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A B S T R A C T

The growing interest in the use of IoT technologies has generated the development of numerous and diverse
applications. Many of the services provided by the applications are based on knowledge of the localisation
and profile of the end user. Thus, the present work aims to develop a system for indoor localisation prediction
using Bluetooth-based fingerprinting using Convolutional Neural Networks (CNN). For this purpose, a novel
technique was developed that simulates the diffusion behaviour of the wireless signal by transforming tidy
data into images. For this transformation, we implemented the technique used in painting known as blurring,
simulating the diffusion of the signal spectrum. Our proposal also includes the use and a comparative analysis
of two dimensional reduction algorithms, PCA and t -SNE. Finally, an evolutionary algorithm was implemented
to configure and optimise our solution with the combination of different transmission power levels. The results
reported in this work present an accuracy of close to 94%, which clearly shows the great potential of this novel
technique in the development of more accurate indoor localisation systems.
. Introduction

The development of wireless networks and devices equipped with
ultiple sensors [1], and their connection to storage centres and data
rocessing over the Internet, has led to the implementation of the
nternet of Things (IoT) [2]. The growing interest in the use of IoT
echnologies has led to the development of numerous and diverse ap-
lications [3,4]. The proper functioning of these applications requires
he control of huge flows of data generated by mobile devices to the
ntelligent decision-making centres deployed in the cloud [5]. Many of
he services provided by the applications are based on knowledge of
he localisation and profile of the end user [6].

Therefore, the main effort focuses on the main components of the
evelopment of localisation systems for IoT applications [7]: (i) the
nalysis of the signal that transmitters emit to the receiver and how
o adequately treat the generated data [8,9]; and (ii) algorithms for
rocessing wireless signals that allow indoor localisation [10,11].

Regarding the first point, the design and development of wireless-
ased fingerprint localisation techniques presents major challenges, as
ndoor propagation of signals is highly sensitive to the multipath fading
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effect [12,13]. It is also widely recognised that the capabilities of the
surveying devices will play a major role in the quantity, quality, and
time of the effort invested to produce valuable Received Signal Strength
Indicator (RSSI) fingerprints [14,15].

On the second point, one of the main areas of research is the
characterisation of the behaviour of wireless signals [9,16]. The results
of different investigations show that the use of classification algorithms
in the signal characterisation process is capable of greatly improving
the indoor localisation mechanisms based on performance [13,17].

Since there are many learning methods to solve this problem, this
work will focus on the development of a novel prediction technique
using Convolutional Neural Networks (CNN) [18]. However, since the
input format for a CNN is images, this input does not match the format
of data obtained by IoT devices, which are tidy data (also called tabular
data), based on RSSI [16,19]. One of the main contributions of this
work lies in the transposing of tidy data [20] into images with a novel
preprocessing technique that represents the behaviour of a wireless
signal in the image construction process [19,21].
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Fig. 1. Overall schema proposal.
In other words, our proposal starts by transforming the tidy data,
onsisting of RSSI samples spatially distributed in a target area, into
mages to enable the implementation of the classification process to
e performed by a CNN [19,22]. The proposal uses the methods and
echanisms of the article [23] as the starting point for developing the

verall processing schema. In the first step of our proposed schema, two
echniques of dimensional reduction are used: t -SNE [24] and PCA [25]
or transforming the tidy data into images. Then, an evolutionary
lgorithm is then used to find the best combination of results using
ifferent transmission powers (here on in referred to as TxPower) by
he transmitter devices. The structure of the overall processing schema
ntroduced in this work to improve the indoor localisation process
ccuracy can be summarised as follows:

• Use of two dimensionality reduction algorithms to convert tidy
data into images, spatial distributed BLE RSSI readings, namely
the t -SNE and PCA algorithms.

• Use of the blurring painting technique to emulate signal degra-
dation in the image. This and the previous step make for the
main contributions of herein, allowing the classification to be
performed using a CNN.

• Use of a two-branch convolutional neural network for Bluetooth
indoor localisation.

• Optimisation of the BLE indoor localisation accuracy using meta-
heuristic algorithms.

The remainder of this paper is organised as follows. Section 2
eviews the recent Bluetooth localisation literature in two sections:
ndoor localisation fingerprint and techniques developed to construct
mages from tidy data. Section 3 specifies our indoor environment
nd the devices used as transmitters and receivers, depicted in Fig. 1
ith blocks called ‘‘Analysis of the Environment’’. Subsequently, Sec-

ion 4 ‘‘Image Transformation Methodology’’ describes, step-by-step,
he details of the mechanisms and techniques used to create images
rom the tidy data collected. This section also covers the preprocessing
ethodology and the importance of the blurring painting technique to

mulate the behaviour of the signal. Section 5 presents our first set of
esults using symmetric and asymmetric TxPower configurations of the
eacons with a parallel CNN and evolutionary algorithm, represented
n ‘‘Indoor Localisation Model’’ block. Finally, Section 6 presents our
onclusions and future work directions.

. Related work

This section introduces the main terminology and an analysis of
elated works for a better understanding and development of the pro-
osed solution.
174
2.1. Indoor localisation fingerprint

A large number of RSSI-based localisation studies have been re-
ported in the literature. Among the most popular wireless technologies,
Bluetooth Low Energy (BLE) has been the object of many studies. BLE
devices (here on in referred to as beacon) use 40 2-MHz channels to
broadcast information. The protocol uses short message duration to
reduce power consumption. To avoid interference between devices,
since Wi-Fi and BLE use the same 2.4 GHz band, BLE4.0 uses channels
labelled 37 (2402 MHz), 38 (2426 MHz), and 39 (2480 MHz) [9,26].
Various authors have developed beacon performance testing for po-
sitioning [7], leading to the publication of recommendations on the
placement and density of the beacons, transmission intervals, finger-
print space layout and sampling intervals in physical learning spaces
for sustainable eLearning environments.

However, indoor localisation systems based on a single technology
have exhibited limitations [4,27], such as the drift of inertial navigation
and fluctuation of the received strength of the Bluetooth signal, making
them unable to provide reliable positioning. In order to overcome the
shortcomings of a single source of information, various authors have
developed multi-sensor solutions by benefiting from the use of the dif-
ferent sensors currently encountered in most mobile devices, together
with algorithms or other sources of information, such as particle filters,
indoor space or other various wireless technologies maps [8].

Kriz et al. [28] reported a localisation experiment using a set of Wi-
Fi access points (AP) accompanied by BLE devices. Their localisation
mechanism was based on Weighted-Nearest Neighbours in the Signal
Space algorithm. The main objectives of their study were to improve
indoor localisation accuracy by introducing the use of beacons and
deploying a system that constantly updates the RSSI levels reported by
the mobile devices (receivers). During their experiments, they varied
two parameters of the beacons: the duration of the RSSI signal scan,
and the density. However, throughout all their experiments, the power
of the beacons was set to their maximum value.

A more in-depth study on localisation with beacons and prior to the
one described in this article is that described in [9]. The authors carried
out an exhaustive study on two main areas to be taken into account
when performing indoor localisation based on wireless signals. First,
they explored mitigating the negative effect of multipath fading on
localisation by using different transmission powers. Second, they devel-
oped a methodology to determine the best combination of transmission
powers used by the different beacons. Their solution was based on the
use of metaheuristics. Their study showed a great improvement in terms
of localisation accuracy with respect to previous results reported in the
literature.

Regarding the data processing methods being used in the develop-
ment of indoor fingerprinting-based indoor localisation environments,
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Table 1
Comparison of the present work with other existing works in the literature. The last row (This work) shows the characteristics and results of
the work presented in this article.
Article Method Algorithm Accuracy Mean error Test area

[34] Triangulation Signal Coverage Density Method 50% 8.39 m 13 m × 15 m
[26] Fingerprinting k-Nearest Neighbour 95% 2.6 m 50 m × 15 m
[35] Fingerprinting k-Nearest Neighbour 92.5% 2 m 17.5 m × 9.6 m
[36] Fingerprinting Weighted Pass Loss – 1.39 m 19 m × 16.2 m
[37] Triangulation Single Direction Outlier Removal – 1.5 m 5.4 m × 8 m
[38] Proximity Kalman/Particle Filter – 0.708 m 7 m × 6 m
[39] Fingerprinting k-Nearest Neighbour 90% 2.6 m 17 m × 3 m
[40] Proximity Gaussian Process Regression – 5.2 m 18 m × 12 m
[41] Fingerprinting k-Nearest Neighbour – 1.27 m 7.28 m × 7.24 m
[7] Fingerprinting k-Nearest Neighbour 89.65% 2.23 m 16 m × 14.5 m
[7] Fingerprinting k-Nearest Neighbour 87.59% 2.17 m 13 m × 11.7 m
[7] Fingerprinting k-Nearest Neighbour 92.19% 1.89 m 15 m × 19 m
[7] Fingerprinting k-Nearest Neighbour 90.07% 1.1 m 9.5 m × 7 m
[42] Fingerprinting Linear Discriminant Analysis 79.34% – 10 m × 10 m
[8] Proximity Particle Filter – 1.32 m 52.5 m × 52.5 m
[43] Fingerprinting Deep Reinforcement Learning – 4.3 m 60 m × 54.86 m
[44] Fingerprinting Multilayer Perceptron – 0.78 m 11 m × 12 m
[45] Fingerprinting Long Short-Term Memory 91.1% – 7 m × 7 m
[46] Fingerprinting Multilayer Perceptron – 0.45 m 31 m × 21 m
[47] Proximity Path Loss Model – 0.844 m 10.8 m × 7.3 m
[47] Proximity Path Loss Model – 0.661 m 5.6 m × 5.9 m
[33] Fingerprinting k-Nearest Neighbour 77.89% 0.51 m 9.3 m × 6.3 m
[9] Fingerprinting Gradient Boost Machine 86% 0.384 m 9.3 m × 6.3 m
This work Fingerprinting Convolutional Neural Network 93.04% 0.148 m 9.3 m × 6.3 m
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involve three main types of algorithmic methods [3]: probabilistic
methods, such as particle filter [8], deterministic methods, such as Sup-
port Vector Machine [9], and neural networks, such as CNN [16]. Most
studies currently focus on the use of CNNs to improve the accuracy and
processing of indoor localisation solutions [29].

2.2. Bluetooth indoor localisation: Techniques and results

Hint to reviewers: This entire subsection is new.
In the past few years, we have witnessed the emergence of the

so-called wireless-based indoor localisation mechanisms, which aim
to respond to the ever-increasing demands for indoor positioning re-
quirements [30,31]. Under this paradigm, designers and developers are
being challenged to design and develop systems incorporating a large
number of data sources and intelligent data-intensive processing and
visualisation mechanisms capable of meeting the location requirements
of end users and applications.

Among the large number of emerging applications, many organisa-
tions and research centres are focusing their efforts on the design and
development of robust-indoor wireless localisation mechanisms [32].
Depending on the wireless technology, the use of a technique or al-
gorithm may be more suitable or feasible with respect to others [30,
32].

This work focuses on the development of Bluetooth localisation
mechanisms through fingerprint classification processes. Table 1 lists
the most significant works reported in the literature. For each method,
the table shows the methods, algorithms and the performance results
obtained in a controlled test area. The last row (This work) reports
he characteristics and results of the work reported herein. Moreover,
he penultimate two rows report the results of two of our previous
orks [9,33] making use of the same RSSI database and test area.

As shown in Table 1, a large number of previous works based on
ingerprinting methods use the k-Nearest Neighbour (k-NN) algorithm.
lthough k-NN is the most widely used algorithm, the vast majority of
orks on obtaining numeric, i.e. tidy data, from transmitters focus on

lassic machine learning algorithms for the classification process [42].
t can also be observed that the test area is usually a small environment;
his is done in order to study the impact of the signal on the classifica-
ion process in a fully controlled environment [7]. An example of this
s the prior data clean-up processing required before the classification
175

rocess, where auto-encoders have been shown to be an effective t
rocess for this purpose [35]. The use of a controlled environment
llows us to focus on the use of novel techniques and, above all,
o see the impact of important elements in the classification process,
uch as the position of the transmitters [37], the direction of the
ignal [7], transmission channels [40], mitigating the multipath fading
ffect [9,33] or the use of multiple sensors from smartphones [46],
mong others.

As seen in the table, our work shows better performance results, Ac-
uracy and Mean Error metrics that all of the previous works reported
n the literature. Likewise, comparing This work with our previous
orks [9,33] for which we have used the data collected in the same
xperimental area, we observe a significant improvement in both met-
ics. The proposal introduced in this paper makes use of an unstudied
ethod for Bluetooth-based indoor localisation, consisting on the trans-

ormation of tabular data into images to be able to make use of
NN-based classification process. This differs from previous works in
hich the use of CNNs for indoor localisation using wireless signals was
een based on the combination of obtaining images through cameras
ith wireless data [48].

.3. CNN for indoor localisation fingerprint

One of the main aspects when developing CNNs is to be able to
ave the data reinforced in a preprocessing phase [19]. In terms of the
lassification technique implemented when using images in the context
nd classification process, CNNs predominate. The works developed in
erms of the use of a neural network architecture are varied, but the
ast majority focus on having an input image obtained in the sample
ollection phase [49].

A different research work from the classic one of collecting samples
rom images and classifying them with CNNs is that of Hsieh et al. [50].
he authors present an approach based on CNNs using transmission
hannel quality metrics, mainly RSSI and Channel State Information
CSI). By testing different methods, they conclude that with a one-
imensional CNN with CSI they obtain better metrics than other models
y reducing complexity.

More specifically, we find another more sophisticated research work
n image integration [48]. The authors propose a new localisation
lgorithm in which wireless signals and images are combined. The
ovelty of this work lies in first obtaining a coarse-grained estima-

ion based on the visualisation of wireless signals by fingerprinting.
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Additionally, the authors perform a matching process to determine
the correspondences between two- and three-dimensional pixels based
on the images collected. Based on their results, the method through
the combination of visual and wireless data significantly improves the
localisation metrics and robustness.

Therefore, the present work was based on the technique used
in [23], in which the authors focus on developing a method for the
transformation of structured to unstructured data. In this case, it
would be from tidy data to images for prediction using CNNs. More
specifically, in this research, the model created with five datasets (1
cancer, 1 vowel, 1 text, and 2 artificial) are evaluated. On the other
hand, for the transformation, dimensional reduction algorithms are
used with the purpose of obtaining coordinates generated for each
feature in the dataset. From the generated coordinates, it generates an
image pattern where a pixel represents the feature and the value of each
pixel would be given by the value of the feature. Finally, the generated
images would go through a CNN with parallel layers, obtaining the final
classification result. The accuracy obtained is higher than 90% for most
of the datasets used in this work.

As can be seen, the use of different machine/deep learning tech-
niques is widely developed, especially in the use of known algorithms.
Therefore, the present work describes a novel method for developing an
indoor localisation technique in which structured data (tidy data) are
transformed into unstructured data (images) to use a neural network
architecture. For the transformation of the data, the methodology
described in the article [23] used, while, for the signal specifications,
we used the methodology described in [9].

3. Background: Devices and methods

In the design and development of BLE localisation systems, it is
widely recognised that the capabilities of the surveying devices will
play a major role in the quantity, quality, and time of effort in-
vested to produce valuable RSSI fingerprints. Details about the area,
transmitter/receiver, survey campaigns, Multipath Fading (MPF) and
intraday signal attenuation were analysed in previous works. Hence,
we discuss additional information about BLE4.0 signal characterisa-
tion and conduct an in-depth analysis about the impact of different
materials/structures on RSSI [9,15].

3.1. Experimental area

Our experiments were carried out in the laboratory of our research
institute. We placed four beacons at each of the four corners of a
rectangular area 9.3 m×6.3 m. The fifth beacon was placed in the middle
of one of the longest edges of the room. Fig. 2 depicts the experimental
area in which the five beacons are labelled as ‘‘Be07’’, ‘‘Be08’’, ‘‘Be09’’,
‘‘Be10’’ and ‘‘Be11’’. We divided the experimental area into 15 sectors
of 1 m2, each separated by a guard distance of 0.5 m. A 1.5 m-wide strip
was left around the experimental area. This arrangement will allow us
to better differentiate the RSSI level of the joint sectors when reporting
our results. Measurements were performed by placing the mobile device
at the centre of each on of the 15 sectors, as described below. The
shortest distance between a beacon and a receiver was limited to 1.5 m.
Fig. 3 shows four views taken from each of the four corners of the
laboratory. As shown in the figure, we placed beacons ‘‘Be10’’ and
‘‘Be11’’ in front of a window, Figs. 3(d) and 3(b), respectively, while
all the other beacons were placed in front of the opposite plasterboard
wall. We further noted that beacon ‘‘Be08’’ was placed at the left edge
of the entrance door, close to the corridor with a glass wall (Fig. 3(c)).
176
Table 2
Structure of the RSSI for Tx04 obtained in the data acquisition phase. An instance of
the RSSI for the different sectors (in total 15) is shown as an example.

Be07 Be08 Be09 Be10 Be11 Sector

−65 −61 −74 −73 −67 1
−60 −57 −83 −62 −69 2
−66 −70 −78 −63 −73 3
. . . . . . . . . . . . . . . . . .
−58 −66 −71 −73 −69 14
−60 −62 −73 −69 −57 15

3.2. Transmitter and receiver devices

For this experiment, JAALEE beacon devices were used [51]. Ac-
cording to the specifications of the five beacons used in our exper-
iments, they may operate at one of eight different TxPower levels.
Following the specifications, the TxPower levels are labelled in con-
secutive order from highest to lowest level as TxPower = 0 × 01,
TxPower = 0 × 02, . . . , TxPower = 0 × 08 (here on in referred to as
Tx01, . . . , Tx08) (ultra wide range TxPower: 4 dBm to −40 dBm),
although Tx07 and Tx08 were discarded since they did not adequately
cover the signal spectrum in the entire area. During our experiments,
we conducted several measurement campaigns by fixing the TxPower
level of all beacons at the beginning of each campaign. Additionally,
all measurements were performed under line-of-sight conditions.

As receiver, we used a Raspberry Pi equipped with a USB BLE4.0
antenna [52], hereinafter referred to as BLE4.0 antenna. Finally, the
dataset can be downloaded from [53].

3.3. Acquisition phase data format

In the data acquisition phase, the RSSI obtained from the five bea-
cons will be denoted as the features, 𝑋. The output value, i.e., target,
is the sector in which the person is located, denoted as 𝑌 . Note that
we have from Tx01 to Tx06. Thus, a sample of the input data for Tx04
can be seen in Table 2. Note that the features, 𝑋, are the RSSI values
called from ‘‘Be07’’ to ‘‘Be11’’, and the target, 𝑌 , is the feature called
‘‘Sector’’. It can be seen that the input data is in tidy data format.

Since the main purpose is to convert the tidy data into images for
the use of a CNN, a partition of the samples must be made, i.e., for
train/test. The partition ratio would be 70% for training and 30% for
testing.

3.4. Convolutional neural network architecture

For the development of a CNN, the structure of the incoming and
outgoing data must be understood. The resulting images from the
previous process, when imported, must be converted into a data matrix
of size 𝑝 × 𝑝 × 1 (one channel since the images are given in black and

hite), which will be the input to the CNN. On the other hand, we
ave the test data, which are related to the sector being a classification
roblem, where each sample is converted into a vector of size 𝐶. Note

that 𝐶 is the number of classes, in this case, 15, referring to the sectors
of the experimental area.

In this context, Fig. 4 shows the architecture of the parallel CNN
developed in this work. The result of this CNN is maximised the results
by testing empirically different configurations of it. We will work with
a CNN with 2 parallel branches, having the same input for both and
four blocks. Each block consists of 4 different layers, with all 4 blocks
having the same configuration. Thus, the initial layer of each block is a
convolutional layer followed by a batch normalisation layer that resets
and rescales the results obtained by the previous layer. The next is a
ReLU activation layer and the last is a pooling layer. The difference
between one branch and the other is the size of the kernel filter and
the type of pooling. Maximising the results yielded a configuration
of a filter of size (3, 3) and MaxPooling for the first branch and, for
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Fig. 2. Beacon indoor experimental area setup.
Fig. 3. Pictures of each of the four corners of the laboratory.

the second branch, (5, 5) and AveragePooling. For both branches, the
condition that the number of filters for the convolution layers is 16,
32, 64 and 64 for each block and in that order is satisfied.

Therefore, the two branches converge into one (concatenate). The
Flatten layer follows, which arranges the data, flattening the matri-
ces created from the previous layers. Subsequently, 1 dense layer of
256 neurones with ReLU activation and 3 dense layers with Sigmoid
activation (128, 64 and 32 neurones, respectively) are used. The last
layer of the CNN has Softmax activation, which aims to provide values
(probabilities) to classify the image, and has 15 neurons due to the
number of classes (sectors) in the experimental area.

4. Methodology on image transformation

As discussed in the aforementioned sections, one of the main contri-
butions of this work is to develop and formalise a methodology for con-
verting tidy data into images. This section describes this methodology
and the mathematical formalisation that justifies this novel mechanism
for indoor localisation fingerprint.
177
4.1. Tidy data into image transformation

One of the first translations to be performed is to convert the
RSSI obtained for each Bluetooth device in the same image, i.e., the
corresponding sample (row) in the sampling phase (see Table 2). To
develop tidy data into image transformation, the data processing shown
in the pipeline detailed in Fig. 5 must be performed. As can be seen,
tidy data is converted into image data through a two-dimensional space
in 𝑋 and 𝑌 . This translation to two-dimensional space will allow us to
build an image of characteristic pixels for each sample of the dataset,
i.e., each data sample is converted to a two-dimensional space. Note
that, for data transformation, we used the basic methodology (although
adapted to this particular research) set out in [23].

As seen from Fig. 5, the pipeline to convert each tidy data sample
into a two-dimensional space consists of five main processing tasks:

1. Data dimensionality reduction: The initial matrix is transposed.
Note that each feature is represented with a different colour per
comprehension, although the resulting figure will consist of two
channels, i.e., black and white. Therefore, this task makes use of
a dimensionality reduction algorithm. In our case, we explored
two such algorithms: PCA and t -SNE.

2. Centre of mass and delimitation: Having obtained the coordi-
nates, the centre of gravity of the points is determined and the
area is subsequently delimited.

3. Scaling and pixel positions. The matrix is transposed, scaled and
the values are rounded to integer value positions.

4. Characteristic pixel positions: The values obtained would be the
positions of the characteristic pixels for the creation of the image
pattern.

As mentioned, this work is based on the methodology presented
by Sharma et al. [23] for the transformation of tidy data into image.
However, the authors do not provide a formal specification of the steps
to obtain the positions of the characteristic pixels from the initial tidy
data. In the following paragraphs, not only do we provide a precise
description of the steps of our solution, but we also fully analyse,
in Section 4.2, the significance of the tidy data into image patterns
obtained when applying the two dimensionality reduction algorithms,
i.e., PCA and t -SNE, and blurring painting technique in the image
generation process. Our analysis fully identifies the shortcomings of the
t -SNE algorithm and provides a mechanism to avoid the overlapping of
characteristic pixels.
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Fig. 4. Convolutional neuronal network architecture.
Fig. 5. Process for obtaining the feature coordinates from the transpose matrix. It can be seen that the tidy data are converted into a two-dimension matrix through the different
phases with their respective techniques, i.e., delimitation, translation, and so on.
Dimensional reduction
This first task, not shown in Fig. 5, takes as input the initial data

matrix,denoted by 𝐴 ∈ Rm×n, where 𝑚 is the number of samples (rows)
and 𝑛 is the number of features (columns).

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎11 … 𝑎1𝑛
𝑎21 … 𝑎2𝑛
⋮ ⋱ ⋮
𝑎𝑚1 … 𝑎𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(1)

The matrix 𝐴 is transposed, denoted by 𝐴𝑡 ∈ Rn×m:

𝐴𝑡 =
⎡

⎢

⎢

⎣

𝑎11 𝑎21 … 𝑎𝑚1
⋮ ⋮ ⋱ ⋮
𝑎1𝑛 𝑎2𝑛 … 𝑎𝑚𝑛

⎤

⎥

⎥

⎦

(2)

The transposed matrix 𝐴𝑡 is then reduced by applying one of the two
dimension reduction algorithms (t -SNE or PCA). The resulting matrix,
denoted as 𝐴𝑅𝐷, is reduced from 𝑚 columns to two columns. Therefore,
the resulting matrix 𝐵 ∈ Rn×2 can be simply denoted as:

𝐴𝑅𝐷(𝐴𝑡, 2) = 𝐵 =
⎡

⎢

⎢

⎣

𝑏11 𝑏12
⋮ ⋮
𝑏𝑛1 𝑏𝑛2

⎤

⎥

⎥

⎦

(3)

In the case that the use of the t -SNE algorithm be preferred, we
should take care to avoid the overlapping of characteristic pixels. This
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condition may arise due to the stochastic nature, and results in the loss
of information, see Section 4.2 for an in-depth analysis. Accordingly
in this case, the following three processing tasks should be performed
when using the t -SNE algorithm.

• Given the matrix 𝐴𝑡, a new matrix 𝐷 ∈ Rkn×2 is created by
overlapping 𝑘 times the matrix 𝐴𝑡:

𝐷 =

⎡

⎢

⎢

⎢

⎣

𝐴𝑡
1

⋮

𝐴𝑡
𝑘

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎(1)11 𝑎(1)21 … 𝑎(1)𝑚1

⋮ ⋮ ⋱ ⋮

𝑎(1)1𝑛 𝑎(1)2𝑛 … 𝑎(1)𝑚𝑛

𝑎(2)11 𝑎(2)21 … 𝑎(2)𝑚1

⋮ ⋮ ⋱ ⋮

𝑎(𝑘)1𝑛 𝑎(𝑘)2𝑛 … 𝑎(𝑘)𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4)

• Dimension reduction is performed as specified by (3):

𝑡 − SNE(𝐷, 2) = 𝐷′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝑏′11 𝑏′12
⋮ ⋮

𝑏′𝑛1 𝑏′𝑛2
𝑏′(𝑛+1)1 𝑏′(𝑛+1)2

⋮ ⋮
′ ′

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(5)
⎣

𝑏(𝑘𝑛)1 𝑏(𝑘𝑛)2 ⎦
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• A linear transformation is performed 𝑇 ∶ Rkn×2 → Rn×2, such that
𝑇 is defined as follows:

𝑇 (𝐷′) =
⎡

⎢

⎢

⎣

𝑏𝑖𝑗 =

∑𝑘
ℎ=1 𝑏

′
((ℎ−1)𝑛+𝑖)𝑗

𝑘

⎤

⎥

⎥

⎦

= 𝐵 (6)

As seen from the above steps, the procedure basically consists of
eplicating the matrix 𝐴𝑡 𝑘 times before applying the t-SNE algorithm,
nd then reducing the number of rows of 𝑘𝑛 to 𝑛 by averaging over
ℎ − 1) ⋅ 𝑛 + 𝑖 rows, where ℎ ∈ [1, 𝑘], for each 𝑖 ∈ [1, 𝑛]

Centre of mass and delimitation
In this second task, each pair of elements in a row is considered as

a point 𝑝𝑖 where 𝑖 ∈ [1, 𝑛], corresponds to the coordinates 𝑋 and 𝑌 the
elements of the first and second column, respectively:

𝑝𝑖 = (𝑏𝑖1, 𝑏𝑖2) → 𝑃 = {𝑝1,… , 𝑝𝑛} (7)

We proceed to find the centre of mass of the points 𝑝𝑖, represented
as 𝑝𝑀𝐶 , where all points have the same mass.

𝑝𝑀𝐶 = (
∑𝑛

𝑖=1 𝑏𝑖1
𝑛

,
∑𝑛

𝑖=1 𝑏𝑖2
𝑛

) (8)

Then, the maximum integer distance from the farthest point to the
centre of mass, denoted 𝑑𝑚𝑎𝑥, is calculated:

𝑑𝑚𝑎𝑥 = ⌈ max
{𝑖∈[1,𝑛]}

‖𝑝→𝑖 − 𝑝→𝑀𝐶‖⌉ (9)

where ‖‖ is the norm function, ⌈⌉ is the ceil function, and 𝑝→ is a vector
pointing from the origin of the coordinates to point 𝑝.

The section in the Cartesian plane containing the characteristic
points 𝑝𝑖,∀𝑖 ∈ [1, 𝑛] is delimited, denoted as 𝑆.

𝑆 = {(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ R∕𝑥 ∈ [𝑝𝑀𝐶𝑥 − 𝑑𝑚𝑎𝑥, 𝑝𝑀𝐶𝑥 + 𝑑𝑚𝑎𝑥],

𝑦 ∈ [𝑝𝑀𝐶𝑦 − 𝑑𝑚𝑎𝑥, 𝑝𝑀𝐶𝑦 + 𝑑𝑚𝑎𝑥]} (10)

A linear transformation 𝐹1 ∶ 𝑆 → 𝑇 is performed, such that 𝐹1 is
defined as follows:

𝐹1(𝑥, 𝑦) = (𝑥 − 𝑝𝑀𝐶𝑥 + 𝑑𝑚𝑎𝑥, 𝑦 − 𝑝𝑀𝐶𝑦 − 𝑑𝑚𝑎𝑥); ∀(𝑥, 𝑦) ∈ 𝑆 (11)

Using this maximum distance 𝑑𝑚𝑎𝑥, the square is bounded, so each
side of the image square will be a size of 2 × 𝑑𝑚𝑎𝑥; where the set 𝑇 is
defined as follows:

𝑇 = {(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ R∕𝑥 ∈ [0, 2 × 𝑑𝑚𝑎𝑥], 𝑦 ∈ [−2 × 𝑑𝑚𝑎𝑥, 0]} (12)

In our case, the translation was made to the fourth quadrant because
of its similarity to the order of the matrices (upper left position as
origin). In this case, the values of the coordinates are negative, but are
solved in later steps (see expressions (13) and (14)).

Scaling and pixel positions
This task starts with a linear transformation, the scaled coordinates

of the features, 𝐹2 ∶ 𝑇 → 𝑈 defined as follows:

𝐹2(𝑥, 𝑦) = (⌊𝑥 ×
𝑝𝑖𝑥𝑒𝑙 − 1
2 × 𝑑𝑚𝑎𝑥

⌉, ⌊|𝑦 ×
𝑝𝑖𝑥𝑒𝑙 − 1
2 × 𝑑𝑚𝑎𝑥

|⌉); ∀(𝑥, 𝑦) ∈ 𝑇 (13)

where 𝑝𝑖𝑥𝑒𝑙 is the number of pixels of the resulting image and ∥ and ⌊⌉

are the absolute value and rounding functions (solely to integer value
positions), respectively.

In turn, the set 𝑈 is defined as:

𝑈 = {(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ N∕𝑥 ∈ [0, 𝑝𝑖𝑥𝑒𝑙 − 1], 𝑦 ∈ [0, 𝑝𝑖𝑥𝑒𝑙 − 1]} (14)

Consequently, having characteristic points 𝑝𝑖, we transform them
nto characteristic pixel positions 𝑞𝑖:

= 𝐹 (𝐹 (𝑝 )) → 𝑄 = {𝑞 ,… , 𝑞 } (15)
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𝑖 2 1 𝑖 1 𝑛
Then the values of the initial matrix 𝐴, should be scaled over the
nterval [0, 255]. This is done by first obtaining the global minimum (see
q. (16)) and global maximum (see Eq. (17)) of matrix 𝐴:

𝑎𝑚𝑖𝑛 = min
{𝑖∈[1,𝑚];𝑗∈[1,𝑛]}

{𝑎𝑖𝑗∕𝑎𝑖𝑗 ∈ 𝐴} (16)

𝑎𝑚𝑎𝑥 = max
{𝑖∈[1,𝑚];𝑗∈[1,𝑛]}

{𝑎𝑖𝑗∕𝑎𝑖𝑗 ∈ 𝐴} (17)

We proceed to normalise the values of the matrix 𝐴 by means of the
linear transformation 𝐺1 ∶ 𝑅𝑚×𝑛 → 𝑅𝑚×𝑛, being defined as follows:

𝐺1(𝑋) =
[ 𝑥𝑖𝑗 − 𝑎𝑚𝑖𝑛
𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛

]

∈ 𝑅𝑚×𝑛 = [𝑦𝑖𝑗 ] ∈ 𝑅𝑚×𝑛 = 𝑌 (18)

the scale over the [0, 255] is finally completed by means of the linear
transformation 𝐺2 ∶ 𝑅𝑚×𝑛 → 𝑅𝑚×𝑛, defined as follows:

𝐺2(𝑌 ) = [⌊255 × 𝑦𝑖𝑗⌉] ∈ 𝑅𝑚×𝑛 = [𝑧𝑖𝑗 ] ∈ 𝑅𝑚×𝑛 = 𝑍 (19)

In summary, by applying the linear transformations to matrix 𝐴:

𝐶 = 𝐺2(𝐺1(𝐴)) (20)

where 𝐶 ∈ 𝑅𝑚𝑡𝑖𝑚𝑒𝑠𝑛 is the matrix containing the final values, after
normalisation and scaling to [0, 1], to be placed at the corresponding
positions in the characteristic pixels. For this specific procedure, the
MinMaxScaler class of the scikit-learn Python library was used.

Characteristic pixel positions
With the purpose of ordering the data to feed the CNN, a linear

transformation 𝐻 ∶ 𝑅𝑚×𝑛 ×𝑅𝑛×2 → 𝑅𝑚×𝑝𝑖𝑥𝑒𝑙×𝑝𝑖𝑥𝑒𝑙 must be performed, as
follows:

𝐻(𝑍,𝑄) =

[

𝑤𝑖𝑗𝑘 =

{

𝑧𝑖𝜆, if (𝑗, 𝑘) = 𝑞𝜆 ∈ 𝑄, 𝜆 ∈ [1, 𝑛]
0, otherwise

]

∈ 𝑅𝑚×𝑝𝑖𝑥𝑒𝑙×𝑝𝑖𝑥𝑒𝑙 (21)

where, 𝑍 ∈ 𝑅𝑚×𝑛 and 𝑄 ∈ 𝑅𝑛×2.

4.2. On the significance of image pattern recognition

In this section, an analysis of the patterns in the images obtained
will be performed based on the methodology explained in Section 4.
When creating images, we have to take into account that the scenes
should contain as much information as possible to be processed by a
CNN in order extract the significant features for classification. There-
fore, it is important to identify the main parameters used during the
process of converting tidy data into images and their impact on the
representation of the pixels in the scene. Hence, in this section, four
key parameters are analysed.

On the significance of dimensionality reduction algorithms
Concerning the image pattern produced, and in particular, the po-

sitions of the characteristic pixels, we ascertained that dimensionality
reduction algorithms (PCA and t -SNE) are affected by different inputs
to the transformation process, such as the sample size and the seed (see
Table 3).

Table 3 shows five images of the same sample when applying the
two reduction algorithms and five different seeds. Images with labels
(a), (b) and (c) were obtained using the PCA algorithm with seeds to
1, 7, and 23, respectively. In turn, the images labelled (d) and (e) were
obtained using the t -SNE algorithm with seeds to 7 and 23, respectively.
Note that we have not included the image for the case of the t -SNE
algorithm with 𝑠𝑒𝑒𝑑 = 1. Our results show that, for this case, there is a
large overlap of pixels. Our results reported only 4 pixels in an image.
From the table, we see that there are clear differences in the resulting
image patterns. Furthermore, the PCA always yields, when applied to
a given data instance, the same pattern regardless of the random seed.
On the contrary, in the case of the t -SNE algorithm, the pattern varies

for each seed. We can then conclude that, for PCA, being invariant to
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Table 3
Comparison of the patterns generated in the image creation by the two-dimensionality
reduction algorithms (Alg.): PCA and t -SNE. In the different images, the impact of the
choice of seeds can be seen when generating the image of the same sample.

the random seed, no optimisation or change is required. On the other
hand, t -SNE does require some optimisation or at least some way to
avoid overlapping of the characteristic pixels, as we will explain below
based on the findings reported in [24].

On the significance of t -SNE parameters
As observed in Table 3, the PCA algorithm is indifferent to the

given seed, i.e., the samples have the same pattern; whereas t -SNE,
is vulnerable to the seed, i.e., the result depends on the number of
seeds. In this context, using the initial default parameters, there is the
possibility of overlapping one characteristic pixel with another. We
should then take into account that the characteristic pixels must not be
superimposed, as the information of a pixel would be lost, not obtaining
the 5 points in the two-dimensional space.

The authors of Wattenberg et al. [24] mention the need for the use
of parameters for optimisation. Furthermore, t -SNE is mentioned as a
way to visualise the data, but not as an indication of any relationship
between point-to-point distances. In this case, this would not be a
problem, since t -SNE is not used for that purpose in this work but
only allows us to obtain a visual pattern. According to the authors, the
following parameters are recommended to be analysed for an optimal
result (taking into account that the parameters not specified have the
value by default):

• n_components: Defines the number of final components. In our
case, these components correspond to the coordinates of each
pixel.

• random_state: Defines the random seed. Several values should be
used to evaluate their impact on the patterns of the images as
previously above (see 3).

• perplexity : Indicates how easy it is to predict the probability
distribution. Its default value is 30. By modifying this parameter
to 50, the result was that the variation of the patterns per random
seed is not as abrupt as presented in Table 3. Moreover, the result
is similar, but has slight variations, such as the rotation of the
pixels with respect to the central axis.

On the significance of the overlapping pixels for t -SNE
This process will only be used when t -SNE is used as the dimen-

sionality reduction algorithm. As seen in Table 3, t -SNE is vulnerable to
the chosen seed value, while PCA remains constant in the characteristic
pixel representation. This makes sense due to the stochastic nature of
t -SNE which requires an analysis of the seed set-up [24]. An improper
set-up may result in two duplicate pixels falling on the same two-
dimensional point, representing fewer than the five characteristic pixels
required as input data. Note that our proposal requires N characteristic
pixels in a dataset. In our case, we must have 𝑁 = 5 characteristic pixels
in the resulting image.
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Table 4
Variations of the image pattern using consecutive duplication (dupl.). The duplication
values analysed in the image range from 0 to 6.

However when designing a solution, we should realise that the
patterns of the images generated should operate properly, regardless
of the seed being used. In other words, we should provide a solution
allowing us to overcome the stochastic nature of t -SNE. Our proposal
involves the reproduction of 𝑘 instances of the transposed matrix and
before applying the t -SNE algorithm. In this way, we make use of 𝑘
coordinate registers for characteristic pixel 𝑖, and then we average the
𝑘 registers and plot their average in the two-dimensional plane.

Table 4 presents an example when applying the different images
obtained by consecutive duplication: (a) duplication is 0 and there
would be only 5 samples; (b) duplication is 1 and there would be
10 samples; (c) duplication is 2 and there would be 20 samples; (d)
duplication is 3 and there would be 40 samples; (d) duplication is 4
and there would be 80 samples; (f) duplication is 5 and there would be
160 samples; (g) duplication is 5 and there would be 160 samples and,
with respect to the previous one, another random seed is used; and (h)
duplication is 6 and there would be 320 samples. Some similarity can
be observed between (c), (e) and (f). On the other hand, (a) and (h) are
also similar, but this would be an indication not to increase further,
i.e., not to make more than 6 consecutive duplications. Due to the
similar structure to the PCA, option (e) could be chosen, i.e., duplicated
four consecutive times. As a summary of the above, the duplication
value was set to four as in our empirical experiments this value fulfilled
the purpose of maximising the model output.

As mentioned, with the pixel duplication technique, we fulfil two
definitions generated by t -SNE: (i) Stabilising the image pattern re-
gardless of the seed used; and (ii) Combating overlapping pixels in a
two-dimensional representation. While it is true that the image can be
created with fewer characteristic pixels due to the issue of overlapping
pixels, the results yielded slightly worse final performance, so it was
decided to condition the experiment with the duplication of pixels.

On the significance of pixel-image size
For the development of this experiment, one of the challenges was

also to find a suitable size for the pixels in the images. Summarising
the tests carried out, the preliminary results of using images of 10 × 10,
20 × 20, and 40 × 40 pixels will be presented below.

Fig. 6 depicts these preliminary training results for the three image
sizes used in pixels: 10 × 10 (see Fig. 6(a)); 20 × 20 (see Fig. 6(b)); and
40 × 40 (see Fig. 6(c)). All images are scaled. As can be seen, it would
be difficult to visually compare samples in 40 × 40 (see Fig. 6(c)),
compared to samples 10 × 10 (see Fig. 6(a)). This is due to the ratio of
characteristic pixels to the total number of pixels: 10 × 10 (see Fig. 6(a))
has a ratio of 5%, while 20 × 20 (see Fig. 6(b)) has 1.25% and 40 × 40
(see Fig. 6(c)) has 0.3125%.

Therefore, the percentage of characteristic pixels in total pixels
must be neither too low nor too high. If it is too low, the values will
go unnoticed; if it is too high, the characteristic pixels may overlap,
regardless of the dimensionality reduction algorithm used. In this work,

the percentage of 5% of characteristic pixels with respect to the total
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Fig. 6. Comparison of scaled images with respect to the number of pixels for the
different matrix sizes for the images.

pixels, i.e., 10 × 10 pixels (see Fig. 6(a)), was chosen as it maximised
the performance of the final CNN model. Hence, to increase the con-
volutional layers, the original image, which is 10 × 10 pixels (see
Fig. 6(a)), was scaled to 40 × 40 pixels (see Fig. 6(c)), resulting in the
same original pattern but with more pixels. This allows the necessary
convolutions to be made to improve the prediction.

In this context, the comparison of the training and test for images
of an initial size of 10 × 10 and 20 × 20 pixels is shown in Fig. 7. We
can observe that the accuracy of the test curve for an image of 20 × 20
pixels is very unstable, varying up to approximately 30% in a single
epoch of difference. This reflects great uncertainty, and, therefore, a
totally random model that does not generalise. At the same time, using
images of 10 × 10 pixels, we see fully smoothed, stable curves with
almost no bias, indicating robust learning of the model.

Summarising, we can note that the size of the image will be closely
linked to the number of characteristic pixels. In our case, for the five
characteristic pixels, size 10 × 10 adequately optimises CNN learning.
Note that if more wireless points are used, a larger two-dimensional
space should be used, which would lead to a rescaling of the scene.

4.3. Image rendering techniques

As the procedure used was to convert tidy data into image, a
CNN was developed that can carry out the classification process and,
therefore, the localisation model. In order to evaluate the localisation
spectrum in a wireless environment, two techniques was developed as
case studies to be evaluated: one with and one without blurring of the
characteristic pixel.

Case 1: Characteristic pixels without blurring
In this case, we fill in the data 𝐴𝑠𝑐𝑎𝑙𝑒 at their corresponding charac-

teristic pixel positions in the matrix 𝑀 . The matrix 𝑀 is then converted
into an image. This is done for each 𝐴𝑠𝑐𝑎𝑙𝑒 sample. All other values of
the matrix 𝑀 are zeros, so it is not significant in this case.

Therefore, for the creation of images from the tidy data, the charac-
teristic pixel position and the scale generated by the normalisation are
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Fig. 7. Comparison of accuracy vs. epoch plots using different initial image sizes (in
pixels). (i) The blue-coloured curve represents the training curve for the size of 10 × 10;
(ii) the orange-coloured curve represents the test curve for the size of 10 × 10; and (iii)
the green-coloured curve represents the training curve for the size of 20 × 20; and (iv)
the red-coloured curve represents the test curve for the size of 20 × 20 pixels. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

used. Fig. 10(a) shows an example of the results without the blurring
technique.

Case 2: Characteristic pixels with blurring
This procedure was created empirically, based on the technique

of blurring in the plastic arts, specifically in drawing and painting.
This technique is often used to soften and extend strokes so that the
transition from intense to faint is uniform. Then, by making an analogy
with the characteristic pixels as spots on a canvas, these spots can be
blurred so that they cover more area without losing the intensity of the
original characteristic pixel.

Therefore, the use of the blurring technique of the characteristic
pixels is proposed to enlarge their area. To do this, the thickness,
number, and intensity of the strokes must be defined. Each stroke
would be a circumference around the pixel and the previous stroke
with a thickness called distance, represented as 𝑟; and the number of
strokes or circles would be denoted as steps, represented as 𝐶𝑥, see
Fig. 8. Moreover, the intensity of this stroke or circumference would
be determined by the encompassed area of the circumference, with the
centre (the characteristic pixel) being the initial intensity, represented
as 𝑃 . Additionally, the intensity fades as you move away from the
characteristic pixel. The intensity of the stroke or circumference, 𝑖,
where 1 ≤ 𝑠𝑡𝑒𝑝 ≤ 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠, would be given by the following equation:

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 = 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ×
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦0

𝜋 × (𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2
(22)

where,

• 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦0 is the value of the characteristic pixel;
• amplitude is a constant that would allow the intensity to extend

along the strokes. For this study, we put the amplitude with
the value 𝜋, simplifying the value 𝜋 of the denominator and
improving the blurring technique;

• distance is a percentage value that can range from 0 to 1. For this
study, the distance 0.1 (10%) was chosen, corresponding to one
pixel in the image of size 10𝑥10 pixels; and

• total_steps is the number of steps for image fading. It was set to
four since, in the following steps, the intensity value is very small,
close to zero. Accordingly, the value 𝑖 ∈ [0, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠].
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Fig. 8. Representation of the blurring technique, where r would be the distance, P the
localisation of the characteristic pixel, and the colours would represent the intensity
for each stroke or circumference. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Comparison of intensities by distance for different amplitudes. The amplitudes
evaluated are 𝑎𝑚𝑝 = [1, 2, 3, 𝜋, 4].

Fig. 9 shows the rationale for the parameters chosen as an example.
Therefore, a comparison of the intensities per step is made for the
amplitudes 𝑎𝑚𝑝 = [1, 2, 3, 𝜋, 4] and 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦0 = 0.8. In the figure, the
distance is represented over all the steps interval, i.e. as a continuous
function. However, in practice, the distance value is only defined for a
discrete, integer value, of steps (pixels).

Finally, by using this technique, it is possible to determine the step
size where the blurring of two characteristic pixels overlap. In our case,
we experimented with two possible solutions for the representation of
the scene with overlapping pixels (see Figs. 10):

• Average value: An alternative to the above is to average the
intensity of both, being the one already in the matrix and the new
one, see Fig. 10(b).

• Maximum: The highest scoring value pixel of the overlapping
pixels is chosen, i.e., if the value of the pixel in the matrix is lower
than the value of the incoming pixel, it is replaced, otherwise it
is kept, see Fig. 10(c).
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Fig. 10. Example of a scene with the different techniques used. For this image, a
sample of the Tx01 dataset, sector 9 and PCA as the dimensionality reduction algorithm
was used.

5. Experimental results

Having analysed the CNN input, we will now show the results
obtained from the different procedures explored above, both the gen-
erated images and the CNN predictive result. First, we will look at the
baseline results with symmetric TxPower setup and then discuss the
results using metaheuristic optimisation to find the best combination
of TxPower.

5.1. Image pattern recognition

In this section, we will present the samples generated using PCA
and t -SNE in each dataset, with and without the blurring technique.
The same seed was used in all evaluations for the separation of train
and test data, i.e., for the same dataset, the same conditions are used,
varying only the use of blurring and the type of overlapping.

Figs. 11 and 12 show the generation of three sample images for
the different cases under study, for PCA and t -SNE, respectively. These
sample images are clear examples of the resulting images that will be
the input to CNN.

5.2. Symmetric transmission power setups

This first analysis will allow us to identify which of the two di-
mensionality reduction algorithms combined with three different pixel
representation techniques provides the best results. By best results, we
mean not only the final localisation results, but also the setting and con-
figuration of the algorithms and techniques used in the data processing
tasks. Accordingly, we define three cases: (i) without blurring; (ii) with
maximum blurring; and (iii) with average blurring.
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Fig. 11. Image samples for PCA depend on the use of the blurring technique. For all
images, Tx04 was used for sector 4 of the experimental area.

Fig. 12. Image samples for t -SNE depends on the use of blurring technique. For all
images, Tx04 was used for sector 4 of the experimental area.

Case 1: Without blurring
Table 5 shows the results obtained from the six TxPower, i.e., Tx01,

. . . , Tx06, without the blurring technique. Each dataset is evaluated
with PCA and t -SNE. The results are shown for accuracy, loss and
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Table 5
Results in accuracy (Acc), loss, and mean error (ME) without the blurring technique
for each TxPower in the test dataset for PCA and t -SNE. Best results are shown in
bold.

TxPower Algorithm Acc Loss ME (m)

Tx01 t -SNE 67.49 1.1517 0.7661
Tx01 PCA 68.15 1.1422 0.7669

Tx02 t -SNE 68.49 1.1675 0.8093
Tx02 PCA 66.83 1.1508 0.8749

Tx03 t -SNE 69.16 1.1485 0.9334
Tx03 PCA 71.04 1.0431 0.8784

Tx04 t -SNE 68.71 1.0054 0.7937
Tx04 PCA 69.27 0.9831 0.7775

Tx05 t -SNE 65.68 1.2827 1.0863
Tx05 PCA 68.57 1.1744 1.0118

Tx06 t -SNE 77.38 0.9195 0.6470
Tx06 PCA 76.04 0.9288 0.6768

Table 6
Results in accuracy (Acc), loss and mean error (ME) using the average blurring
technique for each TxPower in Test dataset for PCA and t -SNE. Best results are shown
in bold.

TxPower Algorithm Acc Loss ME (m)

Tx01 t -SNE 79.68 0.7302 0.4916
Tx01 PCA 81.67 0.6618 0.4267

Tx02 t -SNE 79.30 0.8020 0.5331
Tx02 PCA 79.08 0.8098 0.5154

Tx03 t -SNE 82.52 0.7189 0.5452
Tx03 PCA 85.24 0.6254 0.4569

Tx04 t -SNE 83.43 0.6354 0.4270
Tx04 PCA 84.52 0.5756 0.3894

Tx05 t -SNE 78.20 0.8251 0.6289
Tx05 PCA 78.92 0.7753 0.6158

Tx06 t -SNE 89.26 0.4578 0.3041
Tx06 PCA 90.50 0.4093 0.2738

mean error (𝑚). From the results, it is clear that the power level
plays a major role on all counts (metrics). The results also show that
the best results are obtained for the lowest power level used in our
experiments, i.e., Tx06. The results also show that for or a given
transmission power level, both dimension reduction algorithms PCA
and t -SNE report similar values. This proves the effectiveness of the
proposed extra processing introduced in our proposal to overcome the
shortcomings of the t -SNE algorithm.

Case 2: With average blurring
Table 6 shows the results obtained from the six TxPowers, i.e., Tx01,

. . . , Tx06, using the average blurring technique. Each dataset is evalu-
ated with PCA and t -SNE. The results are shown in accuracy, loss and
mean error (𝑚).

The results show a substantial improvement with respect to the val-
ues reported for the previous case. In terms of the accuracy, the results
reported show an improvement of more than 10% and a mean error less
than half for all the transmission powers under study. Similarly to the
previous case, the best results are obtained for the transmission power
Tx06 for both reduction algorithms with a remarkable improvement in
all metrics: an accuracy of more than 14%, a loss and a mean error
of less than half those reported when no blurring is applied. We also
note that the best results obtained for the two dimension reduction
algorithms are very similar.

Case 3: With maximum blurring
Table 7 shows the results obtained from the six TxPowers, i.e., Tx01,

. . . , Tx06, using maximum blurring technique.
Similarly to the previous case, the use of the blurring technique

generates much better results compared to the case when no blurring
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Table 7
Results in accuracy (Acc), loss and mean error (ME) using the maximum blurring
technique for each TxPower in Test dataset for PCA and t -SNE. Best results are shown
n bold.
TxPower Algorithm Acc Loss ME (m)

Tx01 t -SNE 81.55 0.6829 0.4413
Tx01 PCA 81.45 0.6596 0.4403

Tx02 t -SNE 79.78 0.7840 0.5249
Tx02 PCA 80.09 0.7808 0.5059

Tx03 t -SNE 85.02 0.6092 0.4488
Tx03 PCA 85.57 0.5939 0.4437

Tx04 t -SNE 84.07 0.5822 0.4058
Tx04 PCA 85.36 0.5692 0.3678

Tx05 t -SNE 79.58 0.7999 0.5877
Tx05 PCA 79.78 0.7656 0.5996

Tx06 t -SNE 89.58 0.4265 0.2938
Tx06 PCA 90.33 0.4173 0.2778

is applied. However, when comparing the results with respect to the
previous case, average blurring, the results are very similar for each
one of the transmission powers under study. Once again, the best results
are reported for the case when the transmission power is set to Tx06.
We notice that the best results when using one of the two blurring
techniques show an improvement of more than 14% in terms of the
accuracy and a loss and mean error of less than half those reported for
the case when no blurring technique is applied. These results clearly
show the effectiveness of using the blurring technique.

From our results, it is clear that the use of blurring for image
generation considerably improves the performance of the developed
model compared to the use of the characteristic pixels alone. This is
mainly due to the fact that, in the produced images, the values of the
non-characteristic pixels are mostly non-zero and that the characteristic
pixels cover more space, similar to a signal propagation. This setting is
fully exploited by the convolution process.

For case 1, without blurring, we can observe that the values are
between 67.49% and 77.38%. However, these values can be improved
by using blurring, even reaching 90% for both dimensionality reduction
algorithms. This experimental study demonstrates that having more
information of a scene makes the classification process more orderly
by maximising the metrics.

Regarding the dimension reduction algorithms, both algorithms
generate very similar results. They operate in a very similar manner,
enabling valuable information to be extracted and improving the learn-
ing process. This is demonstrated by the fact that the accuracy for
most of the TxPower cases increased more than 10% when the blurring
technique was applied, e.g., the Tx06 dataset using PCA went from 89%
to 90% (average blurring) of accuracy.

This analysis can be verified with the learning curve. Fig. 13 shows
an example for the accuracy and loss metric using maximum blurring
with PCA. From the figure, we can see that using 100 epochs generates
an orderly learning. In fact, the number of epochs could have been
reduced to 60–70. It should be noted that the t -SNE and PCA plots of
the different results have the same verification.

5.3. Asymmetric TxPower configuration: Metaheuristic optimisation

In [9], the authors proposed the use of an asymmetric power
configuration of the beacons as a means to improve the performance
of wireless-based indoor localisation mechanisms. They also made use
of metaheuristics in order to determine the best power setting of
the beacons, i.e., the one yielding the best performance results. In
this section, we carry out a similar study which should allow us to
show the great benefits of our proposal. Our main aim is to show
that the solution proposed in this work provides results close to the
optimal setting. It is worth mentioning that the search for the opti-
mal transmission power configuration of the various beacons requires
184
Fig. 13. Loss and accuracy learning curves with respect to the epochs of the CNN
model, using PCA and maximum blurring for train and test dataset.

high computational resources. Even though metaheuristic optimisation
algorithms may prove effective in computing the optimal asymmetric
power transmissions setup, the results reported in this section should
show that the image blurring techniques provides us with results that
are close to the optimal ones.

In this section, we make use of an Evolutionary Algorithm (EA)
specifically a Genetic Algorithm (GA) [9,11]. EA is a generic population
-based metaheuristic optimisation algorithm that uses mechanisms in-
spired by biological evolution, such as reproduction, mutation, recom-
bination, and selection.

The operation of the EA algorithm is depicted in Algorithm 1 [54,
55], where: population denotes a list of individuals (value: 100);
cxpb is the probability of crossing two individuals (value: 0.5); mutpb
is the mutation probability (value: 0.2); ngen is the number of genera-
tions (value: 20); the bNGF() (buildNextGenerationFrom) function com-
putes the next generation population, applying crossing and mutation
operations to the selected population, validates the new individuals,
and computes the statistics of this new population.

Moreover, the methods of this evolutionary algorithm are as fol-
lows: chromosome representation with a list of integers, flat crossover,
random mutation and tournament method with size four. Finally, an

adaptive mutation probability was empirically established as a function
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Algorithm 1 Evolutionary Algorithm.
1: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
2: for 𝑔 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (𝑛𝑔𝑒𝑛) do
3: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑒𝑙𝑒𝑐𝑡(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑙𝑒𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛))
4: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑏𝑁𝐺𝐹 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑐𝑥𝑝𝑏, 𝑚𝑢𝑡𝑝𝑏)
5: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔)
6: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
7: end for

Table 8
Best two results for PCA and t -SNE in accuracy (Acc), loss and mean error (ME) using
the asymmetric TxPower combination and the average (Aver.) and maximum (Max.)
blurring technique. Best result are shown in bold.

TxPower Alg. Blurring Acc Loss ME (m)

[3-6-6-3-1] PCA Max. 93.94 0.254 0.148
[3-6-1-3-5] t -SNE Max. 93.35 0.283 0.157
[3-6-1-3-2] PCA Aver. 92.91 0.364 0.161
[3-4-1-2-2] t -SNE Aver. 92.54 0.373 0.173

of the generation number according to the following equation [56]:

𝑃𝑚(𝑖) = 0.2 ⋅ 𝑒
1−𝑖
10 (23)

here,

• 𝑖 is the generation; and
• 𝑃𝑚 is the mutation probability.

Table 8 shows the results obtained with GA for each classification
odel. It is important to note that the value of the evaluation function
sed in both algorithms is the accuracy obtained for each specific
lassification model of each individual in the population, i.e., for each
andidate solution to the problem.

In this final result, we can observe that PCA with maximum blurring
as a better combination result in the evaluated metrics. Likewise,
pplying t -SNE with maximum blurring, we can see that it is quite close
o PCA in the metrics.

As a final discussion of the process, it can be said that both di-
ensionality reduction algorithms perform very similarly in terms of

esults. Likewise, using the maximum or average blurring technique has
o impact on the final results since they are very similar in all the cases
valuated. Therefore, as a recommendation, it could be determined to
se PCA for the process of transforming tidy data into image due to the
epresentation of the characteristic pixels in the image. In turn, t -SNE,
ue to its stochastic nature, must be more carefully configured with
espect to the analysis of the parameters and their impact on the image
reated.

. Conclusions and open challenges

This article explored the transformation of tidy data to images
upplemented by blurring image techniques to process BLE signals with
he aim of developing wireless indoor localisation mechanisms. Our
esults show that the process successfully contributed to mitigating the
ffect of Multipath Fading (MPF). We have also show that the use
f optimisation techniques based on metaheuristics may be used to
etermine the best TxPower configuration setting of the BLE devices.

In addition, images created from tidy data were used as input
o this CNN. To this end, the partial contributions that enabled the
evelopment of this work are the use of a CNN with two parallel
ranches for localisation as a base learning model. Hence, to achieve
his transformation, two-dimensionality reduction algorithms such as
-SNE and PCA were evaluated. In this context, two cases of image
eneration were tested, namely: (i) using the characteristic pixels; and
ii) applying the blurring technique by simulating the signal fading. The
lurring method demonstrates that generating an image emulates the
185
ignal fading, maximising the result of the analysed metrics, and reduc-
ng the mean error. Moreover, to improve the results with asymmetric
xPower, an evolutionary algorithm was used, which demonstrates the
est combination of TxPowers, further maximising the final results and
ringing the solution closer to a minimum error.

Finally, regarding the open challenges, one of the main points to
evelop is to be able to set the blurring technique in accordance with
he signal degradation itself and not empirically, as was done in this
ork. Using channel propagation models to develop the blurring of

he characteristic pixels in the image and similarity with the signal’s
wn degradation with respect to the device may lead to a hybrid
ommunications-based blurring approach to the problem. Additionally,
ne of the main evaluation challenges of the developed model is not
nly to see how it performs in larger environments, but also to see
hat the impact of the classification process is like in multi-level
nvironments, e.g. in a multi-storey building.
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