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A B S T R A C T

In recent years, the development of Natural Language Processing (NLP) text-to-face encoders
and Generative Adversarial Networks (GANs) has enabled the synthesis and generation of
facial images from textual description. However, most encoders have been developed for the
English language. This work presents the first study of three text-to-face encoders, namely, the
RoBERTa pre-trained model and the Sent2Vec and RoBERTa models, trained with the CelebA
dataset in Spanish. It then introduces customised and fine-tuned conditional Deep Convolutional
Generative Adversarial Networks (cDCGANs) trained with the CelebA dataset for text-to-face
generation in Spanish. To validate the results obtained, a qualitative evaluation was carried out
with a visual analysis and a quantitative evaluation based on the IS, FID and LPIPS metrics. Our
findings show promising results with respect to the literature, improving the numerical metrics
of FID and LPIPS by 5% and 37%, respectively. Our results also show, through a quantitative–
qualitative comparison of the cDCGAN training epochs, that the IS metric is not a reliable
objective metric to be considered in the evaluation of similar works.

. Introduction

In recent years, advances in Artificial Intelligence (AI) for text-to-image synthesis have seen enormous growth in novel techniques
ith promising results (Deorukhkar, Kadamala, & Menezes, 2022; Tao et al., 2022). Specifically, the development of AI techniques

or the synthesis and generation from text-to-face has been in constant expansion (Agnese, Herrera, Tao, & Zhu, 2020; Nasir et al.,
019). To this end, Generative Adversarial Networks (GANs) are increasingly used in various computer vision tasks, including the
eneration of realistic images (Goodfellow et al., 2020). This task has several potential applications, such as creating realistic avatars,
enerating images of missing persons, and improving the quality of facial sketches used by law enforcement agencies (Ma et al.,
020).

Despite significant progress in the field, there are still many challenges, including the need to balance the accuracy of the images
enerated with their diversity and the difficulty of obtaining large-scale datasets of textual descriptions and corresponding facial
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images (Zhang et al., 2017; Zhao, Xie, Wang, Cao, & Zhang, 2019). The former is mainly due to GANs being unable to process the
desired characteristics for the images generated (Agnese et al., 2020; Qin et al., 2022). In response to this deficiency, conditional
Generative Adversarial Networks (cGANs) that comprise additional inputs to the original GANs are being developed (Goodfellow
et al., 2020). The new inputs enable the model to be trained with additional information, such as class labels or other conditioning
variables (Li et al., 2019). Unlike common GANs, which use dense intermediate layers in their generator and discriminator, cDCGANs
use convolutional and deconvolutional ones known as transposed convolutional layers (Vasquez-Espinoza, Castillo-Cara, & Orozco-
Barbosa, 2021). Hence, cDCGANs have made significant progress in two main domains: (i) the use of Convolutional Neural Networks
(CNN) instead of fully-connected networks, as they are more suitable for images (Agnese et al., 2020; Talla-Chumpitaz, Castillo-Cara,
Orozco-Barbosa, & García-Castro, 2023); and (ii) the development of various techniques to generate the information vectors that
enter the network for the generation of synthetic images (Parmar, Zhang, & Zhu, 2022).

Furthermore, sentence embedding techniques have radically changed the field of Natural Language Processing (NLP) in recent
ears because they make it possible to encode text fragments as fixed-size vectors (Guan, Mondal, Dai, & Bao, 2023; Pagliardini,
upta, & Jaggi, 2018). The development in this area has been constant and intensive in implementations, e.g. Sent2vec (Zhao et al.,
021). They have provided a major boost to many fields of AI, most notably conditional image synthesis, because the only way to
eed information into neural networks is by mapping it onto vectors of real numbers (Pagliardini et al., 2018).

To address the limitations mentioned above, the challenge in text-to-image generation for spoken/written portraits and the
rogress of the previously described deep learning models (Vasquez-Espinoza et al., 2021) have motivated the implementation
f a generative architecture using Sentence-BERT (SBERT) as an encoder (Reimers & Gurevych, 2019). This architecture includes
he mechanisms to use descriptive text as input to be processed by an encoder and a cDCGAN model to generate synthetic
mages of faces (Zhang et al., 2017; Zhao et al., 2019). Furthermore, the task describes the implementation of images based on a
extual description of the physical characteristics in Spanish as input. For instance, the architecture consists of comparing different
panish-trained encoders, i.e., Sent2vec and SBERT, and a cDCGAN as a deep learning-based generative model (Parmar et al., 2022).

The present work implements the encoder by performing a comparative study between Sent2vec, and RoBERTa-large-
bne1 (Fandiño et al., 2022) (here on in referred to as RoBERTa) as a pre-trained model (Liu et al., 2019). For the transformer,
customised training was carried out to increase the performance and generalisation of the model (Ding et al., 2023; Qin et al.,
2022). In the training process, the facial feature descriptor text corpus, the CelebA dataset2 (Xia, Yang, Xue, & Wu, 2021) (here
on in referred to as CelebA), was used to translate it into Spanish. Finally, a generative model cDCGAN was developed, which was
quantitatively evaluated using Inception Score (IS) (Barratt & Sharma, 2018), Frechet Inception Distance (FID) (Heusel, Ramsauer,
Unterthiner, Nessler, & Hochreiter, 2017), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang, Isola, Efros, Shechtman,
& Wang, 2018) metrics. Then it was qualitatively evaluated by visualising the synthetic images generated. Note that the customised
encoder training was carried out in Spanish (Fandiño et al., 2022). In fact, this is one of the main contributions of this work, since
to the best of the authors’ knowledge, there is no pre-trained model for this specific task in Spanish.

Consequently, this work presents a quantitative (numerical) and qualitative (visual) comparison between Sent2vec trained with
CelebA (here on in referred to as Sent2vec+CelebA), the RoBERTa baseline model (Liu et al., 2019) and our own trained model,
taking RoBERTa baseline model with CelebA (here on in referred to as RoBERTa+CelebA) in the generation of sentence embedding
vectors (Tao et al., 2022). These encoders are evaluated in the implemented cDCGAN and can be used as a valuable tool to develop
the spoken portrait of a person, having multiple areas of application (Ma et al., 2020). In addition, the development of both the
cDCGAN and the encoders is conducted in Spanish (Fandiño et al., 2022). The contributions of this paper are as follows.

• We perform a customised training of the RoBERTa and Sent2vec encoders with the CelebA corpus developed in Spanish.
• We carry out a comparative evaluation of the encoders to determine the best settings for the cDCGAN.
• We conduct quantitative (IS, FID and LPIPS) and qualitative (visual) analysis of the synthetic images generated by cDCGAN

as a function of the encoder: Sent2vec+CelebA, RoBERTa and RoBERTa+CelebA.
• We demonstrate that IS is an unreliable metric for text-to-face generation and should be replaced by more robust metrics, such

as FID and LPIPS.
• We show that our promising qualitative–quantitative results improve on those in the literature in terms of text-to-face

generation. Furthermore, this is the first work in Spanish in this research area.

The remainder of this paper is organised as follows. Section 2 reviews the recent GAN for the text-to-image synthesis literature
in three sections: Sentence embedding, text-to-image synthesis, and text-to-face generation. Moreover, we discuss how this work has
developed with respect to advances in these areas. Section 3 specifies the dataset used in this investigation, the numerical evaluation
metrics in the cDCGAN, and the guidelines. Subsequently, Section 4 describes, step-by-step, the details of the phases used to train
the encoders. This section also covers the implementation and evaluation of the cDCGAN model. Section 5 presents our first set of
results using quantitative metrics, i.e., IS, FID, and LPIPS, and a qualitative evaluation through a visual analysis of the generated
images. Finally, Section 6 presents our conclusions and future work directions.

1 https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne
2 https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
2
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2. Related work

In this section, we review related work on the synthetic generation of images from textual description using GANs (Xia et al.,
021; Zhang et al., 2017). This review serves as a starting point and a contribution in developing the work presented, which covers
he solution of problems in several areas of study of this research, such as word embedding, text-to-image synthesis and text-to-face
eneration.

.1. Sentence embedding

Sentence embedding emerged as an extension of word embedding methods. In 2017, the Infersent algorithm outperformed most
nsupervised methods, such as Skip-Thought (Conneau, Kiela, Schwenk, Barrault, & Bordes, 2017). Its goal was to find a directional
elationship between text fragments through textual implications under labels. Its architecture consists of: (i) a sentence encoder
hat takes word vectors and generates their respective encoded vector; and (ii) a Natural Language Inference (NLI) classifier that
akes the encoded vectors and generates a class label that may be the implication, contradiction or neutral. In 2018, the Universal
entence Encoder (USE) trained a transformer network or a Deep Averaging Network (DAN) and improved unsupervised learning
y training with the Stanford Natural Language Inference (SNLI) database.

In 2019 Sent2vec combined the techniques and fundamentals of Word2vec and FastText algorithms, combining the Continuous
ag of Words (CBOW) approach and n-grammes to generate the result vector (Pagliardini et al., 2018). During training, an
nsupervised method that was simple, efficient and fast was used because of its low computational complexity. The training results
howed that it outperformed most unsupervised and supervised models, with the robustness of the results being highlighted. In
he same year, the transformer-based SBERT encoder enabled the generation of high-quality sentence embeddings compared to the
odels studied previously (Reimers & Gurevych, 2019). SBERT generates sentence embeddings using a Siamese and triplet network
uring training (Reimers & Gurevych, 2019). Its architecture consists of positional coding, self-attention and multi-headed attention.

.2. Text-to-image synthesis

All work related to text-to-image synthesis was focused on the development and refinement of the text encoder and GANs. To this
nd, StackGAN was presented, which was able to generate images conditional on descriptive sentences passed to the model (Zhang
t al., 2017). The model divides all tasks into a set of subtasks that are easier to perform through a sketch-refinement process. Phase
sketches the primitive shape and colours of the object based on the text description, which generates low-resolution images.

hase 2, takes the results of the previous phase and, together with the text descriptions as input, generates high-resolution images
ith high-quality details. In this phase, defects in the Phase 1 results can be rectified and convincing details can be added to the

efinement process.
In the same year, AttnGAN improved on the StackGAN model in multi-stage refinement. This model can synthesise fine-grained

etails in different subregions of the image, paying attention to the significant words in the description (Xu et al., 2018). Moreover, a
eep Attentional Multimodal Similarity Model (DAMSM) was proposed to compute a fine-grained image-text matching loss to train

he generator. This model learns from two neural networks that map subregions of images and sentence words to a common semantic
pace. This novel technique allows us to measure the similarity of image and text at the word level to calculate a fine-grained loss
or image generation. The encoder used is an LSTM that extracts semantic vectors from the text description. In the bidirectional
STM, each word corresponds to two hidden states, one for each direction. Thus, its two hidden states are concatenated to represent
he semantic meaning of a word.

Finally, MirrorGAN achieved significant visual realism and semantic coherence compared to the models previously studied (Qiao,
hang, Xu, & Tao, 2019). The architecture proposed leverages the idea of learning text-to-image generation through the description.
t consists of three modules: (i) a Semantic Text Embedding Module (STEM) with an RNN; (ii) a Global-Local collaborative Attentive
odule (GLAM) in cascaded image generators; and (iii) a Semantic Text Regeneration and Alignment Module (STREAM). Hence,

TEM generates embedding vectors at the word and sentence level, and GLAM has an architecture to generate target images
rom coarse to fine scales. Leveraging both local word and global sentence attention to progressively improve the diversity and
emantic consistency of the images generated, STREAM seeks to regenerate the text description from the generated image, which
s semantically aligned with the given text description.

.3. Text-to-face generation

Generating face images is more complex and error-prone than generating other types of images, and, hence, a number of models
nd applications have been developed for this task.

In this area, a significant advance was presented in 2019, proposing a different approach to the traditional way of generating
onditional faces (Zhao et al., 2019). In this approach, sketches were used instead of full images which, together with the textual
escription, were the inputs to the generator. The contributions were the following: (i) the process of completing the sketch to
enerate the real image is similar to the process of face super-resolution reconstruction; (ii) semantic features are extracted from
he attribute vector and resized to the same size as the input image sketch; (iii) by using the Skip-connection method, the authors
3

ucceeded in reducing the number of layers of the generative network without losing efficiency, albeit increasing the computational
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Table 1
Comparison of resources used by the literature in terms of face generators, Encoder and Neural Network Architecture, numerical metrics, Inception Score (IS),
Frechet Inception Distance (FID) and Learned Perceptual Image Patch Similarity (LPIPS), number of images used in the testing phase (No. images) and the
language used as a base. The last three rows (This work) show the characteristics and results of the work presented in this article. The best results are shown
in bold.

Article Encoder GAN Arch. IS FID LPIPS No. images Language

Zhao et al. (2019) RNN GLAM & STREAM – – – – English
Nasir et al. (2019) Skip-Thought cDCGAN 1.4 – – – English
Xia et al. (2021) LSTM bidirectional DFGAN – 137.60 0.581 50 English
Xia et al. (2021) LSTM bidirectional DMGAN – 131.05 0.544 50 English
Oza et al. (2021) Skip-Thought cDCGAN – 128.46 0.590 250 English
Oza et al. (2021) LSTM DAMSM – 125.98 0.512 250 English
Oza et al. (2021) RNN AttGAN – 116.32 0.522 250 English
Oza et al. (2021) Visual-linguistic

similarity module
StyleGAN – 106.37 0.465 50 English

Oza et al. (2021) BERT ACM – 105.73 0.449 250 English
Deorukhkar et al. (2022) SBERT cDCGAN 2.732 90.268 – 5 English
Deorukhkar et al. (2022) SBERT SAGAN 2.855 95.052 – 5 English
Deorukhkar et al. (2022) SBERT DFGAN 3.455 88.748 – 5 English

This work Sent2vec+
CelebA

cDCGAN 2.738 105.561 0.3036 1000 Spanish

This work RoBERTa cDCGAN 2.714 89.3567 0.2932 1000 Spanish
This work RoBERTa+

CelebA
cDCGAN 2.789 84.221 0.2851 1000 Spanish

complexity; and (iv) the architecture uses a subframe structure (𝐴 for image input and 𝐵 for attribute input) in the feature extraction
phase, allowing the generated image to behave better in terms of texture, colour and structure.

In the same year, a cGAN called Text2faceGAN generated face images from fine-grained textual descriptions. For the tests,
CelebA images and a set of descriptor texts were implemented for each image using a proprietary algorithm (Nasir et al., 2019).
This research pioneered the use of an encoder for embedding whole sentences using Skip-Thought. The main contributions focus on
the preparation of training data, the proposed GAN architecture, and the efficiency measure defined for this particular case.

Subsequently, in 2021, a unique architecture, Semantic Text-to-Face GAN, started from generic text entries and allowed them
to be modified from another auxiliary text entry using the same network (Oza, Chanda, & Doermann, 2021). The architecture
proposed consists of two complementary blocks and CelebA. The first block generates low- resolution images from a text description
encoded with an encoder–decoder network composed of a ResNet block and an Affine Combination Module (ACM) structure to link
inputs. In the second block, the generator encodes the low-resolution input images into a feature vector using Inception-v3 and
then concatenates them with textual feature vectors encoded by BERT. Finally, it has an image-generating network to produce the
modified output with the desired resolution. Using the FID, LPIPS, and Accuracy and Photorealism metrics, the results were compared
with other models, such as TediGAN (Xia et al., 2021) or Text2FaceGAN (Nasir et al., 2019); the best results were observed in the
latter. Likewise,

Finally, AnyFace (Sun et al., 2022) presented a novel two-stream framework for face image synthesis and manipulation given
arbitrary descriptions of the human face. Specifically, one stream performs text-to-face generation and the other conducts face image
reconstruction. Additionally, Deorukhkar et al. (2022) compared the performance of three GAN models in synthetic face generation,
using FID and IS. The algorithms evaluated were cDCGAN, Self-Attention Generative Adversarial Network (SAGAN) and Deep Fusion
Generative Adversarial Networks (DFGAN) (Tao et al., 2022) and CelebA. As in the Text2FaceGAN model, the authors created their
own corpus with descriptive sentences using a proprietary algorithm from the attributes listed in the dataset. Finally, they used a
pre-trained SBERT model in English to encode the descriptive sentences of the images in the dataset. The work showed that SBERT
provided better results and quality images compared to the original BERT model and other algorithms such as Skip-Thought.

2.4. Implications

Dividing the study of the presented work into three main areas allows us to focus on the evaluation and improvements that have
been added with each recent research. Table 1 summarises the model specifications and numerical results obtained in the literature
and compares them with the present work (This work in Table 1). For these results, a comparative study was carried out with three
ifferent encoders under the same cDCGAN architecture. It is important to note that any numerical comparison between related work
ust be made under the same dataset for the encoder and the cDCGAN model; otherwise, the results will be completely different.
herefore, all the results shown were obtained with CelebA. Note that all work reviewed in the state of the art was conducted in
nglish. Furthermore, to the authors’ knowledge, the present work is pioneering for Spanish in this area.

Regarding the results, it is observed that, numerically, our best approximation, that is, RoBERTa+CelebA, achieves better results
n the FID and LPIPS. Furthermore, lower FID and LPIPS scores and a higher IS score theoretically indicate the generated images
re of a better quality. Nevertheless, as will be discussed in Section 3.2 and demonstrated in this paper, IS is not a reliable metric
or text-to-face generation and should be replaced by more robust metrics, such as FID and LPIPS.
4
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Furthermore, the column ‘‘No. images’’ shows the number of images generated to calculate the metrics score. In other words, all
he evaluations performed by the models studied consist of applying IS, FID, and LPIPS on a generated dataset where the number
f evaluated test images directly influences the numerical accuracy of the metrics. Therefore, the greater the number of images
valuated, the greater is the reliability of the metric with respect to the actual value given to a dataset. Hence, we can see that our
ork achieves fully reliable metrics because a larger number of images is used compared to previous works. In our case, our model
nder study, cDCGAN, was evaluated using 1000 images generated by the cDCGAN, obtaining great robustness in both quantitative
nd qualitative results.

In summary, our findings show promising results with respect to the literature by improving the quantitative metrics of FID and
PIPS by 5% and 37%, respectively. Likewise, in this work we use a greater number of evaluated images that consolidate the results
btained in Spanish. Additionally, the most relevant aspects of these investigations will be discussed below.

.4.1. Sentence embedding
In the area of sentence embedding, all the works reviewed approach the problem in different ways. For example, Conneau

t al. (2017) rained the encoder by entering the vector generated into a classifier network and comparing the result with the class
abels defined. Meanwhile, Pagliardini et al. (2018) combined and expanded the Word2vec and FastText approaches, which, initially
esigned for words, generated complete sentence vectors. This study highlighted the ease and speed of training compared to the
thers. Finally, Reimers and Gurevych (2019), using transforms, achieved the best results to date in the performance and quality of
entence embedding. Following the line of using transformers, the present work improves the performance of the RoBERTa baseline
odel (Fandiño et al., 2022) by training it with the descriptive corpus of CelebA in Spanish.

.4.2. Text-to-image synthesis
Text-guided face generation is a specialised task derived from the general task of creating images. Work on this began in 2016,

ith a number of GAN models having been created with different ways of encoding sentences that have improved over time. Xu et al.
2018) and Zhang et al. (2017) improved the encoding of the input text using an LSTM. The former used two processing phases,
hile the latter used a multimodal similarity model focused on subparts or regions of images paying attention to key features.
inally, Qiao et al. (2019) used a combination of three modules: an RNN to encode text, a network to generate images and a
odule to regenerate descriptive text from an image so that they were semantically aligned.

.4.3. Text-to-face generation
The works focused on face generation improved the encoded descriptive text and the design of GANs. Hence, Zhao et al. (2019)

onsidered developing an initial sketch in addition to the descriptor text as input into the network, using a proprietary algorithm to
ncode the sentences. Moreover, Nasir et al. (2019) employed an encoder called Skip-Thought and a cDCGAN based on convolutional
etworks, ReLU and LeakyRelu, and batch normalisation according to the basic GAN enhancement recommendations for image
ynthesis.

Finally, Deorukhkar et al. (2022) and Oza et al. (2021) highlighted the use of more recent transformers, such as BERT and SBERT,
or the encoding of descriptive sentences. RestNet was used to obtain the latent space of the images, and Inception-v3 was used to
btain the feature vectors. Furthermore, Oza et al. (2021) proposed an architecture that allows images to be generated, which could
e modified based on a subsequent description in the second step, while, Deorukhkar et al. (2022) numerically compared efficiency
cross several well-known GANs, using FID and IS.

. Background: Dataset, metrics, tools and guidelines

The following section describes the main instruments used in the research, i.e., the dataset, metrics, hardware and guidelines.

.1. Dataset

CelebA3 is a large-scale database of celebrity images widely used in text-to-face generation with GANs (Deorukhkar et al., 2022;
asir et al., 2019; Oza et al., 2021). The images cover a wide range of postures, views and angles of each person (Xia et al., 2021).
nother important feature is that different versions of the images can be downloaded. This work uses images of people in their
‘cropped and centred’’ version. It has 202,599 images of 10,177 different identities.

Furthermore, each image has a set of 40 physical attributes that allow it to be described. The attribute file contains a table of two
ossible values: 1 indicates that an attribute corresponds to the image, and −1 that it does not. The main descriptive characteristics
nclude beard, hair colour, eyebrow type, face shape, hair style, eye colour and appearance-enhancing attributes.

.2. GANs evaluation metrics

GANs have gained notable effectiveness in generating high-quality synthetic images. However, instead of being trained alone,
s in most of these networks, the generator models are trained together with a second model, called a discriminator, which learns
o differentiate real images from fake (generated) ones. Hence, there is no objective function or score for the generator or for the
iscriminator; rather, the images are evaluated after being generated with the metrics described (Li et al., 2019).

3 https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
5
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3.2.1. Inception score
IS (Salimans et al., 2016) involves the use of a previously trained neural network model, InceptionV3 (trained with the ImageNET

ataset) (Keras Official Documentation, 2023). The model classifies a large number of generated images and predicts the probability
f an image belonging to each of the classes defined in ImageNET. The higher the IS score indicates, the higher is the image quality.
athematically, the highest possible score is infinite; in practice, however, it is equal to the number of classes contained in the

atabase where it was trained, being 1000 in 2014. It is defined by the following equation:

𝐼𝑆 = 𝑒𝑥𝑝
(

E𝑥𝐾𝐿 (𝑝(𝑦|𝑥) ∥ 𝑝(𝑦))
)

The following steps were implemented:

• We resized the input images to a size of 299 × 299 × 3, required by the model.
• We used a single set of 1000 images generated by cDCGAN. The images are pre-processed and their label is calculated using

InceptionV3.
• We calculated the initial mean and standard deviation scores using InceptionV3. The objective function takes an array of

images with expected sizes and values of pixels in the range of 0 to 255.
• We calculated the IS score for five different sets of images and setting the final result by averaging them all.

However, IS is being replaced because it has certain disadvantages described in Barratt and Sharma (2018), Sommer and Iosifidis
(2020) and Xu et al. (2018). Similarly, we also demonstrate that it is not a reliable metric for text-to-face generation.

3.2.2. Frechet inception distance
FID (Heusel et al., 2017) computes the distance between the feature vectors calculated for real and synthetic images and uses

InceptionV3. The objective of FID is to evaluate the quality of a set of synthetic images in terms of their statistical indicators
compared to a set of real images from the same target domain. The lower the FID score, the higher is the image quality. It is defined
by the following equation:

𝐹𝐼𝐷 = |

|

|

𝜇𝑟 − 𝜇𝑔
|

|

|

2
+ 𝑇𝑟

⎛

⎜

⎜

⎝

∑

𝑟
+
∑

𝑔
−2

(

∑

𝑟

∑

𝑔

)
1
2 ⎞
⎟

⎟

⎠

The Python library, pytorch-fid (Torch Metrics, 2023a), was used with the following considerations:

• Two sets of 1000 images were used. The first is that of the original images, and the second that of the images generated by
cDCGAN. The InceptionV3 model is only used to extract the vector of features of the images.

• FID performs a total of five scores for five different sets of images and obtains the final result by averaging all the scores.

3.2.3. Learned perceptual image patch similarity
We evaluated LIPS (Zhang et al., 2018) in which, given two images 𝑥 and 𝑥0, the similarity between two image slices is calculated

using the cosine distance. The lower the LPIPS score, the higher is the image quality. It is defined by the following equation:
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Python library, lpips (Torch Metrics, 2023b), was used with the following considerations:

• We calculate the similarity between the activation of two images for a predefined Alex model.
• Each of the images is transformed into tensors using the im2tensor module before entering Alex. The final result is given

by applying the mean and standard deviation to the set of results obtained from each of the pairs of images.
• Two sets of images are used for execution. The first one is the original images, and the second one is the images generated by

cDCGAN. item LPIPS performs a total of five scores for five different sets of images and obtains the final result by averaging
all the scores.

.3. Tools

For the encoder training process designed, Sent2vec+CelebA and RoBERTa+CelebA, and the cDCGAN network, as well as the
valuation of quality metrics, we used a high-performance server located at the Albacete Research Institute of Informatics (I3A)
f the Universidad de Castilla-La Mancha (UCLM). The main features are 220 GB of RAM, 500 GB of hard disk, 32 CPU cores, 1
VIDIA Tesla T4 with 16 GB and 2 cores and Ubuntu Server 20.04.

.4. Guidelines

Taking these works and background as a reference, the current experiment sought to generate synthetic images of human faces
rom a textual description in Spanish. Due to its ease of implementation and the balance between performance and complexity, the
rchitecture implemented in Nasir et al. (2019) will was taken as the cDCGAN base.4 Furthermore, to improve efficiency, an encoder

4 https://github.com/midas-research/text2facegan
6
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Fig. 1. Overall schema with the three main phases implemented in this work.

ased on RoBERTa (Fandiño et al., 2022) was used, which was previously trained with the CelebA corpus in Spanish. Likewise, the
ncoders were evaluated as input to a cDCGAN in order to generate the faces of people based on a description of this, evaluating
he model with IS, FID and LPIPS. Significant results were obtained, compared to those in the literature (see Table 1).

. Methodology on image synthesis with cDCGAN

This section studies the methodology and the different phases implemented in this experiment. Furthermore, the pre-processing
pplied to the CelebA descriptive corpus and images is detailed, as well as the cDCGAN. Fig. 1 represents the methodology with the
hree main phases:

• Phase 1: Data pre-processing (see ‘‘Pre-processing’’ in Fig. 1).
• Phase 2: Training the encoders (see ‘‘Encoders’’ in Fig. 1).
• Phase 3: Implementation and evaluation of cDCGAN (see ‘‘Implementation & Evaluation’’ in Fig. 1).

.1. Phase 1: Data preprocessing

In this first phase (see ‘‘Pre-processing’’ in Fig. 1), we prepared the corpus used to train the encoders, i.e., Sent2vec+CelebA and
oBERTa+CelebA, and cDCGAN. Note that the RoBERTa baseline model did not need a corpus as it is a pre-trained model.

.1.1. Sent2vec+CelebA corpus
The pre-processing of the corpus for the encoders, i.e., Sent2vec+CelebA and RobERTa+CelebA, was performed using a simple

ethodology shown in Fig. 2. For Sent2vec+CelebA, the first step was to translate the CelebA captions into Spanish with the
lgorithm used in Text2FaceGAN (Nasir et al., 2019) (see ‘‘Original dataset’’ and ‘‘Translated dataset’’ in Fig. 2). Subsequently, a
ew corpus with translated information was created with the same structure as the original English version.

Finally, a training corpus was generated for Sent2vec+CelebA by performing an information-cleaning process on the dataset
enerated in the previous step. In particular, all the sentences were combined to generate a larger corpus (see ‘‘Sent2vec final training
orpus corpus’’ in Fig. 2).

.1.2. RoBERTa+CelebA corpus
RoBERTa+CelebA was trained using a Siamese network that evaluates the similarity of embeds generated by the transformer.

or this purpose, the cosine similarity metric was used and compared with the similarity score in the training corpus. Each input of
he training data consists of a pair of sentences 𝐴 and 𝐵 in Spanish and their respective similarity in the range of 0 to 1.

First, and like Sent2vec+CelebA, the original English text was translated into Spanish (see ‘‘Original dataset’’ and ‘‘Translated
ataset’’ in Fig. 2). Subsequently, the document structure defines, in each line (input), a pair of Spanish sentences and their respective
imilarity value between 0 and 1 calculated by the Spacy library. However, since Spacy works only with English entries, the
imilarity between two Spanish sentences was matched with their respective English pairs (see ‘‘Spacy’’ in Fig. 2). Finally, the final
raining corpus for RoBERTa+CelebA is defined by the Spanish text and the English similarity score (see ‘‘RoBERTa final training
orpus’’ in Fig. 2). To this end, we implemented Algorithm 1.

As a result, a corpus of 250,000 entries was composed of a pair of Spanish sentences and their respective similarity score was
chieved. Subsequently, it was divided into training–validation splits.
7
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Fig. 2. Overall scheme of the corpus generation process for the Sent2vec+CelebA and RoBERTa+CelebA encoders.

Algorithm 1 Roberta+CelebA corpus generation
1: Input: Corpus of sentences in English and Spanish
2: Output: Transformer training corpus
3: 𝐿𝑖𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝑆𝑝 ← {𝑆𝑒𝑛𝑡𝑆𝑝1 , 𝑆𝑒𝑛𝑡𝑆𝑝2 , 𝑆𝑒𝑛𝑡𝑆𝑝3 ,…}
4: 𝐿𝑖𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝐸𝑛 ← {𝑆𝑒𝑛𝑡𝐸𝑛1 , 𝑆𝑒𝑛𝑡𝐸𝑛2 , 𝑆𝑒𝑛𝑡𝐸𝑛3 ,…}
5: 𝑁𝑚𝑎𝑥 ← 250000
6: 𝐸𝑚𝑎𝑥 ← 192050
7: 𝑛 ← 1
8: while 𝑛 ≤ 𝑁𝑚𝑎𝑥 do
9: 𝑥 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝐸𝑚𝑎𝑥)

10: 𝑦 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝐸𝑚𝑎𝑥)
11: 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒1 ← 𝐿𝑖𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝐸𝑛[𝑥]
12: 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒2 ← 𝐿𝑖𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝐸𝑛[𝑦]
13: 𝑠𝑖𝑚𝑖𝑙 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠𝑒𝑛𝑡1, 𝑠𝑒𝑛𝑡2)
14: 𝑊 𝑟𝑖𝑡𝑒 ∶ 𝐿𝑖𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝑆𝑝[𝑥] + 𝐿𝑖𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝑆𝑝[𝑦] + 𝑠𝑖𝑚𝑖𝑙
15: 𝑛 ← 𝑛 + 1
16: end while

Table 2
Questions and answers for the attribute groups of an image. Note that the sentences were translated into Spanish for training/testing purposes, although this
document shows them in English for better understanding.

Questions: Facial groups. Answer: Facial attributes.

What is the structure of the face? Chubby face, double chin, oval face, high cheekbones.
What facial hair does the person have?? 5 o’clock shadow, goatee, moustache, sideburns.
What sort of hair does the person have?? Bald, straight hair, black hair, blond hair, brown hair, grey hair, fringes, wavy hair, receding

hairline.
What is the description of the other facial features? Large lips, large nose, pointed nose, narrow eyes, arched eyebrows, bushy eyebrows, slightly

open mouth.
What are the attributes that enhance appearance? Youthful, attractive, smiling, pale skin, rosy cheeks pale, rosy cheeks, lots of make-up.
What are the accessories worn by the person? Earrings, hat, necklace, tie, glasses, lipstick.

4.1.3. cDCGAN corpus
The cDCGAN corpus was implemented by translating the corpus generated in Nasir et al. (2019) into Spanish. In order to form

escriptive sentences from the initial attribute file, six groups of features were created in response to six questions that progressively
escribe the face, from contour features to appearance-enhancing facial features. These groups can be seen in Table 2.

Once the facial groups have been defined, the algorithm generates sentences for each of the groups. A queue is generated, in
hich each member of the list of attributes defined for a specific group is added. Additionally, connectors or intermediate words
re added at the beginning of the sentence. As the corpus generated was originally written in English, each descriptive sentence
as translated into Spanish.

The final translated corpus contained 192,248 descriptive sentences of images. During training, 10,351 faces did not have, so
he label ‘‘This is a person and nothing else’’ (in Spanish: ‘‘Esta es una persona 𝑦 nada más’’) was assigned, although this description
as not written in the final corpus file. Table 3 shows a sample of CelebA images with their respective description in Spanish. It
8
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Table 3
Sample of images and their respective description of characteristics
translated into Spanish. Note that the sentences were translated into
Spanish for training/testing purposes, although this document shows
them in English for better understanding.

4.2. Phase 2: Training of the encoder

One important component of many deep learning architectures is an encoder that maps input data into a lower-dimensional
representation. Training an encoder involves optimising its parameters to minimise a predefined objective function that measures
the discrepancy between the encoded representation and the target output. For training, a subdivision was made into the two main
encoders used in this work: RoBERTa and Sent2vec (see ‘‘Encoders’’ in Fig. 1).

4.2.1. Training of Sent2Vec+CelebA
Sent2vec can be used directly for English texts (Parmar et al., 2022). However, since the present work uses Spanish text, it was

necessary to train it previously using the generated corpus (see Section 4.1) according to the following steps:

• Pre-processing the Spanish corpus. For this purpose, each of the entries of the original corpus was saved in a new file and
other components, e.g. symbols, were removed. A total of 192,209 sentences were available for training.

• Applying a second pre-processing consisting of removing accents. Stop words and connectors were used as part of the sentence
structure during training.

• Configuring the libraries, e.g., Sent2vec and FastText, and their parameters empirically, being: 4800 feature vector
dimensions, 5000 epochs, 200 threads, 2 n-grammes and 0.05 learning rate.

• The loss function used for the Sent2Vec+CelebA encoder was skip-gram with negative sampling (Levy & Goldberg, 2014).

4.2.2. Training of RoBERTa+CelebA
In order to improve the performance of the RoBERTa encoder (SentenceTransformers Documentation, 2023), the model

was trained using the corpus specified in Section 4.1. We used a Siamese network together with the cosine similarity loss
function (Reimers & Gurevych, 2019) with the following actions:

• Dividing the corpus into 249,000 sentences for training and 1000 sentences for validation.
• Loading the training/validation data for the model. Two lists were generated for the information and, in each of them, the

entries were composed of a pair of descriptive sentences and their similarity value.
• Implementing the RoBERTa encoder for training.
• Training with a Siamese network to evaluate the similarities of their generated embedding vectors. Subsequently, the metric

was compared with the real similarity value obtained from the training corpus. The performance of the model during
training was calculated using Spearman’s correlation between the real similarity vector and the calculated similarity vector.
Note that the RoBERTa+CelebA encoder therefore does not use a loss function in its training phase (SentenceTransformers
Documentation, 2023).
9
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Fig. 3. Schematic of the generator architecture for the developed cDCGAN. Note that the sentences were translated into Spanish for training/testing purposes,
although this document shows them in English for better understanding.

4.3. Phase 3: Training of the cDCGAN

Text-to-face synthesis using GANs involves training a generator network to generate an image that matches the given textual
description, while a discriminator network is simultaneously trained to distinguish between real and generated images. The generator
network learns to generate images that are as realistic as possible, while the discriminator network provides feedback to the generator
by evaluating the quality of the generated images. This feedback loop allows the generator to continuously improve its output
until it produces images that are indistinguishable from real ones. Therefore, the cDCGAN architecture implemented is based on
the Text2faceGAN model (Nasir et al., 2019). Nevertheless, it was empirically redesigned in training to maximise the results (see
‘‘Implementation & Evaluation’’ in Fig. 1). It consists of two integrated underlying architectures: a generator and a discriminator.

4.3.1. Generator architecture
The generator network consists of a series of transposed convolution layers together with activation layers with the following

components (see Fig. 3):

• The network has two inputs, the first for the vector of features generated by the encoder and the second for the noise vector.
The dimension for RoBERTa is 1024 and for Sent2vec is 4800; in both cases, through a dense layer, its dimension is lowered
to 256. The second input has a fixed dimension of 100.

• The two input layers are concatenated and pass through a dense layer of 512 neurons before entering the intermediate layers.
• It has four transposed convolution layers, with 256, 128, 64 and 3 filters, respectively, to implement the upsampling of the

images.
• Between the dense and transposed convolution layers, the ReLU activation layers are set with their default parameters.
• A batch normalisation layer with momentum = 0.2.
• All transposed convolution layers have initialisation of weights to a normal distribution.
• TanH activation layer after the initial concatenation layer and the last transposed convolution layer.
• Two Lambda layers: the first performs a division by 2 on the output tensor, and the second performs an addition of 0.5 to the

tensor.
• The generator uses the sigmoid activation, Adam optimiser with learning_rate = 0.0002 and beta1 = 0.5 and loss
= binary_crossentropy.

• Finally, the output generates 64 × 64 × 3 images that match the description entered into the network.

Therefore, during training, cDCGAN generates images according to the textual description indicated by the user. Subsequently,
these images are passed on to the discriminator network.

4.3.2. Discriminator architecture
The second component of our cDCGAN is the discriminator network (see Fig. 4). This network interacts with the generator, since

it is in charge of evaluating the quality of the generated images, and has the following components:

• Like the generator model, this model has 2 inputs. The first receives the image created by the generator, which has dimension
of 64 × 64 × 3; and the second is the vector of features of the text whose dimension is 1024 for RoBERTa and 4800 for
Sent2vec.
10
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Fig. 4. Schematic of the discriminator architecture for the developed cDCGAN. Note that the sentences were translated into Spanish for training/testing purposes,
although this document shows them in English for better understanding.

• In the first input, it passes through three normal convolutional layers, with filters of 64, 128 and 256, respectively, to implement
the downsampling of the input image.

• Between each of the convolutional layers, the LeakyReLU layers are added with their default parameter values.
• For the second input, the feature vector passes through one dense layer, to decrease its length, and three Lambda layers, to

change its dimension.
• The inputs are concatenated and pass through a 512-filter convolutional layer and a LeakyReLU layer.
• Then it passes through a Flatten layer to prevent overfitting at training time, and a dense layer to classify the image as

True/False.
• Finally, the generator uses the sigmoid activation, Adam optimiser with learning_rate = 0.0002 and beta1 = 0.5 and
loss = binary_crossentropy.

Once the cDCGAN was studied, the quality of the generated images was evaluated quantitatively (numerical results) and
qualitatively (visual analysis).

5. Experimental results & evaluation

The following section shows the quantitative and qualitative results obtained by the cDCGAN, taking into account the three
encoders under study: Sent2vec+CelebA, RoBERTa and RoBERTa+CelebA.

5.1. Encoder models

The first phase is the training of the encoders with CelebA, i.e., Sent2vec+CelebA and RoBERTa+CelebA.

5.1.1. Sent2vec+CelebA
In contrast to RoBERTa+CelebA, in which the RoBERTa baseline model is used and the tuning is performed with CelebA,

Sent2vect+CelebA, training must be performed from scratch. For this purpose, the training lasted 7 h (see Table 5) with the hardware
defined in Section 3.3 and the specifications given in Section 4.2. Note that the training process had to be carried out in Spanish,
as was done with RoBERTa.

5.1.2. RoBERTa+CelebA
In the case of RoBERTa+CelebA, the RoBERTa baseline model was taken and the tuning was performed with CelebA. For this

purpose, the training was carried out with 145 epochs according to the specifications given in Section 4.2, having a duration of 42
days (see Table 5) with the hardware defined in Section 3.3.
11
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Table 4
Results of Spearman’s correlation coefficient for the transformers. The best result is shown in bold.

Model Epoch Spearman correlation

RoBERTa Baseline model 0.827176427
RoBERTa+CelebA – 0.811153072
RoBERTa+CelebA 74 0.999913276

Table 5
Training computation time of the different models under study. The first two columns show the computation time in the training
phase carried out by the encoders, and the next three columns show the computation time in the training phase carried out by
cDCGAN with the encoders.
Encoders cDCGAN with the encoders

Sent2Vec+CelebA RoBERTa+CelebA Sent2Vec+CelebA RoBERTa RoBERTa+CelebA

7 h 1008 h (42 days) 98 h 11 min (4.1 days) 98 h 02 min (4.1 days) 99 h 31 min (4.15 days)

In order to compare with RoBERTa, an evaluation was made with the Spearman’s correlation coefficient between actual vector
nd the calculated vector using the cosine similarity for 1000 test sentences. Table 4 shows that RoBERTa+CelebA receives a
ower correlation than RoBERTa at the beginning of training. However, as training progresses, it is observed that RoBERTa+CelebA
chieves a better coefficient and thus improves the performance of the encoder.

.2. cDCGAN model

For training, cDCGAN used the training corpus described in Section 4.1 and the architecture described in Section 4.3. For the
inal evaluation, the model was trained using the Sent2vec+CelebA, RoBERTa and RoBERTa+CelebA encoders. All training and
valuation iterations were performed on the server described in Section 3.3.

Some important assumptions were taken into account in the training: (i) setting the number of epochs between 50 and 600 with
ntervals of 50; (ii) using 50,000 images in the training, instead of 202,599; this is an optimal size with respect to the hardware
sed, time and results obtained; and (iii) setting the batch size to 512. The training time was very similar across the three encoders,
.g., for epoch 600 Sent2vec+CelebA took 98 h 11 min (4.1 days), RoBERTa took 98 h 02 min (4.1 days), and RoBERTa+CelebA
ook 99 h 31 min (4.15 days) (see Table 5).

Once the three models have been trained, a quantitative and qualitative evaluation of the generated synthetic images is carried
ut as described in Section 3.2.

.3. Metric evaluation

To implement the numerical evaluations, 1000 images were taken randomly together with their respective descriptive sentences
see Section 3.2). Note that an adequate amount of data must always be used to obtain reproducible results, so while a smaller
umber of images may seem sufficient, in our case we use 1000 to add confidence and robustness to the models and their final
uantitative results (see Table 1). Fig. 5 shows the variation of the IS, FID and LPIS with respect to the number of epochs:

• IS (see Fig. 5(a)): It can be observed that RoBERTa+CelebA produces a better result than Sent2vec+CelebA and, in turn, is better
than RoBERTa. It can also be seen that Sent2vec has a high divergence from epoch 150. When comparing the transformers,
RoBERTa shows a small improvement compared to RoBERTa+CelebA in the final epochs, although RoBERTa+CelebA has a
metric stabilisation and RoBERTa has a high divergence. Comparison of these numerical results with the visual analysis (see
Table 7) confirms that IS is not a fully accurate metric, as discussed in Section 3.2, since there is no direct relationship between
a high IS score and the quality of the images. Note that the higher the IS score, the better is the quality of the images generated.

• FID (see Fig. 5(b)): It can be seen that the transformers produce better results than Sent2vec+CelebA, which has a high
divergence in epoch 150 that affects the visual quality of the images (see Table 7). When comparing the transformers,
RoBERTa+CelebA yields better results in almost all measurements, obtaining the best result in epoch 550 and affecting a
significant improvement in the visual quality of the images (see Table 7). Note that the lower the FID score, the better is the
quality of the images generated.

• LPIPS (see Fig. 5(c)): It can be observed that Sent2vec+CelebA shows the worst result in most epochs throughout the training,
showing a notable worsening from epoch 200 onwards. Meanwhile, RoBERTa+CelebA decreases faster and maintains a better
score at all times than RoBERTa. When LPIPS is compared to the visual evaluation of the images (see Table 7), it is noted that
the images have a direct and correlating relationship, coinciding with FID but in contrast to IS. Note that the lower the LPIPS
score, the better is the quality of the images generated.

In summary, Table 6 shows the best results obtained in each of the metrics for the different encoders. It can be observed that
12
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Fig. 5. Variation of the different metrics with respect to the number of training epochs for the three encoders under study: Sent2vec+CelebA, RoBERTa and
RoBERTa+CelebA.

Table 6
Best values of quantitative metrics using the three encoders: Sent2vec+CelebA, RoBERTa and RoBERTa+CelebA. Best results are
shown in bold.
Encoder IS FID LPIPS

Sent2vec+CelebA 2.7380 ± 0.1979 105.5604 0.3036 ± 0.0758
RoBERTa 2.7143 ± 0.1769 89.3566 0.2932 ± 0.0776
RoBERTa+CelebA 2.7891 ± 0.1659 84.2212 0.2851 ± 0.0769

FID and LPIPS, these best results are achieved after a prolonged training time (during the last training periods) and in accordance
with the visual results of the images generated (see Table 7). In contrast, the IS achieves the best scores during the first epochs (in
epoch 50). Therefore, it can be stated that the effectiveness in assessing the image quality of the IS for CelebA faces is significantly
lower than that of FID and LPIPS.

5.4. Visual analysis

Visual analysis allows us to complement the results of the metrics and compare whether they are directly related to the visual
ppearance of the generated images. For this purpose, seven descriptive sentences were randomly selected. Furthermore, the images
enerated for textual descriptions were evaluated using the best training weights obtained in FID.

Table 7 shows different images generated by cDCGAN. The descriptive text used for the evaluation is: ‘‘She has large lips with
arched eyebrows and a slightly open mouth. The young and attractive smiling woman is wearing a lot of makeup. She is wearing earrings and
lipstick’’. (note that the sentences were translated into Spanish for training/testing purposes, although this document shows them in
English for better understanding). The following can be observed:

• Transformer-based models, i.e., RoBERTa and RoBERTa+CelebA, yield a better visual rendering in the images generated in all
epochs.

• The training time directly influences the quality of the images generated (and in accordance with the metrics), e.g.,
Sent2vec+CelebA gradually decreases the quality from epoch 200 onwards.

• In terms of image rendering, this is consistent with the features described in the text. RoBERTa+CelebA generates more detailed
images according to the features described as input.

• The visual analysis of the images generated is directly related to FID and LPIPS and is inversely related to IS (compare with
Fig. 5).

Furthermore, Table 8 shows the different outputs of faces generated from a textual description as input. The generator was
boosted with the weights of the best FID result. The following can be observed:

• The resolution and quality of the images generated improve in direct proportion to the number of sentences in the description;
see Items 1, 3, 5 and 6. On the contrary, in Items 2 and 4, which have only two descriptive sentences, the images have
less detail. It can also be seen that Sent2vec+CelebA generates the most distortion when it has little information and
RoBERTa+CelebA the least.

• In the cases where not all the given features are defined as an input, the generator assigns random features. For example, in
Item 4, the face features are assumed by the cDCGAN based on the learning process in training.

• There is difficulty in generating images with descriptive features that were not considered during the training. Images
have distortions or approximate features. For example, for Item 6, the feature ‘‘She has short hair that is blonde in colour’’
causes an image with distortion to be generated using Sent2vec+CelebA. However, RoBERTa and RoBERTa+CelebA generated
higher-quality images.
13
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Table 7
Best values across the epochs for IS, FID and LPIPS, using the three encoders under study: Sent2vec+CelebA, RoBERTa
and RoBERTa+CelebA.

Table 8
Some examples of generated images based on a descriptive text as an input using the three encoders under
study: Sent2vec+CelebA, RoBERTa and RoBERTa+CelebA. Note that the sentences were translated into Spanish for
training/testing purposes, although this document shows them in English for better understanding.

• The most complicated attributes to generate are the descriptions of accessories such as a tie, lipstick or hat. Despite this, it
can be seen that RoBERTa+CelebA generates the most complete images of these accessories.

In summary, it can be confirmed that RoBERTa+CelebA generates images of higher quality than RoBERTa and Sent2vec+CelebA
and according to reliable and robust metrics.

5.5. Discussion

Once the cDCGAN was implemented with the three encoders under study, the model was trained and the quality of the generated
images was evaluated. We can make the following observations:
14
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• The training time for our cDCGAN was quite costly in all cases, as the generator and discriminator seek a complex and fault-
prone balance. Moreover, instead of using the baseline layers in the trained model, we used specialised convolutional layers
in the images, which presents a higher cost in time and computational resources.

• As can be seen in Table 4, RoBERTa+CelebA generates better results than RoBERTa applying Spearman’s correlation for a set
of sentences. This improvement can be seen numerically in the metrics, i.e., IS, FID and LPIPS (see Fig. 5). Furthermore, our
metrics improve on the results seen in the literature (see Table 1).

• Regarding IS, we obtain a significant score above 2 in all encoders. Similarly, it can be seen that there is an improvement in
this metric with respect to the baseline work, obtaining an IS of 1.4 ± 0.7 (see Table 1) (Nasir et al., 2019).

• The IS score increases or decreases in the opposite proportion to the other two metrics and to the visual quality of the generated
images. The main problem is that IS is limited by the dataset used during classifier training. Therefore, if not trained with
similar images, it scores low and provides little ability for the classifier to detect visual features in defining the concept of
image quality, i.e., poor quality images may obtain high scores.

• FID and LPIPS show reliable results that go hand in hand with the qualitative visual appearance of the images generated. This
is an indicator of reliability, as they are much more accurate and suitable metrics for image evaluation than IS. Our findings
show promising results with respect to the literature by improving the numerical metrics of FID by 5% and LPIPS by 37% (see
Table 1).

• Table 8 shows that transformers generate much sharper images with characteristics similar to the descriptive text, even if
the descriptive text is not included in the training. This is because Sent2vec+CelebA wholly depends on the corpus used for
training. In contrast, RoBERTa uses a pre-trained model rich in contextual information that allows the lack of descriptive
features to be overcome by replacing them with similar values included in their pre-training.

• The transformer model developed by the authors, i.e., RoBERTa+CelebA, generates better quantitative and qualitative results
than RoBERTa and Sent2vec+CelebA.

. Conclusions and open challenges

In the current research, a cDCGAN was implemented that generates faces guided by a descriptive text in Spanish. Three different
ncoders were tested: Sent2vec+CelebA, RoBERTa and the model developed in this research, RoBERTa+CelebA. In order to have
robust model, a descriptive corpus from CelebA was generated in Spanish, with which the Sent2vec encoder and the research
odel, i.e., RoBERTa+CelebA, were trained.

Likewise, to evaluate the generalisation of the developed model, i.e., RoBERTa+CelebA, a numerical evaluation was carried
ut using the IS, FID and LPIPS metrics, and a qualitative evaluation was performed by visually verifying the resulting synthetic
ace images. In both cases, it can be concluded that RoBERTa+CelebA generates both quantitatively (numerically) and qualitatively
visually) better results than Sent2vec and RoBERTa.

Furthermore, we show that IS is not an objective metric to be taken into account in this type of experiment because of its
ompletely random performance in the quantitative–qualitative evaluation relationship. Consequently, we recommend using FID and
PIPS, which showed more reliable, stable and robust performance throughout the training, and in accordance with the generated
mages for the cDCGAN. Our findings show promising results with respect to the literature by improving the numerical metrics of
ID and LPIPS by 5% and 37%, respectively.

About the open challenges in this research are to train the cDCGAN model with a larger number of images and their respective
aptions for a longer time, and to test with a larger training corpus for Sent2vec and RoBERTa encoders, e.g., Spanish Unannotated
Corpora (Cañete et al., 2020).5 A further research line is to develop a quantitative and qualitative comparative study on the efficiency
of RoBERTa with respect to other architectures previously developed in the literature. Likewise, it is important to evaluate the quality
of images in greater detail, specifically focusing on the quality of facial features. Finally, we recommend expanding the generation
of text-to-face in Spanish by testing other robust architectures, such as SBERT+DFGAN.
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