. Framework comparison: POST vs. MQTT-CEP.

Parameter MQTT-CEP POST

RAM usage Stable Stable
CPU usage Not critical Increasing trend (but not critical)
Latency Medium Low
Energy Low Increasing trend
Alarm rate Not limited with reasonable performance QoS degradation beyond 300 req/min

tion increases with the alarm rate, and this is directly related to
the increase in CPU usage. This might be a limiting factor if
battery-operated devices are used.

Finally, it is important to note that the maximum alarm rate
achieved in the experiments is limited by the maximum perfor-
mance supported by the HTTP-POST architecture. Because of
the large number of simultaneous database read/write accesses
and their analysis to detect an alarm case, when 300 alarms/min
were issued the system was not able to detect all of them;
thus limiting the QoS this architecture is able to provide.
The MQTT-CEP architecture does not exhibit such limita-
tion, because data are processed on the fly by two different
threads: one writes the data into the database and the other
runs the CEP engine to perform the analysis. Therefore, the
predicted application alarm rate can condition the architecture
choice.

To sum up, and generally speaking, in applications similar to
SAVIA, if latency is a critical element and predictable values
are required, the HTTP-POST architecture would be more
advisable, as it offers lower and more stable latency values.
However, due to the organization of its components and the
multiple queries on the database, the maximum admissible
request rate is lower than MQTT, which can be a limiting
factor. Note that indeed the assignment of these technologies
to IoT applications is not always one-sided and may be dif-

ferent for a particular application depending on its specific
requirements.

7. CONCLUSIONS AND FUTURE WORK

This work has developed two alternative solutions for deploy-
ing real-time applications for smart cities, namely, HTTP-
POST and MQTT-CEP. A thorough analysis has been carried
out comparing both approaches in terms of feasibility, scala-
bility, latency and energy consumption. The CEP framework
based on Apache Flink has been successfully integrated with
MQTT, which has allowed us to obtain an event-driven imple-
mentation for the application selected as a use case, SAVIA.
The experiments show that both architectures have strengths
and weaknesses. A closer look to the application requirements
in terms of latency and expected alarm rate should be consid-
ered in order to select the most adequate architecture.

As future work, a fog computing implementation of the
MQTT-CEP architecture will be carried out, in order to make
latency more adequate to more stringent real-time requirements
of IoT applications while retaining the energy savings.

DATA AVAILABILITY STATEMENT

The data underlying this article will be shared on reasonable
request to the corresponding author.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022



Event-Driven Streaming Data Flow 13

ACKNOWLEDGMENTS

This work has been partially funded by the Spanish Ministry
of Science, Innovation and Universities (ref. RTI2018-098156-
B-C52), by the Research Plan of the University of Castilla-La
Mancha (ref. 2019-GRIN-27060), and by FONDECYT / World
Bank (ref. 026-2019 FONDECYT-BM-INC.INV).

REFERENCES

[1] Sethi, P. and Sarangi, S.R. (2017) Internet of Things: Archi-
tectures, protocols and applications. Journal of Electrical and
Computer Engineering, 2017, 1–25.

[2] Mahmud, R., Ramamohanarao, K. and Buyya, R. (2020) Appli-
cation management in fog computing environments: A taxon-
omy, review and future directions. ACM Computing Surveys, 53,
1–43.

[3] Corral-Plaza, D., Ortiz, G., Medina-Bulo, I. and Boubeta-Puig,
J. (2021) MEdit4CEP-SP: A model-driven solution to improve
decision-making through user-friendly management and real-
time processing of heterogeneous data streams. Knowledge-
Based Systems, 213, 106682.

[4] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. and
Ayyash, M. (2015) Internet of Things: A survey on enabling
technologies, protocols, and applications. IEEE Communica-
tions Surveys Tutorials, 17, 2347–2376.

[5] Heidari, A., Jabraeil Jamali, M.A., Jafari Navimipour, N. and
Akbarpour, S. (2020) Internet of Things offloading: Ongoing
issues, opportunities, and future challenges. International Jour-
nal of Communication Systems, 33, e4474.

[6] Madumal, M.B.A.P., Atukorale, D.A.S. and Usoof, T.M.H.A.
(2016) Adaptive event tree-based hybrid CEP computational
model for fog computing architecture. In 2016 Sixteenth Inter-
national Conference on Advances in ICT for Emerging Regions
(ICTer) 1-3 September, pp. 5–12. IEEE, New Jersey.

[7] Sefati, S.S. and Navimipour, N.J. (2021) A QoS-aware service
composition mechanism in the Internet of Things using a hidden
Markov model-based optimization algorithm. IEEE Internet of
Things Journal, 1, 1–8.

[8] Mondragón-Ruiz, G., Tenorio-Trigoso, A., Castillo-Cara, M.,
Caminero, B. and Carrión, C. (2021) An experimental study of
fog and cloud computing in CEP-based real-time IoT applica-
tions. Journal of Cloud Computing, 10, 1–17.

[9] Mehmood, Y., Ahmad, F., Yaqoob, I., Adnane, A., Imran, M.
and Guizani, S. (2017) Internet-of-Things-based Smart Cities:
Recent advances and challenges. IEEE Communications Maga-
zine, 55, 16–24.

[10] Hou, L., Zhao, S., Xiong, X., Zheng, K., Chatzimisios, P.,
Hossain, M.S. and Xiang, W. (2016) Internet of Things cloud:
Architecture and implementation. IEEE Communications Mag-
azine, 54, 32–39.

[11] Nasiri, H., Nasehi, S. and Goudarzi, M. (2019) Evaluation of
distributed stream processing frameworks for IoT applications
in smart cities. Journal of Big Data, 6, 32–39.

[12] Zhang, Z., Wu, J., Chen, L., Jiang, G. and Lam, S.-K. (2019)
Collaborative task offloading with computation result reusing for
mobile edge computing. The Computer Journal, 62, 1450–1462.

[13] Sadrishojaei, M., Navimipour, N.J., Reshadi, M. and Hossein-
zadeh, M. (2021) A new preventive routing method based on
clustering and location prediction in the mobile internet of things.
IEEE Internet of Things Journal, 1–1.

[14] Flink, A. Deployment & Operations – Configuration. https://
ci.apache.org/projects/flink/flink-docs-stable/ops/config.html.
[Online; accessed June-2021].

[15] Corral-Plaza, D., Medina-Bulo, I., Ortiz, G., Boubeta-Puig, J.et
al. (2020) A stream processing architecture for heterogeneous
data sources in the Internet of Things. Computer Standards &
Interfaces, 70, 103426.

[16] Hammi, B., Khatoun, R., Zeadally, S., Fayad, A. and Khoukhi,
L. (2018) IoT technologies for Smart Cities. IET Networks, 7,
1–13.

[17] Osman, A.M.S. (2019) A novel big data analytics framework for
Smart Cities. Future Generation Computer Systems, 91, 620–
633.

[18] Harrison, C., Eckman, B., Hamilton, R., Hartswick, P.,
Kalagnanam, J., Paraszczak, J. and Williams, P. (2010) Foun-
dations for Smarter Cities. IBM Journal of Research and Devel-
opment, 54, 1–16.

[19] Borelli, E.et al. (2019) Habitat: An IoT solution for independent
elderly. Sensors, 1, 1258.

[20] Naik, N. (2017) Choice of effective messaging protocols for
IoT systems: MQTT, CoAP, AMQP and HTTP. In 2017
IEEE International Systems Engineering Symposium (ISSE),
pp. 1–7.

[21] Dizdarević, J., Carpio, F., Jukan, A. and Masip-Bruin, X. (2019)
A survey of communication protocols for Internet of Things and
related challenges of fog and cloud computing integration. ACM
Computing Surveys (CSUR), 51, 1–29.

[22] Chintapalli, S.et al. (2016) Benchmarking streaming computa-
tion engines: Storm, Flink and Spark streaming. In 2016 IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) Chicago, USA, 23-26 May, pp. 1789–
1792. IEEE, New Jersey.

[23] Martínez, R., Pastor, J.A., Álvarez, B. and Iborra, A. (2016)
A testbed to evaluate the FIWARE-based IoT platform in the
domain of precision agriculture. Sensors, 16, 1–22.

[24] Alonso, A., Pozo, A., Choque, J., Bueno, G., Salvachúa, J., Diez,
L., Marín, J. and Alonso, P.L.C. (2019) An identity framework
for providing access to FIWARE OAuth 2.0-based services
according to the eIDAS European regulation. IEEE Access, 7,
88435–88449.

[25] Agarwal, P. and Alam, M. (2020) Open service platforms for
IoT. In Alam, M., Shakil, K.A., Khan, S. (eds) Internet of
Things (IoT): Concepts and Applications. Springer International
Publishing, New York.

[26] IBM. IBM Watson IoT platform. https://internetofthings.
ibmcloud.com/. [Online; accessed June-2020].

[27] Sood, S.K., Sood, V., Mahajan, I. and Sahil (2020) Fog-cloud
assisted IoT-based hierarchical approach for controlling dengue
infection. The Computer Journal, 0, 1–13.

[28] Pfandzelter, T. and Bermbach, D. (2019) IoT data process-
ing in the fog: Functions, streams, or batch processing? In
2019 IEEE International Conference on Fog Computing (ICFC)
Prague, Czech Republic, 24-26 June, pp. 201–206. IEEE, New
Jersey.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022

https://ci.apache.org/projects/flink/flink-docs-stable/ops/config.html
https://ci.apache.org/projects/flink/flink-docs-stable/ops/config.html
https://internetofthings.ibmcloud.com/
https://internetofthings.ibmcloud.com/


14 A. Tenorio-Trigoso et al.

[29] López Peña, M.A. and Muñoz Fernández, I. (2019) SAT-IoT: An
architectural model for a high-performance Fog/Edge/Cloud IoT
platform. In 2019 IEEE 5th World Forum on Internet of Things
(WF-IoT) Limerick, Ireland, 15-18 April, pp. 633–638. IEEE,
New Jersey.

[30] Castillo-Cara, M., Mondragón-Ruíz, G., Huaranga-Junco, E.,
Arias Antúnez, E. and Orozco-Barbosa, L. (2019) SAVIA:
Smart city citizen security application based on fog com-
puting architecture. IEEE Latin America Transactions, 17,
1171–1179.

[31] Balaji, S., Nathani, K. and Santhakumar, R. (2019) IoT
technology, applications and challenges: A contemporary
survey. Wireless Personal Communications, 108,
363–388.

[32] Glaroudis, D., Iossifides, A. and Chatzimisios, P. (2020) Survey,
comparison and research challenges of IoT application protocols
for smart farming. Computer Networks, 168, 107037.

[33] perf (2019). perf: Linux profiling with performance counters.
https://en.wikipedia.org/wiki/Perf_(Linux). [Online; accessed
June-2021].

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab143/6381858 by U

niversidad PolitÃ©
cnica de M

adrid user on 02 February 2022

https://en.wikipedia.org/wiki/Perf_(Linux)

	An Analysis of Computational Resources of Event-Driven Streaming Data Flow for Internet of Things: A Case Study
	Introduction
	Related Work
	Use Case: The SAVIA Application
	IoT architectures under study for SAVIA
	Contextual-Streaming Data Flow
	Performance Evaluation
	Conclusions and Future Work


