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Statistical evidence is pervasive in medicine. In this chapter we will focus on the 

reliability of randomized clinical trials (RCTs) conducted to test the safety and efficacy 

of medical treatments.  RCTs are scientific experiments and, as such, we expect them to 

be replicable: if we repeat the same experiment time and again, we should obtain the 

same outcome (Norton 2015). The statistical design of the test should guarantee that the 

observed outcome is not a random event, but rather a real effect of the treatments 

administered. However, for more than a decade now we have been discussing a 

replicability crisis across different experimental disciplines including medicine: the 

outcomes of trials published in very prestigious journals often disappear when the 

experiment is repeated –see for instance Lehrer 2010, Begley and Ellis 2012, Horton 

2015).  

There are different accounts of the reason for this replicability crisis, ranging from 

scientific fraud to lack of institutional incentives to double-check someone else’s 

results. In this chapter we will use the replicability crisis as a thread to introduce some 

central issues in the design of scientific experiments in medicine. First, in section 1 we 

will see how replicability and statistical significance are connected: we can only make 

sense of the p-value of a trial outcome within a series of replications of the test. But in 

order to conduct these replications properly, we need to agree on the proper design of 

the experiment we are going to repeat. In particular, we need to prevent the preferences 

of the experimenters from biasing the outcome of the experiment. If there is such a bias, 

when the experiment is replicated by a third party, the observed outcome will vanish. In 
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section 2, we will argue that trialists need to agree on the debiasing procedures and the 

statistical quality controls that feature in the trial protocol, if they want the outcome to 

be replicable. In section 3 we will make two complementary points. On the one hand, 

replicability per se is not everything: we need trial outcomes that are not only 

statistically significant, but also clinically relevant. On the other hand, trials are not 

everything: the experts analyzing the evidence can improve the reliability of statistical 

evidence, although they sometimes fail; we need to study further how they make their 

decisions. In section 4 we will use a controversy about the over-prescription of statins to 

show how non-replicable effects are obtained in trials and how experts may fail at 

detecting such flaws, if the commercial interests are big enough. 

1. What sort of statistical evidence is the p-value of a trial? 

Mathematical statistics, with different degrees of sophistication, has been used for 

different purposes in medicine since the 19
th

 century (Matthews 1995). One major 

purpose has been the assessment of the efficacy of treatments and a significant step 

forward in our ability to assess this efficacy was the implementation of the RCT as a 

testing standard in the 1940s (Marks 1997). The RCT is an experimental design 

articulated by the statistician Ronald A. Fisher in the 1930s, endowing a comparative 

method for causal inference with statistical foundations that allowed an interpretation of 

the outcome. In its simplest form, an RCT assesses the effect of a treatment on a given 

population comparing it to a standard alternative or a placebo –see Hackshaw (2009) for 

a quick overview. The treatments are randomly allocated to the individuals in the test, 

usually an equal number in each treatment group. After the administration is complete, 

we measure the variable of interest to assess whether there is any significant difference 

between the two groups of patients.  
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In order to quantify the significance of the difference, Fisher arranged the experiment as 

a test of the hypothesis that there is no difference between the two treatments (Teira 

2011). This is known as the null hypothesis. Under this assumption, you can calculate 

the probability distribution of all potential outcomes of the experiment. In other words, 

a statistically significant difference is an outcome for which the probability, under the 

null hypothesis, is very low. Fisher introduced as an index of significance the p-value, 

the probability of obtaining a result as extreme as the observed trial outcome or more if 

there is indeed no difference between treatments. A p-value of 0.05 means that, 

assuming that the null hypothesis is true, if you repeat the trial time and again, only in 

5% of the repetitions will you observe such an extreme outcome or an even more 

extreme one.  

If you obtain a statistically significant result, with a p-value below the conventional 

threshold of 0.05, there are two possible ways to interpret this outcome: either the initial 

hypothesis is true (there is no difference between treatments) and you have observed a 

rare event, or, the event is actually not rare at all and the hypothesis is just false. There 

is no way to tell which is the case other than replicating the experiment and seeing 

whether further outcomes confirm or disconfirm the hypothesis that there is no 

difference between the effects of both treatments. If repeated trials of the experiment 

continue to give “unexpected” results, the therapy probably works and the null 

hypothesis is probably false. If most trials give no significant difference, then the trial 

that did so was probably just a fluke, and the null hypothesis is probably true. Thus, 

ultimately, drawing conclusions from clinical trials is in an inductive inference: you are 

trying to prove the truth of a general proposition (or its negation) on the basis of a finite 

number of instantiations. There is no surefire method to decide whether the hypothesis 

is actually true or not. As Ronald Fisher put it, one has a real phenomenon when one 
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knows how to conduct an experiment that will rarely fail to give a statistically 

significant result: we can show time and again that there is a real difference between the 

effects of the tested treatments (Spanos & Mayo 2015).  

We should notice a crucial point in this argument. The p-value estimates how often an 

outcome will appear in a series of replications of the experiment. Thus, Fisher’s 

interpretation of the trial outcome requires a frequentist understanding of probabilities 

as opposed to a Bayesian approach where probabilities measure our degree of belief in 

the truth of a given statement: see Nardini, this volume. A Bayesian trial would measure 

how strong our belief in the safety and efficacy of a treatment is. In a frequentist trial we 

measure instead how often we will observe a given outcome if we repeat the same 

experiment time and again. Our p-values are tied to an experimental design. If we 

conduct a somewhat different trial of the same therapy, the probability distributions of 

outcomes will be different, and thus an outcome that was statistically surprising in the 

original experiment may not be in the new one. Thus, paradoxically, identical outcomes 

in two differently designed experiments may not confirm each other. Confidence 

intervals, alpha values and other frequentist concepts for hypothesis testing are equally 

tied to an experimental plan.  

As a general epistemic principle, scientific experiments should be replicable: if we 

implement the same design properly, we should obtain the same outcome independently 

of any subjective feature of the experimenter or the contingent circumstances of the 

experimental setup. The more replicable an outcome, the more reliable it is. In clinical 

trials, as in other fields in science, p-values provide an implicit index of the replicability 

of an outcome: if we reject a hypothesis about both treatment effects being equal, we 

should expect the new treatment to perform better than the alternative whenever we 
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administer it according to the trial protocol (patients, dosage, etc.). However, as we are 

will see in the next section, the p-value may be a misleading index of replicability.        

2. The sources of non-replicability  

In 1962, the US Food and Drug Administration (FDA) received the mandate to test the 

safety and efficacy of new treatments with “well controlled investigations,” later 

specified as two RCTs plus one further confirmatory trial (Carpenter 2010a). This new 

regulatory standard created the contemporary trial industry, with pharmaceutical 

companies heavily investing in the design and conduct of RCTs in order to gain market 

access for their compounds. The FDA experts are supposed to assess these trials and 

infer whether the outcome observed in the sample of patients participating in the trials 

will obtain when the treatment is used on the general population. In other words, the 

FDA experts should assess the external validity of the trial (see La Caze, this volume), 

that is, whether the causal connection established in the trial between the treatment, on 

the one hand, and improved patient outcomes, on the other, will hold in non-

experimental clinical settings. If the drug is approved and then turns out not to be safe 

and efficacious – e.g., if unexpected adverse effects are observed once the treatment is 

released commercially – we would have accepted the wrong hypothesis in the trial: the 

experimental treatment would actually be inferior to the standard alternative.  

A correct decision should be grounded on reliable trial outcomes and in order to obtain 

these latter, the experimenters testing a drug should agree, at least, on the proper 

controls to be implemented in the trial and on the adequate statistical design of the 

experiment. Otherwise, the p-values of their trials may be pointing to different 

experimental designs, providing non-comparable evidence. Ideally, a good trial should 

be internally valid (see La Caze, this volume): the experimental protocol should 

properly capture the causal connection between the administered treatment and the 



6 
 

observed effect. A correct causal inference should be grounded in a like with like 

comparison. The different arms of the trial should be entirely alike except for the 

treatment each group of patients receives. Othewise, we would be unable to tell whether 

the observed difference between treatments originates in the causal effect of each 

treatment or in a non-controlled factor that creates a difference between groups. For 

several centuries, physicians have been debating the proper experimental controls that a 

fair test should implement in order to fend off confounding factors. The reader should 

bear in mind that this is an endless debate (e.g., Franklin 1990): every experimental 

setup is different and so are the potential confounding factors and the corresponding 

controls. Experimenters in all disciplines have their checklists updated according to the 

progress in their fields. 

In medicine, researchers have paid particular attention to the biases originating in the 

preferences of either the experimenters or the experimental subjects and how to control 

for them. Non-replicable outcomes are usually blamed on these sort of biases: the 

interests of the pharmaceutical industry spoils the design of their sponsored trials, so 

that their outcome disappears once these tests are conducted in an unbiased manner. 

There are a large number of biases (e.g., Bero and Rennie 1996) so we can only 

illustrate here some that are particularly relevant for the replicability crisis. We will 

focus on two stages of the experiment: the conduct of the test and its statistical 

interpretation. 

As to the former, there is a clear consensus on some of the biases that may spoil a trial 

outcome. Selection bias occurs when the allocation of subjects to study groups is 

contaminated by the preferences of the experimenter (e.g., the healthiest patients receive 

the experimental treatment). Randomization controls for selection bias and is therefore 

considered a pre-requisite for a methodologically sound trial. So is the masking of 
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treatments, so that the physicians and patients in the trial cannot ascertain what they are 

giving or getting, guaranteeing that their preferences do not bias the treatment effect. 

However, there is still no consensus on the full list of controls that should be 

implemented in a trial in order to consider it unbiased. 

Peter Gøtzsche (2013) illustrates the risk of unmaskeded trials as follows. In trials of 

antidepressant drugs, we usually assess subjective outcomes, even if the assessor is 

often a third party and not the patient himself. There is evidence from a meta-analysis 

(Hrobjartsson et al. 2013), that when the assessor is not masked to the treatment patients 

receive (i.e., she knows whether they got the experimental drug or a placebo), the 

assessor overestimates the effect on average by 36%.   

Reaching statistical significance is often a matter of getting a few more positive 

outcomes. Following Gøtzsche (2013), if you are testing an antidepressant versus a 

placebo on 400 patients, the p-value of observing 19 more patients improve with the 

experimental drug than with the control is 0.07  

 

However, if you observe two more patients improve with the active treatment (121 

instead of 119), then your trial will reach statistical significance (p = 0.04). A non-

masked assessment of outcomes increases thus the chances of getting a positive result. 

We may suspect that failing to mask the assessor could have been intentional if the 

sponsor of the trial was seeking such a favorable outcome. Here we see what is at stake 

with the internal validity of the trial: the design of the experiment may fail to grasp the 

causal connection (or rather, in this case, lack thereof) between the treatment and its 
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study’s outcome, with the p-value providing misleading evidence about the treatment 

efficacy. 

Biases, which by their nature do not (necessarily) repeat each time a trial is redone, can 

thus be a cause of non-replicability. If we wish to eliminate bias, we need to agree on 

the list of controls that would guarantee an unbiased outcome and incorporate them into 

the trial protocols, in order to maximize our chances to observe the same outcome 

whenever we repeat the experiment. How far are we from these ideal list of debiasing 

controls? In principle, we should aim at controlling for every source of human 

intervention, but this is difficult to achieve. For instance, Claes-Fredrik Helgesson 

(2010) has illustrated practices of out-of-protocol data cleaning in large Swedish RCTs. 

Helgesson tracks the ways in which data are informally recorded and corrected without 

leaving a trace in the trial’s logbook, from post-it notes to guesses about the misspelling 

of an entry. In his view, those who make such corrections do so in good faith, in order 

to increase the credibility of their results. Would these corrections threaten the internal 

validity of the outcome? After all, if the experiment was replicated elsewhere, the 

corrections might be different and the test would yield a different outcome. But if we 

tried to explicitly control for these cleaning practices the experimental protocol would 

become extremely cumbersome. This is why it is so difficult to agree on a full list of 

controls: experimenters have different standards as to what constitutes an unbiased 

experiment and we need to reach a compromise in between absolutely unbiased (but 

unfeasible) protocol and protocols that are too open to interested manipulations. 

As we noted above, the statistical analysis of trial results, as well as the study design 

itself, can lead to problems in replicability, as statististical analyses can also be biased, 

(e.g., according to the preferences of the sponsor) most notoriously when the sample 

size is not chosen according to statistically justified principles. In biomedical research, a 
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particularly vocal critic of this statistical flaw is the epidemiologist John Ioannidis. 

Although some of his claims are controversial (“most published research findings are 

false”: see, e.g., Soric 1989, Ioannidis 2005a, 2005b, 2014a), his contributions are worth 

considering as a focal point in the replicability debate. Take for instance his empirical 

evaluation of very large treatment effects (VLE) of medical interventions (Pereira et al. 

2012). A standard complaint about industry sponsored research is that trials are 

designed to detect small treatment effects that would guarantee regulatory approval 

without any clinical innovation (e.g., “me too” drugs): in principle, VLE would sort out 

this problem. Ioannidis and his coauthors define a statistical threshold for VLE, and 

used data from the Cochrane Database of Systematic Reviews to identify studies that 

showed such effects and track further studies on such outstanding outcomes. They 

found that VLEs usualy arise in small trials with few events, and their results typically 

become smaller or even lose their statistical significance as additional evidence is 

obtained. According to Ioannidis (2008), we have here a problem of statistical literacy: 

biomedical researchers tend to claim discoveries based exclusively on p-values, 

focussing on significance while ignoring statistical power, which is a measure of 

whether a study is large enough to detect what it is looking for. Without a proper sample 

size, it is impossible to tell a random spike in the data from a true treatment effect. If the 

sample is small, we may observe a large difference by chance, but if  the experiment 

were repeated and the sample size grew, chance would gradually give way to the true 

treatment effect (see, for instance, Button 2013). Replicability fails to obtain because 

there might have been no effect to grasp – even if the trial protocol itself was unbiased. 

Although adequate sample size is usually included in lists of requirements for well 

designed studies, it is still often not met, as not all medical journals require it for 
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publication. As before, part of the problem is lack of agreement as to which tools for 

bias control to require of researchers.. 

Summing up, biases can contaminate the trial and spoil the statistical reliability of the 

outcome both while the experiment is being conducted and when the data are 

interpreted. The replicability of a trial will depend on which debiasing procedures and 

statistical quality controls that experimenters adopt in their experimental protocols. The 

more replicable the trial, the more reliable the information it yields.  

3. Is the problem truly a crisis 

Although we have discussed some of the sources of the replicability crisis, the question 

remains whether it is reasonable to refer to the problems we have with replicability as a 

crisis. On the one hand, a trial may be replicable and yet it may not deliver the 

information we actually need: we want clinical, not just statistical reliability. 

Replicability is no guarantee of clinical benefit. On the other hand, despite the problem 

with the replicability of trials, regulators seem to have coped with them reasonably well 

until recently, according to the available data. In other words, even without replicability, 

expert judgment has allowed us to make proper decisions about the safety and efficacy 

of drugs. 

Let us argue for the first point: Pereira et al. (2012) note that VLE usually appear with 

treatments whose efficacy is defined by a laboratory test (e.g., hematologic response), as 

opposed to a clinically-defined efficacy (e.g., symptomatic improvement) or a fatal 

outcome (e.g., death). There were only three reliably documented VLE that used 

mortality as an endpoint (out of 2791). We see here another contentious point in 

contemporary debates on biomedical research: sometimes there are good reasons to 

adopt soft endpoints instead of hard trial outcomes (death); sometimes not. According 

to the industry critics, soft endpoints are chosen in order to get a statistically significant 
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effect of a treatment, even if  it is clinically not very interesting. This positive effect is 

just enough for the manufacturing company to request regulatory approval. Such trials 

may be unbiased, statistically well-grouned and perfectly replicable, but the research 

question they are addressing may just concern the commercial interest of the 

manufacturer sponsoring the trial rather than the clinical interests of patients and 

physicians alike –as we will see in our case study below. This point suggests that some 

of the issues at stake in the replicability crisis go beyond the methodological quality of 

trials as scientific experiments and rather pertain to their clinical goals: what trial 

outcomes should we look for and who should decide about them?   

Let us argue for our second point now: expert judgment can improve the reliability of 

the information provided by trials. If trials were systematically unreliable, the decisions 

of regulatory agencies such as the FDA would be systematically misguided. Critics like 

Gøtzsche (2013), for instance, think that this is actually the case: 70% of FDA scientists 

are not confident that the drugs they approve are safe. If the internal or external validity 

of a trial fails, we will indeed observe outcomes in the population that were not 

anticipated in the trial.  

Dan Carpenter has tracked such unanticipated outcomes through label changes: adverse 

effects observed in the commercial use of a drug are often incorporated into its 

brochure. From 1980 to 2000, the average drug received five labeling revisions, about 

one for every three years of marketing after approval (Carpenter 2010a, p. 623). Clearly, 

there is much about the full range of effects of a drug that we only discover after it 

reaches the market. Regulatory trials are testing the safety and efficacy of a compound, 

so these new findings do not necessarily call the original studies and their evaluation 

into question. Indeed, if we judge the reliability of trials by the number of market 

withdrawals due to serious adverse effects, the figures seem more promising: between 
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1993 and 2004, only 4 out of the 211 authorized drugs (1.9%) were withdrawn 

(Carpenter et al. 2008). In other words, the external validity of trials might be far from 

perfect (they don’t track the full range of effects), but when it matters (serious adverse 

effects), the FDA seems to have been making the right decision. How is this possible? 

The FDA combines the statistical evidence of clinical trials with expert deliberation: 

decisions about drugs are not made on the basis of RCTs alone, but in committees with 

adversarial confrontation of experts (Urfalino 2012). These committees seem to be able 

to make correct decisions as to the safety and efficacy of drugs and ponder the 

reliability of the evidence provided by trials –for a critical discussion, see Stegenga, this 

volume. At least, under certain conditions: a 1.9% error rate (drug withdrawal) in a 

decade seems a reasonable standard. But when the FDA committee was given a shorter 

deadline, still in the same period (1993-2004), 7% of the drugs approved were later 

withdrawn (Carpenter et al. 2008). In other words, under certain conditions, expert 

judgment can improve the reliability of the information RCTs when it comes to making 

decisions about medical treatments. Further investigation is needed as to how these 

expert judgments work, but the effect cannot be discounted. 

4. Case study: a controversy over statins 

Let us illustrate with a case study two of the previous points: not large enough trials and 

the relevance of expert judgment. The treatment under discussion will be statins, a class 

of drugs that inhibits the cholesterol synthesis associated with cardiovascular diseases 

(CVD). Statins have been widely used over the last thirty years to prevent CVD, with 

excellent success in many different trials – and an equally successful record in sales. 

However, there is a growing concern that statins are being overprescribed on the basis 

of trials that verify their ability to decrease cholesterol in many groups of patients 

without evaluating whether they prevent these patients’ death – see, e.g., Goldacre 
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2012, González-Moreno et al. 2015. The reader should bear in mind that this is a 

controversial issue and the question is far from settled.   

This concern about overpresciption was highlighted by the controversy that followed 

the publication, in November 2013, of The American College of Cardiology/American 

Heart Association guidelines on the topic. These new guidelines recommend the use of 

statins for primary prevention of CVD (prevention of CVD in patients who do not yet 

have it) in patients with a 10-year predicted risk of CVD of 7.5% or greater; statin 

therapy was suggested as an option in patients with a predicted risk between 5% and 

7.4%. These are very low thresholds and, consequently, more than 45 million (about 

one in every three) middle-aged asymptomatic Americans qualified for treatment with 

statins. If we consider that the US population is about one-twentieth of the global 

population in the same age-range, and assuming that the distribution of risk profiles is 

similar, this would suggest that approximately one billion people should take statins. In 

Ioannidis’s (2014b) words, this would amount to a “statinization” of the planet.  

Taking statins is not completely harmless: there are side effects (Macedo et al. 2014). 

So what were the grounds for such a massive public health intervention? According to 

Ioannidis (2014b), the guidelines were based on trials that tracked the cholesterol 

reduction in patients, but did not follow them for long enough to see whether such 

reductions lowered also their mortality rate. This was the case of JUPITER, one of the 

biggest trials testing a statin in patients who had not yet shown evidence of CVD 

(primary prevention) (Ridker 2009). It showed that the treatment significantly reduced 

the risk of myocardial infarction, stroke and vascular events, but, because it showed 

strong evidence of benefit early, the trial stopped following patients after 1.9 years 

instead of the planned 4 years, and thus was unable to detect an effect on mortality in 

the participants. (de Lorgeril, et al 2010).  
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Trials are statistically designed to reveal a treatment effect of a given size with a 

minimal error rate. We need a certain amount of data (a designated number of patients: 

the sample size) to minimize error. If we interrupt the trial, we are losing data and we 

can only be certain of identifying the true effect of a treatment under a number of 

statistical assumptions. JUPITER was interrupted because the preventive effect of 

statins was judged big enough to make the remaining two years of data accumulation 

unnecessary. In other words, the implication was that were someone to try to replicate 

JUPITER in full, she would observe the same effect, as the effect JUPITER observed 

was so large, even before it was completed, that it could not reasonably be supposed to 

be due to chance. 

But, in fact, when other researchers tried to reproduce the same effect, they were 

unsuccessfully. For instance, CORONA (2007) aimed to test the efficacy of statins in 

secondary prevention, treating patients who already have had a cardiac event, with a 

view to reducing the probability of a second one. The conclusion was that “there were 

no significant differences between the two groups in the coronary outcome or death 

from cardiovascular cause.” This was an unexpected outcome, since the trial population 

should clearly benefit from the preventive effects of statins. Indeed, the physio-

pathological mechanism of stroke or myocardial infarction is always the same, statins 

should be at least as efficacious in the secondary prevention as in the primary and we 

have not any scientific reason to think the opposite. In fact, the only difference between 

the two populations is the probability of observing an infarction, which is obviously 

higher in patients who already had one than in healthy people. This has an important 

consequence in designing and performing trials. As we have just mentioned in primary 

prevention, if the population is at lower risk, this means that the probability of 

observing a myocardial event is low; therefore, the detection of the outcomes needs both 
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a bigger sample size and a longer follow-up of patients. Whereas in secondary 

prevention, we need less people and a shorter follow-up to show an effect of statins 

since the probability of observing a cardiac event is high. Therefore, from a statistical 

point of view, it should be easier to demonstrate the efficacy of statins in secondary 

prevention than in primary, yet this did not happen. The outcome of CORONA was also 

reached by two more trials: GISSI-HF (2008) and AURORA (2009). In patients 

undergoing hemodialysis with high cardiovascular risk, rosuvastatin lowered the LDL 

cholesterol level but had no significant effect on a hard composite end point (death, 

myocardial infarction and stroke). CORONA, GISSI-HF and AURORA appear to be 

trying to reproduce the effect observed in JUPITER in conditions where it should be 

even easier to detect. Why did these replications fail? Perhaps because the decision to 

interrupt JUPITER for evidence of early benefit was mistaken. (Although it was not 

exceptional. A systematic review showed that the number of trials that are being 

stopped early for apparent benefit is gradually increasing (Bassler et al 2010)). It often 

happens that the decision to stop is not well justified in the ensuing reports: the 

treatment effects are often too large to be plausible, given the number of events 

recorded. Thus the observed effects are not replicable because researchers ground their 

conclusions too optimistically on not large enough sample sizes (insufficient power).  

Unlike the FDA experts discussed in the previous section, The American College of 

Cardiology/American Heart Association did not correct for the flaws in JUPITER and 

we may suspect that they may have been somehow biased by the huge commercial 

interests at stake. Hence, we need to pay attention not just to the replicability of trials, 

but also to the way in which experts judge their conclusions. 
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Concluding remarks 

We have only covered ( partially) the methodological side of the replicability crisis. We 

have shown how a proper epistemic interpretation of p-values requires replicability. 

This latter depends, on the one hand, on the controls we impose on the experiment to 

secure that it is not biased by any particular preference or skill of the experimenter (or 

any other participant in the trial), and, on the other hand, on a proper statistical design 

for the trial, in which the sample size plays a crucial role. Without a previous agreement 

on the list of controls and statistical features that characterizes a fair trial, we may be 

missing replicability due to ambiguity in our experimental plan. And yet, not only 

statistical replicability matters. As John Norton (2015) has recently argued, the 

epistemic value of a replication is domain-specific: it depends on what we already knew 

about a given condition and the goals we seek to reach with a treatment. On the one 

hand, we need clinically (and not just statistically) significant outcomes. On the other, 

we need to investigate how expert judgment can properly assess the statistical evidence 

provided by trials. 
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Further readings 

Since the replicability crisis is still unfolding it is probably better to use the Internet for 

updated references.  

For a general overview, in open access, you will find Nature’s special issue on 

reproducibility: http://www.nature.com/nature/focus/reproducibility/index.html. For 

updates on withdrawn papers from scientific journals, often (but not only) for 

replicability issues see http://retractionwatch.com/ Deborah Mayo’s blog is a rich source 

of (statistically informed) philosophical discussion on the replicability crisis: 

http://errorstatistics.com/category/reproducibility/ An extensive historical source about 

http://www.nature.com/nature/focus/reproducibility/index.html
http://retractionwatch.com/
http://errorstatistics.com/category/reproducibility/
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controls implemented medical experiments for grounding like with like comparisons is 

the James Lind library: http://www.jameslindlibrary.org/  

 

http://www.jameslindlibrary.org/

