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a b s t r a c t

The growing interest in the use of algorithms-based machine learning for predictive tasks has
generated a large and diverse development of algorithms. However, it is widely known that not all
of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this
reason, novel techniques are currently being developed to convert tidy data into images with the aim
of using Convolutional Neural Networks (CNNs). TINTO offers the opportunity to convert tidy data into
images through the representation of characteristic pixels by implementing two dimensional reduction
algorithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-
SNE). Our proposal also includes a blurring technique, which adds more ordered information to the
image and can improve the classification task in CNNs.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Nowadays, there is great interest in being able to use data
or predictive purposes in any area of application. Towards this
nd, there are numerous Machine Learning (ML) algorithms,
ultilayer Perceptron (MLP), and advanced Convolutional Neural
etworks (CNNs) [1,2]. In the case of ML and MLP, a series of
tructured data, such as tabular or tidy data format (here on in
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referred to as tidy data), are required as input [3]. In the case of
CNNs, the input data must be nonstructured, specifically in image
format [4].

Due to increasing interest in exploiting the power of CNNs,
the use of techniques to convert tidy data into images has been
the subject of an open research area that has developed in recent
years [5,6]. Recently, several works have been developed based
on the transposition of ordered data into images [7,8]. The main
mechanisms of these works differ in the conversion framework
used in the image construction process [6,9]. The main challenge
is to create images from tabular data while preserving the fea-
tures embedded in the data [8]. This will enable us to fully exploit

the use of CNNs in model fitting and generalisation [10,11].
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Consequently, the DeepInsight framework [9], the basis frame-
ork of TINTO software (here in on referred as TINTO), performs
he transformation to images with dimensionality reduction algo-
ithms, so that it can obtain Cartesian coordinates for each feature
n the dataset. From the generated coordinates, it generates an
mage pattern where a pixel represents the feature and the value
f each pixel would be given by the value of the feature. Finally,
he generated images can be processed by a CNN to obtain the
inal classification result [10].

Therefore, taking into account the DeepInsight framework,
ur proposal starts by transforming tidy data, in a classifica-
ion problem in ML, into images to allow the modelling of a
NN [12,13]. The proposal uses the methods and mechanisms of
he articles [9,10] as the starting point for developing the overall
rocessing schema. In the first step of our proposed schema,
wo dimensional reduction techniques [14] are used to transform
idy data into images: t-distributed Stochastic Neighbour Embed-
ing (t-SNE) [5,15] and Principal Component Analysis (PCA) [16].
oreover, TINTO adds the classical painting technique known
s blurring to represent more ordered contextual information
n the resulting image and, thus improve the process of feature
xtraction and generalisation of CNNs [10].
TINTO has been developed based on the framework introduced

n DeepInsight [9] by the authors of this article in Python. TINTO
lso includes the widely used blurring technique in plastic arts,
.g. professional painting (not to be confused with the computer
ision blurring technique). The main contributions of TINTO are
he following:

• Use of two dimensionality reduction algorithms to con-
vert tidy data into images, spatial distributed data readings,
namely, the t-SNE and PCA algorithms.

• Use of the blurring painting technique to introduce con-
textual information to the image, which can improve the
classification process.

• Use CNNs models for binary or multiclass classification
problems in classical ML as the TINTO allows the conversion
of Tidy Data into images.

. Software description

This section describes the software architecture and specifica-
ions and the image rendering techniques for TINTO.

.1. Software architecture

One of the first transformations to be performed is to convert
idy data into image data format, i.e., the corresponding sam-
le (row) in the sampling phase (see Table 1). The reader can
earn more about the mathematical and framework foundations
f the transformation process by consulting previous scientific
rticles [9,10]. The following considerations should be taken into
ccount when creating the images:

• The input dataset must be in CSV, taking into account the
tidy data format [3].

• The target (variable to be predicted), Y , should be set as the
last column of the dataset. Therefore, the first columns will
be the features, X .

• All data must be in numerical data type. TINTO does not
accept data in string or any other non-numeric data type.

• TINTO will create as many folders with their corresponding
images in each folder as there are targets. For example, in
this case, the dataset has 15 different targets, so TINTO will
create 15 different folders, one for each class.

Table 1
Structure of the dataset in tidy data format. The first 5 columns would be the
features (Fe) and the last column would be the target. The first row is the
heading of each column.
Fe01 Fe02 Fe03 Fe04 Fe05 Target

−65 −61 −74 −73 −67 1
−60 −57 −83 −62 −69 2
−66 −70 −78 −63 −73 3
. . . . . . . . . . . . . . . . . .
−58 −66 −71 −73 −69 14
−60 −62 −73 −69 −57 15

Accordingly, Fig. 1 depicts the tidy data to image transfor-
mation process. As can be seen, tidy data are converted into
image data through a two dimensional space in X and Y . This
translation to two dimensional space enables us to build an image
of characteristic pixels for each sample of the dataset, i.e., each
data sample is converted to a two dimensional space.

Therefore, the pipeline for converting each sample in tidy
data format into a two dimensional space consists of four main
processing tasks (see Fig. 1):

1. Data dimensionality reduction. The initial matrix is transp-
osed. Note that each feature is represented with a different
colour for presentation purposes, although the resulting
figure will consist of two channels, i.e., black and white.
This task makes use of a dimensionality reduction algo-
rithm. In this case, TINTO explored two such algorithms:
PCA and t-SNE.

2. Centre of mass and delimitation. Having obtained the co-
ordinates, the centre of gravity of the points is determined,
and the area is subsequently delimited.

3. Scaling and pixel positions. The matrix is transposed, scaled
and the values are rounded to integer values.

4. Characteristic pixel positions. The values obtained would
be the positions of the characteristic pixels for the creation
of the image pattern.

We should note that the settings of the parameters of the
dimensionality reduction algorithms and the blurring technique
play a major role in the image generation process. Readers inter-
ested on making use of TINTO should further consult Refs. [9,10].
which includes an analysis of the impact of the most relevant pa-
rameters of the reduction algorithms and the blurring technique.
Parameters, such as the initial random seed of the t-SNE algo-
rithm may provide undesirable artefacts, such as the overlap of
one or more characteristic pixels. Ref. [10], provides the required
steps to obtain the positions of the characteristic pixels from the
initial tidy data.

2.2. Image rendering techniques

This section discusses the image generation process based on
the two implemented cases, i.e., characteristic pixels with and
without the blurring technique.

Case 1: Characteristic pixels without blurring

In this case, TINTO fills in the data Ascale at their corresponding
characteristic pixel positions in the matrix M . The matrix M is
then converted into an image. This is done for each Ascale sample.
All other values of the matrix M are zeros, so they are not
significant in this case.

For the creation of images from the tidy data, the characteristic
pixel position and the scale generated by the normalisation are
used. Fig. 3(a) shows an example of the results without the

blurring technique.
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Fig. 1. Process for obtaining the feature coordinates from the transpose matrix. It can be seen that the tidy data are converted into a two dimension matrix through
the different phases with their respective techniques, i.e., delimitation, translation, and so on.

Fig. 2. Representation of the blurring technique. The colour represents the
intensity for each stroke or cincumference. It moves away from the characteristic
pixel until it disappears when the blurring technique is performed. C1 is the
characteristic pixel with the highest intensity, C2 are the neighbouring pixels
with lower intensity than C1, and C3 are the neighbouring pixels with lower
intensity than C3.

Case 2: Characteristic pixels with blurring

This procedure was created empirically, based on the blurring
echnique used in plastic arts. This technique is often used to
often and extend strokes so that the transition from intense to
aint is uniform. Then, by making an analogy with the character-
stic pixels as spots on a canvas, these spots can be blurred so that
hey cover more area without losing the intensity of the original
haracteristic pixel [10].
Accordingly, the use of the blurring technique of the charac-

eristic pixels is proposed to enlarge their area. To do this, the
hickness, number, and intensity of the strokes must be defined.

Each stroke would be a circumference around the pixel and the
previous stroke with a thickness called distance, represented as r;
and the number of strokes or circles would be denoted as steps,
represented as Cx, see Fig. 2. Moreover, the intensity of this stroke
or circumference would be determined by the encompassed area
of the circumference, with the centre (the characteristic pixel)
being the initial intensity, represented as P . Additionally, the
intensity fades as you move away from the characteristic pixel.

Finally, by using this technique, it is possible to determine
the step size in which the blurring of two characteristic pixels
overlaps. In this case, TINTO experimented with two possible
solutions for the representation of the scene with overlapping
pixels:

• Average value: An alternative to the above is to average the
intensity of both, the one already in the matrix and the new
one (see Fig. 3(b)).

• Maximum value: The highest scoring value pixel of the
overlapping pixels is chosen, i.e., if the value of the pixel in
the matrix is lower than the value of the incoming pixel, it
is replaced; otherwise, it is kept (see Fig. 3(c)).

2.3. Software specifications

In this context, having seen the steps in which TINTO performs
a conversion from tidy data into images, this section will de-
scribe the most relevant Python code. The functions shown below
demonstrate the process of creating the characteristic pixels and,
above all, the blurring procedure using filters and submatrices.
Therefore, we show the main three functions implemented: cre-
ateFilter, blurringFilter and imageSampleFilter. Note
that all Python code can be found in the repository [17].

In createFilter function (see Alg. 1) the filter is a matrix
of size 2 × distance · total_steps + 1. This matrix covers the
entire circular space of the characteristic pixel determined by
the distance per total step. This ‘‘filter’’ would be multiplied by

Fig. 3. Image samples generated by TINTO using PCA.
3
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a scalar that is the intensity value. This resulting matrix would
then be placed as a submatrix within the final matrix, where the
centre of the submatrix would be the position of the characteristic
pixel.

1 def c r e a t e F i l t e r ( distance =2 , steps =3 , ampl i f icat ion=np . pi ) :
2 s i z e _ f i l t e r = int (2 ∗ distance ∗ steps + 1)
3 center_x = distance ∗ steps
4 center_y = distance ∗ steps
5 print ( distance , steps )
6 f i l t e r = np . zeros ( [ s i z e _ f i l t e r , s i z e _ f i l t e r ] )
7
8 for step in reversed ( range ( steps ) ) :
9 r_actual = int ( distance ∗( step +1) )

10 in tens i ty =min( ampl i f icat ion ∗1/(np . pi∗ r_actual ∗∗2)
,1)

11 l im_ in f_ i = max( center_x − r_actual − 1 , 0)
12 l im_sup_i = min( center_x + r_actua l + 1 ,

s i z e _ f i l t e r )
13 l im_ in f_ j = max( center_y − r_actual − 1 , 0)
14 l im_sup_j = min( center_y + r_actual + 1 ,

s i z e _ f i l t e r )
15 for i in range ( l im_inf_ i , l im_sup_i ) :
16 for j in range ( l im_inf_ j , l im_sup_j ) :
17 i f ( ( center_x−i )∗∗2 + ( center_y−j )∗∗2 <=

r_actual ∗∗2) :
18 f i l t e r [ i , j ]= in tens i ty
19 f i l t e r [ center_x , center_y ] = 1
20 return f i l t e r

Listing 1: Blurring filter specification

On the other hand, this function adds more ordered contextual
information to the image through the classical painting technique
called blurring (see Alg. 2). It develops the following main steps:
(i) take the coordinate matrix of the characteristic pixels; and (ii)
create the blurring according to the number of steps taken in a
loop.

1 def b lu r r i ngF i l t e r (matrix , f i l t e r , values , coordinates ,
option ) :

2 i t e r_va lues = i t e r ( values )
3 size_matrix = matrix . shape [0]
4 s i z e _ f i l t e r = f i l t e r . shape [0]
5 matrix_extended = np . zeros ( [ s i z e _ f i l t e r +size_matrix ,

s i z e _ f i l t e r +size_matrix ] )
6 matrix_add = np . zeros ( [ s i z e _ f i l t e r +size_matrix ,

s i z e _ f i l t e r +size_matrix ] )
7 c en t e r _ f i l t e r = int ( ( s i z e _ f i l t e r − 1) /2)
8 for i , j in coordinates :
9 i = in t ( i )

10 j = in t ( j )
11 value = next ( i te r_va lues )
12 submatrix = f i l t e r ∗ value
13 l im_ in f_ i = i
14 l im_sup_i = i +2∗ c en t e r _ f i l t e r +1
15 l im_ in f_ j = j
16 l im_sup_j = j +2∗ c en t e r _ f i l t e r +1
17 i f ( option== 'mean ' ) :
18 matrix_extended [ l im_ in f_ i : lim_sup_i , l im_ in f_ j :

lim_sup_j ] += submatrix
19 matrix_add [ l im_ in f_ i : lim_sup_i , l im_ in f_ j :

lim_sup_j ] += ( submatrix > 0)∗1
20 e l i f ( option== 'maximum ' ) :
21 matrix_extended [ l im_ in f_ i : lim_sup_i , l im_ in f_ j :

lim_sup_j ] = np .maximum(matrix_extended [ l im_ in f_ i :
lim_sup_i , l im_ in f_ j : lim_sup_j ] , submatrix )

22 i f ( option== 'mean ' ) :
23 matrix_add [matrix_add == 0] = 1
24 matrix_extended = matrix_extended / matrix_add
25 matr ix_f ina l = matrix_extended [ c en t e r _ f i l t e r :−

cen te r _ f i l t e r −1, c en t e r _ f i l t e r :− cen te r _ f i l t e r −1]
26 return matr ix_f ina l

Listing 2: Representation of the Blurring filter in the coordinate
matrix.

Finally, this function creates the images using the two previ-
ous functions to represent the characteristic pixel and blurring
technique (see Alg. 3).

1 def imageSampleFilter (X , Y , coord , matrix , folder ,
ampli f icat ion , distance =2 , steps =3 , option= 'maximum ' ,
train_m=False ) :

2 i f distance ∗ steps ∗ ampl i f icat ion != 0:
3 f i l t e r = c r ea t e F i l t e r ( distance , steps , ampl i f icat ion )
4 for i in range (X . shape [0 ] ) :
5 matrix_a = np . zeros (matrix . shape )
6 i f distance ∗ steps ∗ ampl i f icat ion != 0:
7 matrix_a = b lu r r i ngF i l t e r (matrix_a , f i l t e r , X[ i

] , coord , option )
8 else :
9 i ter_values_X = i t e r (X[ i ] )

10 for eje_x , eje_y in coord :
11 matrix_a [ in t ( eje_x ) , in t ( eje_y ) ]= next (

i ter_values_X )
12 . . .
13 return matrix

Listing 3: Main function to create the images

3. Illustrative examples

3.1. Command execution

Before visualising the images generated according to a dataset
as shown in Table 1, the basic guidelines are presented to run
TINTO in the command terminal. Note that the dataset guidelines
are specified in Section 2.1.

All TINTO options are printed with the help parameter:

$ python tinto.py -h

where,

• python: Python run command.
• tinto.py: TINTO Python script.
• -h: Show the TINTO parameters and exit.

The following command executes TINTO with the default pa-
rameter values, i.e., the generation of images with the charac-
teristic pixels (no blurring), PCA and the image size to 20 × 20
pixels:

$ python tinto.py "dataset.csv" "folder"

where,

• ‘‘dataset.csv’’: Set the path of the dataset (CSV).
• ‘‘folder’’: Sets the path where images are saved.

Finally, the next command indicates some parameters that
TINTO accepts:

$ python tinto.py "dataset.csv" "folder" -B -alg t-SNE \
-oB maximum -px 30 -sB 5

where,

• -B: Create images with the blurring technique.
• -alg t-SNE: Select the t-SNE algorithm.
• -oB maximum: Create images with maximum overlapping

pixel value.
• -px 30: Set the image size to 30 × 30 pixels.
• -sB 5: Expand the blurring to 5 pixels.
4
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Fig. 4. Image samples generated by TINTO using t-SNE.

3.2. Image generation

Further to the creation of images based on the t-SNE and PCA
dimensionality reduction algorithms, TINTO includes the mecha-
nisms to further process and obtain three different image modal-
ities: images of characteristic pixels (without blurring) and with
maximum or average blurring values. Each image is stored in a
different folder, i.e., each target sample of the dataset results in an
image stored in a separate folder. We have included in [9,10,17]
a description of the dimensionality reduction algorithms and
blurring technique and their main input parameters.

Consequently, Figs. 3 and 4 show the generation of three
sample images for the different cases under study, PCA and
t-SNE, respectively. These sample images are clear examples of
the resulting images that can be inputted into CNN.

3.3. Results

TINTO can improve the generalisation and learning process
in ML classification problems. Accordingly, in DeepInsight [9],
which uses characteristic pixels (without blurring), the frame-
work is compared with the Random Forest algorithm on different
datasets. DeepInsight achieves more than 90% accuracy in most of
them, improving results over Random Forest, e.g., for the RNA-seq
it improves by 3%, for vowels it improves by 7%, etc.

The technique has been successfully tested in an indoor lo-
calisation use-case [10]. The localisation accuracy results based
on the use of images of characteristic pixels (without blurring)
have shown a substantial improvement over the results reported
by the classical ML algorithms [18]. Furthermore, the use of the
blurring technique has further improved the results by another
12% regardless of the blurring technique used, i.e., maximum or
average.

4. Impact

As discussed in the previous sections, TINTO has the main
purpose of converting tidy data into images. Accordingly, TINTO
creates the possibility of being able to develop CNN-based models
to solve classification problems in classical ML in which either
there were solutions with very little convergence of the models
or, as was the case in many cases, they could not be solved due to
poor generalisation and model fitting. In fact, the following major
impacts are expected:

• TINTO is an open source software based on [9,10] that
converts tidy data into images and can be easily extended
or modified.

• TINTO has an object-oriented structure consisting of mul-
tiple Python modules that allow for easier debugging and
reuse of codes through inheritance. This saves the time
needed for coding and manipulating data, and thus finding
direct solutions by extending tidy data format solutions to
CNNs.

• TINTO allows us to convert tidy data into images mainly
for classification problems in classical ML. Hence, TINTO
allows us to extend the search for solutions of complex
problems to CNNs when classical ML algorithms or MLP did
not generalise or did not approach an acceptable solution.

• TINTO uses well-documented dimensionality reduction al-
gorithms such as PCA and t-SNE in the image construction
process. Note that these are not the only algorithms, and
more of these algorithms or other techniques can be added
and studied to represent characteristic pixels in images.
With TINTO, this could be done very quickly and easily by
adding a few additional lines of code.

• TINTO also presents the classical painting technique called
blurring, which allows contextual information to be added
to the image in an orderly manner. This allows us to im-
prove, in many cases, the classification process and, there-
fore, the generalisation and fitting in CNNs [10].

• TINTO performs the training and validation process for im-
age conversion in a fairly acceptable time. For example, for
the Iris dataset, it takes about 10 minutes, and for the data
used as an example in [10] it takes 15 minutes. Note that
datasets with large amounts of samples can take hours;
this is due to the training process of the dimensionality
reduction algorithms, i.e., in this case, t-SNE and PCA.

5. Conclusions and open challenges

This article introduces TINTO: software to convert tidy data
into images. This conversion, from structured data into unstruc-
tured data, makes possible the use of CNNs to solve complex
problems and opens their use to solve complex problems where
classical ML algorithms or customised MLP solvers may be un-
suitable.

To this end, two dimensionality reduction algorithms as
t-SNE and PCA were evaluated. In this context, two cases of image
generation were tested, namely: (i) use the characteristic pixels;
and (ii) apply the blurring classical painting technique.

Finally, one of the main points to develop is to be able to set
up more dimensionality reduction algorithms and to study the
impact of each of them on the generation of images. Furthermore,
one of the main challenges that should be studied is the impact
5
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on the generation of patterns based on the types of data and the
distribution of these data in a dataset.
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