La Tutoría Telemática en la Educación a Distancia

(Teematic Tutoring in Distance Education)

MARÍA IRMA MARABOTTO
Jorge E. Grau
FUNDEC
(República Argentina)

RESUMEN: Este trabajo presenta una aplicación experimental de tutoría telemática mediante un "Bulletin Board System", realizada entre 1996 y 1997 con los alumnos de la República Argentina del Postgrado Especialista Superior Universitario y del Máster en Informática Educativa, ambos de la Facultad de Educación de la Universidad Nacional de Educación a Distancia –UNED– de España. El tele-procesamiento informático, o telemática, brinda una nueva dimensión de trabajo: hace realidad que los usuarios puedan intercambiar información a través de redes de comunicaciones, permitiendo no sólo un tratamiento autónomo de los datos sino también la comunicación entre personas. Se analiza una experiencia de casi doscientos alumnos, distribuidos en casi 2.800.000 km2, a la luz de herramientas telemáticas más actuales y potentes, como lo son el correo electrónico e Internet.

Educación a distancia - Tutoría - Telemática - Correo Electrónico - Internet

ABSTRACT: This work presents an experimental application of Communication-Tools Tutelage through a "Bulletin Board System", that was brought into action between 1996 and 1997, with students from Argentina. Those students were in the Postdegree and Master in Educational Informatics; both careers depend on the Distance University's Education Faculty, from Spain. The informatic tele-processing gives a new work's dimension. The users can interchange information through communication nets, allowing them not only an independent treatment of information but also people's communication. It's analyzed an experience about almost two hundreds of students, who were distributed on almost 2.800.000 km2, all of them working with more actual and strong communication-tools, such as e-mail and Internet.

Distance Education - Tutoring - Telematics - E-mail - Internet
1. **INTRODUCCIÓN**

La educación a distancia, mediante la incorporación de entornos tecnológicos como soporte de la función tutorial, se ha transformado en un importante complemento del sistema educacional convencional, con la excepcional ventaja de brindar oportunidad, a quienes lo deseen, de iniciar o continuar sus estudios, sin importar las distancias, disponibilidades de tiempo, ritmo de aprendizaje y lugar de residencia (UNESCO: Aprendizaje abierto y a distancia, 1998).

Uno de los factores que explican el gran crecimiento de los estudios universitarios a distancia es la eliminación del sentimiento de aislamiento tan habitual en el alumno que estudiaba tradicionalmente mediante esa modalidad, antes de la aparición de los medios tecnológicos actuales (Garcia Aretio, L., 1996). Hoy, gracias a las posibilidades del tele-procesamiento informático el estudiante siempre puede dejar un mensaje a su tutor y mantener un contacto permanente con sus compañeros de curso, creándose lo que ha dado en denominarse *aula virtual*.

El tele-procesamiento informático –teleinformática, o telemática– es una apasionante área de utilización de las computadoras, que brinda una nueva dimensión de trabajo: permite hacer realidad lo que se ha dado en llamar *informática distribuida*. Los usuarios pueden intercambiar información a través de redes de comunicaciones, disponiendo a su vez de equipos capaces de un tratamiento autónomo de los datos. De esta forma la computadora, más bien pasiva, da paso a sistemas informáticos que facilitan no sólo la distribución de la carga de procesamiento de la información sino también la comunicación entre personas.

Toda situación pedagógica se apoya sobre procesos de comunicación establecidos entre docentes y alumnos, que permiten las transmisiones de los mensajes y respuestas con los cuales se va concretando la intencionalidad educativa. Tradicionalmente esa relación se ha cumplido en forma mayoritaria mediante la presencia física simultánea de docente y alumno. La educación a distancia modifica el cuadro, introduciendo modelos de comunicación en los que el proceso es llevado a cabo sin la presencia física directa del docente, o por lo menos la exige con frecuencia reducida, gracias a la incorporación de medios que transportan su mensaje y recogen las respuestas del alumno (Gallego, D. J., 1993).

De esta manera se puede atender a más alumnos, que pueden aprovechar el mensaje educativo en lugares y momentos diversos. Los medios propuestos para ello son múltiples –correspondencia, radio, televisión, grabaciones, plataformas multimedia con textos, disquetes, vídeos, audiocassettes, y ahora la tutoría telemática– y su uso depende principalmente de las circunstancias de cada caso y de lo que resulte más eficaz en función de ellas.

Este trabajo presenta una aplicación experimental de *tutoría telemática* realizada mediante un "Bulletin Board System" con 191 alumnos, distribuidos en los casi 2.800.000 km² de la República Argentina, del *Postgrado Especialista Superior*
Universitario y del Máster en Informática Educativa de la Universidad Nacional de Educación a Distancia –UNED– de España, y brinda algunas conclusiones de esta experiencia a la luz de herramientas telemáticas más actuales y potentes, como lo son el correo electrónico e Internet.

2. CARACTERÍSTICAS DEL POSTGRADO ESPECIALISTA SUPERIOR UNIVERSITARIO Y DEL MÁSTER EN INFORMÁTICA EDUCATIVA DE LA UNED

Presentaremos tanto al Postgrado Especialista Superior Universitario como al Máster en Informática Educativa, ambos de la Universidad Nacional de Educación a Distancia –UNED– de España, y dirigidos por la Dra C. M. Alonso García, Profesora Titular de Tecnología Educativa de la Facultad de Educación.

El diseño del Postgrado fue “el resultado de dos años de investigación interdisciplinar e interfacultades de docentes del Departamento de Didáctica de la Facultad de Educación, del Departamento de Informática y Automática de la Facultad de Ciencias y del Departamento de Mecánica de la Escuela Técnica Superior de Ingenieros Industriales, todos de la UNED. El punto de partida fue un estudio detallado de la situación de la Informática Educativa y de las iniciativas que se habían llevado a cabo hasta el momento en España y otros países, los resultados de las mismas y un análisis de las necesidades de formación de los docentes” (Alonso, C. M. y Gallego, D. J., 1995).

A su vez, el diseño del Máster fue también el resultado de un trabajo de investigación en la UNED sobre “los requerimientos y necesidades que surgieron del análisis de dos años de impartición del Postgrado” (Alonso, C. M., 1996).

El objetivo general, tanto del Postgrado como del Máster, es “facilitar el aprendizaje y uso de la Informática a profesionales de la educación que deseen utilizarla tanto para la docencia, como para la investigación y la gestión en el aula y en la institución educativa”. El perfil del alumnado se basa en cuatro criterios considerados importantes para una buena selección de los mismos (Alonso, C. M. y Gallego, D. J., 1995):

- tener el nivel de conocimientos previos de informática necesarios para la correcta interpretación de los textos y documentos del curso,
- tener una actitud favorable a las posibilidades de la Enseñanza a Distancia,
- contar con el tiempo de dedicación que exige el aprendizaje, y
- tener título universitario de cualquier área.

Así es como surge este curso de postgrado a distancia en sus dos niveles, “de índole eminentemente práctica, fundamentado en las actuales teorías del apren-
dizaje, que ayude a orientar y facilitar su tarea a todos los docentes de distintas procedencias que deban impartir las nuevas asignaturas propuestas en la Reforma Educativa, o que deseen integrar seriamente la informática en sus diseños curriculares" (Alonso, C. M. y Gallego, D. J., 1995).

2.1. ALUMNOS

En la primera edición del Curso, es decir en la Convocatoria 1994, se matricularon 139 alumnos. La procedencia profesional de estos alumnos ha sido variada: Profesores universitarios, Formación Profesional, Bachillerato, Enseñanza Secundaria, Enseñanza Primaria, Educación Infantil, etc. Todos los alumnos tienen el título requerido y una adecuada preparación previa en informática. Geográficamente, están distribuidos por todas las Comunidades autónomas y en países como Andorra, Chile y Argentina. Madrid tiene el 34,5% que, junto a Castilla León y Castilla la Mancha, alcanzan el 50,2% del total del alumnado. De las provincias insulares y de otros países provienen el 16,5%. El 33,2% restante proceden de las otras Comunidades Autónomas periféricas (Alonso, C. M. y Gallego, D. J., 1995).

En ambas convocatorias, la procedencia profesional de estos alumnos es variada. Hay graduados universitarios –ingenieros, computadores científicos, licenciados en ciencias de la educación– y docentes y/o técnicos superiores de institutos terciarios –profesores de enseñanza primaria, de educación infantil y de enseñanza secundaria en Matemática, Física, Química–. Como se dijo anteriormente, todos los alumnos tienen el título requerido y una adecuada preparación previa en informática.

2.1.1. Sistema educativo argentino

El sistema educativo argentino tiene en su tercer nivel una característica que interesa destacar. Además de universidades, nacionales y privadas, el sistema tiene otra institución que se conoce con el nombre de instituto terciario.

De las universidades egresan, con carreras de cinco o seis años de duración, médicos, abogados, ingenieros y licenciados en distintas especialidades, así como
profesores universitarios de enseñanza media y superior en la asignatura correspondiente. De los institutos terciarios egresan, con cursos de tres o cuatro años de duración, profesores de enseñanza media y superior en la asignatura correspondiente, así como técnicos superiores en diversas especialidades técnicas como administración de empresas, enfermería, etcétera, carreras que también tienen su correlato universitario.

A los efectos de una mejor interpretación sobre los cursos dictados y los títulos emitidos en estos institutos, los mismos se asimilan a las diplomaturas y licenciaturas de las universidades españolas, tal como surge de las aprobaciones de los trámites de homologación y reválida realizados por el Ministerio de Educación y Ciencia de España.

Interesa destacar que, junto con las 38 universidades nacionales y 37 universidades privadas, con más de 700.000 alumnos, que cubren a todo su territorio, el sistema educativo argentino tiene 1.649 institutos terciarios. De éstos, 1.122 institutos terciarios se encargan de capacitar profesores para las distintas asignaturas, con unos 250.000 alumnos y 30.000 docentes. Los restantes 527 institutos tienen diversas carreras de las que egresan técnicos superiores en distintas carreras y orientaciones.

Actualmente, la ley Nº 24.521, que regula la educación superior, busca reconvertir académicamente a estos profesores y técnicos superiores de institutos terciarios, ofreciendo alternativas de capacitación que permitan que se licencien en las universidades. En base a esta propuesta de actualización distintas universidades han organizado diversos proyectos de capacitación.

2.2. DISTRIBUCIÓN TERRITORIAL DE LOS ALUMNOS

En el Hemisferio Sur, en América del Sur, a más de 10.000 kilómetros de España, junto con la República Argentina están Chile, Bolivia, Uruguay, Paraguay y Brasil. La República Argentina tiene una superficie continental de casi 2.800.000 km², y está organizada administrativamente con 23 provincias y la ciudad de Buenos Aires como Capital Federal. Su espacio geográfico tiene una longitud máxima de 3.800 km y un ancho máximo de 1.400 km.

Interesa tener en cuenta la ubicación de la ciudad de Buenos Aires, ya que es la sede de la coordinación académica y de las tutorías, y las distancias a algunas ciudades con alumnos (Tabla 1).
Tabla 1: Distancias de Buenos Aires a algunas ciudades con alumnos.

<table>
<thead>
<tr>
<th>Ciudad</th>
<th>Dist. (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahía Blanca (Prov. Buenos Aires)</td>
<td>708</td>
</tr>
<tr>
<td>Córdoba (Prov. Córdoba)</td>
<td>710</td>
</tr>
<tr>
<td>Gualeguaychú (Prov. Entre Ríos)</td>
<td>223</td>
</tr>
<tr>
<td>Jujuy (Prov. Jujuy)</td>
<td>1.643</td>
</tr>
<tr>
<td>Mar del Plata (Prov. Buenos Aires)</td>
<td>404</td>
</tr>
<tr>
<td>Mendoza (Prov. Mendoza)</td>
<td>1.037</td>
</tr>
<tr>
<td>Necochea (Prov. Buenos Aires)</td>
<td>520</td>
</tr>
<tr>
<td>Neuquén (Prov. Neuquén)</td>
<td>1.150</td>
</tr>
<tr>
<td>Pehuajó (Prov. Buenos Aires)</td>
<td>700</td>
</tr>
<tr>
<td>Posadas (Prov. Misiones)</td>
<td>1.005</td>
</tr>
<tr>
<td>Pto Santa Cruz (Prov. Santa Cruz)</td>
<td>2.392</td>
</tr>
<tr>
<td>Rawson (Prov. Chubut)</td>
<td>1.441</td>
</tr>
<tr>
<td>Río Gallegos (Prov. Santa Cruz)</td>
<td>2.639</td>
</tr>
<tr>
<td>Rosario (Prov. Santa Fé)</td>
<td>306</td>
</tr>
<tr>
<td>Salta (Prov. Salta)</td>
<td>1.508</td>
</tr>
<tr>
<td>San Juan (Prov. San Juan)</td>
<td>1.119</td>
</tr>
<tr>
<td>Santa Fé (Prov. Santa Fé)</td>
<td>475</td>
</tr>
<tr>
<td>Santa Rosa (Prov. La Pampa)</td>
<td>615</td>
</tr>
<tr>
<td>Tucumán (Prov. Tucumán)</td>
<td>1.203</td>
</tr>
<tr>
<td>Ushuaia (Prov. Tierra del Fuego)</td>
<td>3.178</td>
</tr>
</tbody>
</table>

A su vez, la distribución de los alumnos por el país es la siguiente (Tabla 2):

Tabla 2: Distribución territorial de los alumnos.

<table>
<thead>
<tr>
<th>Distrito</th>
<th>Cursantes 1995</th>
<th>Cursantes 1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Federal</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>Gran Buenos Aires (50 km)</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Prov. Buenos Aires (más de 50 y hasta 700 km)</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Santa Fe (475 km)</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Mendoza (1.073 km)</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Córdoba (710 km)</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>Tucumán (1.200 km)</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

122
<table>
<thead>
<tr>
<th>Ciudad</th>
<th>Distancia (km)</th>
<th>Tutorías</th>
<th>Tutoría</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Cruz</td>
<td>2639</td>
<td>5</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>Salta</td>
<td>1508</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Misiones</td>
<td>1005</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tierra del Fuego</td>
<td>1378</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chubut</td>
<td>1809</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jujuy</td>
<td>1643</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Totales</td>
<td></td>
<td>82</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

La Fundación para el Desarrollo de los Estudios Cognitivos –FUNDEC– se encuentra en Buenos Aires, y es la sede de la coordinación académica y de la tutoría. Desde allí se realizaron las tutorías telemáticas para Argentina, Uruguay y Paraguay.

3. **TUTORÍA**

Este curso de postgrado contó con un apoyo tutorial, que se ofreció en tres modalidades:

- sesiones presenciales, opcionales, al inicio, durante y al finalizar el curso;
- tutoría telefónica, un día a la semana de 9 a 18 horas, y
- tutoría telemática, todos los días, inicialmente de 19 a 23 horas y luego ampliado de 19 a 7 horas.

3.1. **TUTORÍA TELEMÁTICA**

El proceso de enseñanza-aprendizaje es un proceso interactivo que presenta algunas dificultades específicas en el caso de la Enseñanza a Distancia. Daniel y Marquis (1979), Morgan (1985), Fage y Mills (1986), Miers (1986), Gaskell y Mills (1989) han tratado de compaginar la interacción, necesaria en todo proceso educativo, y la reducción de la presencialidad, típica de la Enseñanza a Distancia (García Aretio, L., 1996). Todos los autores insisten en los siguientes aspectos:

- animar a los alumnos para que sean activos,
- aumentar la comunicación entre alumnos y tutores,
- aumentar el *feedback* entre tutores y estudiantes, y
- aumentar las oportunidades de contacto local entre tutores y alumnos.

Los prerrequisitos que se tuvieron en cuenta antes de comenzar estas tutorías, en función del entorno tecnológico de aprendizaje y de los requerimientos de la tutoría telemática, fueron:

- Que el alumno posea una computadora con *módem* y línea telefónica, o tenga fácil acceso a ello.
Detectar el grado de experiencia de los alumnos en la utilización de sistemas de comunicación por computadora.

Organizar una capacitación mínima que homogeneizará el aprovechamiento de los equipos informáticos, previa al comienzo de las actividades específicas del curso.

La tutoría telemática se basó en varios programas de computación –"Remote Access 2.1", "Rafmall 1.3", Ripterm 1.54 y Bluewave 2.10– y material didáctico específico que posibilitó la tutoría y la intercomunicación entre los alumnos. La iniciación de esta modalidad tutorial y la utilización de la herramienta telemática se realiza a partir del momento que el alumno se familiariza con la comunicación electrónica mediante el "Bulletin Board System", o B.B.S. La operatoria del sistema es muy sencilla y el conjunto de programas está desarrollado de manera que tanto la búsqueda de la información como la recuperación e impresión posterior de la misma se realizan sin estar conectado telefónicamente con la base. De esta forma se optimizan tiempos de comunicación, ya que la misma sólo dura algunos minutos.

El tutor, o el alumno, se pueden comunicar en cualquier momento, dejando al usuario la elección del momento más adecuado. Generalmente se utilizaron comunicaciones diferidas en el tiempo –asincrónicas– superando así los problemas de horario, aunque también pudieron organizarse comunicaciones simultáneas en el tiempo –sincrónicas–, es decir en tiempo real.

Los mensajes pueden enviarse a todos los participantes o solo a una persona. Otra ventaja radica en que el sistema permite un registro permanente de lo que se va diciendo al que tienen acceso los participantes. A este registro se accede con una palabra clave, password, que permite la identificación de cada usuario y que, obviamente, es secreta y personal. Después, cada participante puede recoger en sus archivos privados los datos que más le interesen.

Con respecto a la información disponible, este B.B.S. permite:
- consultas, que se ponen a disposición del alumno en distintas bases de datos que se consideran interesantes,
- área de programas, donde el alumno puede recibir el software que le interese o necesite,
- área de mensajes, dividida por temas, donde se contestan las preguntas y cuestiones que cualquier alumno pueda plantear, y
- boletines y noticias, donde se informa a los alumnos de los aspectos relacionados con el Curso.

Con los programas Ripterm 1.54 y Bluewave 2.10, el alumno se puede comunicar y acceder a toda la información que necesita, operando su computadora con módem, y comunicándose, informáticamente, con los tutores y con otros alumnos. El alumno puede utilizar cualquier modelo de computadora, de sistema operativo y de módem.
4. MODELO DE EVALUACIÓN

Esta aplicación experimental tuvo rasgos que van más allá de la explicación de las resistencias aceptadas como típicas en todo proceso de cambio y de las dificultades de implementación de toda innovación educativa: cuando los docentes adoptan herramientas informáticas –y otras innovaciones tecnológicas– lo hacen con un esfuerzo mayor que el previsto y con menor continuidad que la esperada (Grau y Marabotto, 1995). Hemos tomado algunas referencias sobre los factores que afectan el uso de computadoras en distintas instituciones educativas (Grünberg, 1993), y sobre la utilización de innovaciones tecnológicas (Grau y Marabotto, 1995). Estos trabajos permiten verificar que la decisión de cada docente de utilizar innovaciones tecnológicas está asociada a sus propias percepciones de valores –esfuerzo, tiempo, riesgo– y a compensaciones de tipo profesional (Grau y Marabotto, 1995). Nuestro problema era cómo evaluar la evolución del aprendizaje a través de este modelo de tutoría y con el material didáctico disponible.

En este caso, la incorporación de innovaciones tecnológicas tiene tres etapas, con dispositivos informáticos cuya operación es de complejidad creciente, a saber:
- computadoras,
- computadoras + multimedios, y
- tele-procesamiento: computadora + telecomunicaciones.

Si bien en el curso se trabajaron los tres niveles, sólo analizamos y evaluamos el último. Para ello fue preciso obtener una valoración desde dos perspectivas:
- Efectividad pedagógica: conocimientos del alumno.
- Efectividad tecnológica: adecuación y calidad de operación y adaptación al entorno tecnológico propuesto.

Entre los modelos de evaluación que estudiamos en busca de una transferencia aplicable a nuestro caso, elegimos el de Kirkpatrick (1988) y el de Guba y Clark (1985). Con estos antecedentes, y después de un proceso de adaptación y pruebas, optamos por un modelo propio de evaluación que tuvo en cuenta las aportaciones de distintos autores y nuestra experiencia como docentes y evaluadores de programas y proyectos tanto de enseñanza presencial como de enseñanza a distancia. En ese modelo caracterizamos tres niveles de evaluación:
- Evaluación de reacción.
- Evaluación del aprendizaje.
- Evaluación de aplicación.

La evaluación de reacción, a través del índice de respuesta inicial del alumno. Hemos atendido a este nivel procediendo a una interpretación de las respuestas de los alumnos al material propuesto en la tutoría telemática.
La evaluación del aprendizaje, brindada por el índice de continuidad de la tutoría. Para este nivel hemos aprovechado un programa de computación -Remote Stat- que aporta datos sobre lo realizado por los alumnos tras analizar las conexiones y los mensajes presentados en el B.B.S. También hemos tenido en cuenta las opiniones de los alumnos sobre su propio aprendizaje.

La evaluación de aplicación se obtiene con el índice de efectividad de los participantes, que operan utilizando conocimientos, técnicas y/o destrezas aprendidas en sus actividades con la tutoría.

Finalmente, también se realizó una evaluación de conjunto del proceso de tutoría para determinar el resultado final del mismo.

4.1. ANÁLISIS DE LA EXPERIENCIA

El estudio se llevó a cabo en tres etapas. La primera cubre el periodo que va desde marzo hasta agosto de 1996, con una población constituida por los 82 alumnos que se inscribieron en la Convocatoria 1995. La segunda etapa abarcó desde marzo hasta agosto de 1997, y la población de estudio estuvo integrada por los 191 alumnos que se inscribieron en la Convocatoria 1996 más los 82 alumnos de la Convocatoria 1995. La tercera etapa abarca a las anteriores y se desarrolla desde marzo de 1996 hasta diciembre de 1997. La fecha de iniciación de las operaciones del sistema BBS fue el 1 de marzo de 1996 y la de finalización fue el 22 de diciembre de 1997.

La primera fase de la exploración buscó identificar las principales características de los alumnos que se constituyen en los potenciales usuarios de la utilización de la herramienta telemática. El estudio de esta primera fase muestra las siguientes características:

- En la primera etapa, el Grupo I sólo incluye a la Convocatoria 1995, y muestra una población de 82 docentes que en su mayoría es femenina (73%), altamente experimentada (promedio 37,7 años), donde un porcentaje significativo (37%) tiene formación informática. La distribución por edades del Grupo I, grupo inicial de usuarios, puede apreciarse en la Tabla 3.

Tabla 3: Distribución por edades de los grupos de alumnos.

<table>
<thead>
<tr>
<th>Edades entre</th>
<th>Grupo I (Porcentaje)</th>
<th>Grupo II (Porcentaje)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 y 24</td>
<td>–</td>
<td>1.4</td>
</tr>
<tr>
<td>25 y 29</td>
<td>15.5</td>
<td>12.2</td>
</tr>
<tr>
<td>30 y 34</td>
<td>24.1</td>
<td>18.4</td>
</tr>
</tbody>
</table>
En la segunda etapa, el Grupo II incluye a las Convocatorias 1995 y 1996, y muestra una población de 191 docentes, en su mayoría femenina con un porcentaje similar a la convocatoria anterior (74%), altamente experimentada (promedio 39,1 años), donde un porcentaje significativo (26%) usa estas innovaciones tecnológicas para aplicaciones personales. A su vez, los cursantes de la Maestría también muestran una población de docentes que en su mayoría es femenina (62%), altamente experimentada (promedio 39,1 años), donde un porcentaje significativo (42%) tiene formación informática. La distribución por edades del Grupo II puede apreciarse en la Tabla 3.

Los docentes de ambas convocatorias muestran, en general, actitudes positivas al uso de innovaciones tecnológicas (73,6% muestran puntuaciones medianas a altas en la medición de actitud), especialmente los docentes de sexo masculino. A su vez, casi las dos terceras partes de los docentes (65%) estaban relativamente poco entrenados en informática, es decir que recibieron menos de 50 horas de entrenamiento (Grau y Marabotto, 1995).

4.2. PROCESAMIENTO DE LA INFORMACIÓN

Llamamos:

Conexión: vinculación telefónica con el B.B.S. en la cual habitualmente se “bajan”, o “suben”, programas, o archivos, al B.B.S. desde la computadora del alumno.

Mensaje: texto escrito en línea, durante la conexión, en el B.B.S. desde otra computadora (también se pueden “bajar”, o “subir”, programas, o archivos, al B.B.S. desde la computadora del alumno). Diferenciamos entre conexión y mensaje, ya que en el mensaje el alumno expresa algún requerimiento.

Download: “Bajar”, o retirar, programas y/o archivos, del B.B.S., desde la computadora del alumno.

Upload: “Subir”, o enviar, programas, y/o archivos, al B.B.S., desde la computadora del alumno.
El procesamiento de la información del BBS se realizó con el programa "Remote Access 2.1", que dispone de programas especializados para la creación y mantenimiento de los menús y puede crear hasta 200 áreas de mensajes, utilizar distintos niveles de seguridad definibles por el usuario y saber quiénes están en línea y quiénes han llamado, al tiempo que se hacen las conexiones, incluso en más de una línea telefónica.

Con este programa, para cada nivel de seguridad se puede especificar el límite máximo de "download" ("bajar" programas, o archivos, desde otra computadora) para las velocidades de acceso, límites diarios de tiempo de acceso, y opcionalmente activar el control de envío, que limita los "downloads" en función de los "uploads" ("subir" programas, o archivos, desde otra computadora) realizados, contabilizados por el número de archivos, o volúmenes de memoria (en "Kb", kilobytes). Además, es posible formar grupos de usuarios, tratándolos de forma diferenciada.

Si alguien quiere ingresar indebidamente, o un alumno-usuario es rechazado en su intento por ingresar al BBS al escribir incorrectamente su password, el "Remote Access" lo notifica de un posible intento de entrada ilegal a través de un mensaje privado. También puede impedir el acceso en ciertas horas del día, o puede forzar a los usuarios a cambiar su password cada cierto tiempo, y definir nombres, o passwords, no admisibles.

Casi la totalidad del procesamiento de los datos se realizó con el programa "Remote Stat". A su vez, con el programa "Rafmall 1.3", a partir de la lista de archivos de que tenía el BBS se determinó cuántas veces se "bajaron" o "subieron" cada uno de ellos.

Se operó en dos períodos:

Período: Marzo a Noviembre de 1996
- Número inicial de usuarios: 82 (sin el operador).
- Fecha de ingreso de usuarios: 24 de febrero de 1996.
- Horario del sistema: todos los días de 19 a 23 horas (4 horas).
- Programas a disposición: 44 archivos incorporados a lo largo de los dos ciclos lectivos, con aproximadamente 21Mb (21.914.652 bytes).

Período: Noviembre de 1996 a Agosto de 1997
- Número de usuarios: 191 (sin el operador).
- Fecha de ingreso de usuarios: 1 de marzo de 1997.
- Horario del sistema: todos los días de 18 a 7 horas (13 horas).
- Programas a disposición: 44 archivos incorporados a lo largo de los dos ciclos lectivos, con aproximadamente 21Mb (21.914.652 bytes).
4.3. SÍNTESIS DE LA INFORMACIÓN PROCESADA

Sobre la base de los datos tomados del BBS, surge con claridad un crecimiento sostenido de las variables conexión/usuario, mensajes enviados, mensajes/usuario y tiempo en línea (“on line”), así como el número y el volumen de archivos “subidos” y “ bajados” por los alumnos al sistema.

Tabla 4: Usuarios, conexiones, mensajes, tiempo en línea desde 17.3.96 al 22.12.97.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo días</td>
<td>17</td>
<td>168</td>
<td>187</td>
<td>153</td>
<td>40</td>
<td>98</td>
</tr>
<tr>
<td>Días totales</td>
<td>17</td>
<td>185</td>
<td>372</td>
<td>525</td>
<td>565</td>
<td>663</td>
</tr>
<tr>
<td>Usuarios</td>
<td>82</td>
<td>82</td>
<td>191</td>
<td>191</td>
<td>191</td>
<td>191</td>
</tr>
<tr>
<td>Prom. Edad</td>
<td>37,7</td>
<td>37,7</td>
<td>39,1</td>
<td>39,1</td>
<td>39,1</td>
<td>39,1</td>
</tr>
<tr>
<td>Conexiones</td>
<td>150</td>
<td>712</td>
<td>2.680</td>
<td>4.226</td>
<td>4.640</td>
<td>5.577</td>
</tr>
<tr>
<td>Conexiones por usuario</td>
<td>1,8</td>
<td>9</td>
<td>17,7</td>
<td>2,3</td>
<td>24,4</td>
<td>29,1</td>
</tr>
<tr>
<td>Conexiones por día</td>
<td>8,8</td>
<td>4,2</td>
<td>14,3</td>
<td>5,4</td>
<td>10,3</td>
<td>10,5</td>
</tr>
<tr>
<td>Mensajes enviados</td>
<td>33</td>
<td>194</td>
<td>1.069</td>
<td>1.411</td>
<td>1.501</td>
<td>1.547</td>
</tr>
<tr>
<td>Mensajes por usuario</td>
<td>0,4</td>
<td>2,3</td>
<td>5,6</td>
<td>7,4</td>
<td>7,9</td>
<td>8,1</td>
</tr>
<tr>
<td>Tiempo “online” (min.)</td>
<td>2,0</td>
<td>7,1</td>
<td>5,7</td>
<td>5,7</td>
<td>6,1</td>
<td>6,1</td>
</tr>
<tr>
<td>Usuarios femeninos(%)</td>
<td>66,7</td>
<td>73,5</td>
<td>69,8</td>
<td>70,5</td>
<td>70,4</td>
<td>70,6</td>
</tr>
<tr>
<td>Llamaron (%) más de 1 vez</td>
<td>23,2</td>
<td>69,9</td>
<td>74,3</td>
<td>78,8</td>
<td>80,0</td>
<td>80,3</td>
</tr>
</tbody>
</table>

Tal como se aprecia en la Tabla 4, hay un crecimiento sostenido de las variables conexión/usuario, mensajes enviados, mensajes/usuario y tiempo “on line”. No son sólo las conexiones y mensajes los que crecen, sino también la duración de los mensajes en el BBS y el tiempo en línea –crece de 2 a 7 minutos, para estabilizarse en casi 6 minutos– que cada alumno dedicaba en la comunicación telefónica.

Este crecimiento tiene distintas “velocidades” según que variable se analice, pero en casi todas es cada vez mayor, tal como puede apreciarse en el gráfico que sigue.
Gráfico 1: "Velocidad de crecimiento" de las variables conexión/usuario, mensajes enviados, mensajes/usuario y tiempo "on line".

Gráfico 2: Distribución de llamados durante el horario de atención del BBS.

Es importante cotejar esta información con el costo de las tarifas telefónicas en la República Argentina, ya que tienen significativas diferencias con las tarifas españolas y europeas. Cabe destacar que la primera edición del Curso, la Convocatoria 1994, con 139 alumnos, tenía 500 conexiones en el primer mes, y 1.200 conexiones en el segundo mes de aplicación del BBS en España.
Teniendo en cuenta que el BBS solo tenía 44 archivos incorporados a lo largo de los dos ciclos lectivos, con aproximadamente 21Mb (21.914.652 bytes), con el programa "Rafmall v. 1.3", a partir de la lista de archivos de del BBS se determinó cuántas veces se "bajó" cada uno de ellos, y a su vez, cuántos programas y Kb se "subieron". Cabe tener en cuenta que estos archivos son generalmente de texto y están compactados.

Tabla 5: Programas "bajados" y "subidos" por los alumno desde el 17.3.96 al 21.12.97.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo días</td>
<td>17</td>
<td>168</td>
<td>187</td>
<td>153</td>
<td>40</td>
<td>98</td>
</tr>
<tr>
<td>Días totales</td>
<td>7</td>
<td>185</td>
<td>372</td>
<td>525</td>
<td>565</td>
<td>663</td>
</tr>
<tr>
<td>Usuarios</td>
<td>82</td>
<td>82</td>
<td>191</td>
<td>191</td>
<td>191</td>
<td>191</td>
</tr>
<tr>
<td>Promedio edad</td>
<td>37,7</td>
<td>37,7</td>
<td>39,1</td>
<td>39,1</td>
<td>39,1</td>
<td>39,1</td>
</tr>
<tr>
<td>Prog. "subidos" (nº)</td>
<td>-</td>
<td>2</td>
<td>21</td>
<td>25</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Prog. "subidos" (Kb)</td>
<td>-</td>
<td>118</td>
<td>4.383</td>
<td>13.433</td>
<td>17.827</td>
<td>18.731</td>
</tr>
<tr>
<td>Prog. "bajados" (nº)</td>
<td>-</td>
<td>32</td>
<td>511</td>
<td>609</td>
<td>654</td>
<td>681</td>
</tr>
<tr>
<td>Prog. "bajados" (Kb)</td>
<td>-</td>
<td>9.412</td>
<td>103.547</td>
<td>145.452</td>
<td>166.291</td>
<td>176.632</td>
</tr>
<tr>
<td>Prog. "bajados" por alumno (nº)</td>
<td>-</td>
<td>0,4</td>
<td>2,7</td>
<td>3,2</td>
<td>3,4</td>
<td>3,5</td>
</tr>
<tr>
<td>Prog. "bajados" por alumno (Kb)</td>
<td>-</td>
<td>113.4</td>
<td>542,1</td>
<td>761,5</td>
<td>875,2</td>
<td>924,77</td>
</tr>
<tr>
<td>Kb / progr. "subidos"</td>
<td>-</td>
<td>244,0</td>
<td>302,5</td>
<td>404,9</td>
<td>396,2</td>
<td>405,7</td>
</tr>
<tr>
<td>Kb / progr. "bajados"</td>
<td>-</td>
<td>294,1</td>
<td>202,6</td>
<td>238,8</td>
<td>254,3</td>
<td>249,5</td>
</tr>
</tbody>
</table>

4.3.1. Conexiones y mensajes

Al diferenciar entre conexiones y mensajes, surge una clara vinculación alumno-tutor. En los primeros 17 días hubo un alumno que llamó 15 veces, otro 8 y dos 6 veces. El que llamó 15 veces dejó 2 mensajes (p=0,13), pero el que llamó 8 veces dejó 8 mensajes (p=1), y las dos personas que llamaron 6 veces, dejaron 3 mensajes cada una (p=0,5).

Durante el cursado de las asignaturas, un alumno llamó 55 veces y dejó sólo 5 mensajes (p=0,9). Otro, en cambio, llamó 49 veces y dejó 23 mensajes (p=0,46). Cabe destacar que entre las 15 personas que más se conectaron con el B.B.S., 7
de ellas estaban a más de 300 km, y 2 de ellas a más de 1.000 km. Estas personas también "bajaron" 3 archivos cada una, con un volumen entre 636 y 1.228 Kb.

Ya cursadas las asignaturas, este grupo siguió operando con el B.B.S. En el corte anterior a la incorporación de la nueva convocatoria, un alumno llamó 163 veces y dejó 37 mensajes (p=0,22). En cambio otro llamó 91 veces y dejó 43 mensajes (p=0,47). Una tercera persona llamó 59 veces y dejó 21 mensajes (p=0,35). A su vez, estas personas también "bajaron" más archivos, entre 62 y 46 cada una, pero con un volumen mucho mayor, entre 10.269 y 10.937 Kb.

Incorporada la nueva convocatoria, el ritmo no decreció. Los alumnos de la convocatoria anterior siguen llamando y los "nuevos" comienzan a definir su perfil. Un alumno llamó 95 veces y dejó sólo 22 mensajes (p=0,23). Otro, en cambio, llamó 79 veces y dejó 26 mensajes (p=0,33). Un tercero llamó 64 veces y dejó 21 mensajes, con igual promedio (p=0,33). Estas personas también "bajaron" entre 26 y 43 archivos cada una, con un volumen entre 3.348 y 7.951 Kb.

Al cierre de la información para este trabajo, el 22.12.97, teníamos alumnos con 198, 142 y 107 conexiones, y 44, 23 y 28 mensajes (p=0,22), (p=0,16), (p=0,26), respectivamente. Pero también tuvimos un alumno que se conectó 100 veces y dejó 46 mensajes (p=0,46), con un promedio muy superior.

5. CONCLUSIONES

Hablar sobre comunicaciones por computadora y módem no resulta una novedad. Hace años que este sistema tecnológico se utiliza en la Educación a Distancia y las consecuencias de su incorporación son evidentes.

La experiencia realizada permite extraer algunas conclusiones. El análisis de los datos permite caracterizar en un primera instancia cinco perfiles de alumnos:

- los que simplemente se conectan y recorren el sistema sin darse a conocer: no buscan comunicarse sino simplemente "ver cómo es",
- los que se conectan buscando información para "ver si hay novedades": estos alumnos tampoco tienen interés en comunicarse, sólo buscan informarse,
- los que buscan acrecentar su caudal de materiales y se conectan para "bajar archivos": tampoco tienen gran interés en comunicarse, sino sólo buscan "nutrirse",
- los que se conectan y se comunican con el tutor para satisfacer dudas específicas de conocimiento: se mueven en el modelo "alumno que pregunta-docente que responde", y
- los que se conectan y establecen el diálogo: son los que se comunican genuinamente con los tutores y con los colegas compañeros de curso, tanto a nivel estudio como a nivel de lazos sociales.
Estos diferentes estilos responden a la representación, o modelo mental, que el cursante haya podido construir acerca de la comunidad de aprendizaje virtual que el medio telemático le posibilita.

Si bien ésta es una aplicación experimental claramente acotada –lo que lleva necesariamente a realizar nuevas observaciones y registros en un número mayor de convocatorias– podemos adelantar algunas recomendaciones para promover la comunicación entre una comunidad virtual de aprendizaje:

- Brindar respuestas inmediatas porque realimentan y estimulan el aprendizaje.
- Personalizar los mensajes para implicar al alumno, y simultáneamente inducir la conexión con otros alumnos.
- Incorporar materiales complementarios –específicos para la tutoría telemática– para la tarea a desarrollar en cada asignatura.
- Incrementar la participación, en la tutoría telemática, de los docentes autores de los materiales para enriquecer el intercambio de ideas.
- Inducir a los alumnos a responder a las demandas de otros compañeros y apoyar el trabajo en equipos virtuales.
- Ayudar, desde el enfoque del material didáctico provisto, a revisar las pautas de implicación de los alumnos y su disposición a comunicarse y al trabajo colaborativo.

Vamos a profundizar un poco más en el análisis cualitativo del comportamiento de los alumnos usuarios del sistema. En este tipo de experiencias a distancia, y en general en cualquier proceso instruccional, las competencias del receptor y la participación voluntaria en la situación no son los únicos factores que desencadenan buenos aprendizajes. También lo son la calidad de la interacción generada en el entorno de aprendizaje, la intervención pedagógica del docente y la "cultura" del grupo respecto del valor de la actividad. En definitiva, la calidad de la interacción determina la dinámica del proceso.

Queda claro que el nivel de interacción que un recurso informático logra depende de múltiples factores, algunos intrínsecos al mismo y que tienen que ver con la calidad de su diseño, y muchos otros relacionados con el receptor y las condiciones de la situación de aprendizaje. Si bien es cierto que hay recursos como los que aquí analizamos, interactivos "per se", se puede hablar de interacción en muchos sentidos:

- el sujeto interactúa con diversos materiales y construye el mensaje, integrándolos,
- el recurso brinda un mensaje complejo codificado en varios sistemas simbólicos simultáneos,
el sujeto modifica su estrategia en función de las respuestas que le brinda el recurso,

el recurso se modifica teniendo en cuenta la estrategia del sujeto.

La interacción, desde un enfoque psicológico y pedagógico integrado, es un concepto mucho más rico y abarcador, que sólo se verifica integralmente en un contexto comunicativo humano, al cual se integran recursos cada vez más promisorios si se los utiliza adecuadamente. Mejores recursos no implican necesariamente mejores aprendizajes. Sólo:

- un buen diseño de la situación didáctica,
- problemas pertinentes, bien planteados y estimulantes,
- alumnos con las correspondientes competencias para abordarlos, y
- recursos válidos en función de los objetivos propuestos,
- resuelven la ecuación de la calidad educativa.

A partir de un análisis más detallado del comportamiento de los cursantes, se podría evaluar más integralmente la acción tutorial y el modelo de gestión del sistema. Esto permitiría introducir gradualmente modificaciones destinadas a promover los estilos más positivos de trabajo en los cursantes, y orientadas a lograr una interacción más plena y eficaz.

Si queremos analizar la eficacia de un determinado recurso para alcanzar un logro educativo específico, debemos tener en cuenta que no existe un efecto directo y lineal, sino que los resultados dependen en gran medida de la interacción de las variables que afectan al proceso: el método de enseñanza, el ambiente del aula, la actitud de los actores implicados, los logros anteriores, el estilo y nivel cognitivo de cada uno, etc.

Hoy las comunicaciones permiten a nuestra computadora contactarse con otros usuarios, tanto a nivel nacional como internacional e intercambiar programas u obtener información de bases de datos, todo ello a través de una línea telefónica, y en la mayoría de los casos a cualquier hora del día. Podríamos decir que estas comunicaciones por computadora permiten una comunicación bidireccional en cualquier momento, dejando al usuario la elección del tiempo más adecuado.

El Correo Electrónico –E-mail–, aparentemente similar a las comunicaciones por computadora, tiene un enfoque distinto ya que es un medio de intercomunicación persona-a-persona. En la Enseñanza a Distancia las comunicaciones por computadora podrían suplir una conferencia o una reunión de grupo, en la que el docente interacciona con varios alumnos situados en lugares diferentes. El Correo Electrónico se orienta, de forma prioritaria, a las tareas de tutoría, de intercomunicación tutor-alumno, aunque también podría ser utilizado para la intercomunicación de los alumnos entre sí.
De acuerdo con Georgia University y con el Georgia Tech, ambos de EE.UU., a mediados de 1998 Internet tenía:

- más de 12 millones de servidores,
- casi 40.000 grandes redes,
- entre 70 y 80 millones de usuarios (con sus respectivas casillas de correo electrónico),
- aproximadamente 18.000 grupos de debate, 70.000 listas de correo, 60 millones de páginas Web, y
- más de 2000 “buscadores de Información”.

Una página Web es un sistema de información que tiene las siguientes características:

- es hipermedial: combina información hipertextual y recursos multimediales,
- distribuido: con millones de servidores en todo el mundo
- heterogéneo: incluye servicios anteriores, y
- colaborativo: cualquiera puede agregar información.

Se pueden materializar:

- videoconferencias,
- video en la Web,
- audio en la Web, y
- transferencia de archivos, de las maneras que más convengan al proceso de enseñanza-aprendizaje.

¿Cómo puede interpretarse lo realizado a la luz del Correo Electrónico y de Internet? ¿Es BBS o E-mail, o BBS e Internet?

No hay opciones. Sólo cabe pensar cómo “pasar” pedagógicamente del BBS a una Intrnænet en Internet, sin perder las ventajas de comunicación e interacción logradas con una herramienta telemática que hoy algunos miran como superada. No nos preocupa tanto la rápida evolución de las tecnologías como la lenta adaptación de lo pedagógico-didáctico al diseño curricular y al diseño de material didáctico a las nuevas situaciones de enseñanza generadas por la evolución tecnológica.

Desde la óptica de la Educación a Distancia, son muy interesantes los esfuerzos de la Open University, de Inglaterra, que inicia la segunda edición de su Maestría en Educación Abierta y a Distancia a través de Internet. A su vez, siempre con datos de la Georgia University, en EE.UU., el 37% de los estudiantes usan computadoras, y el promedio internacional es del 12%.
Y se avizora Internet 2, que funciona, cada vez con más fuerza, desde diciembre de 1997, con una transmisión de datos a 155 Mbps, y donde se habla de transmisión de datos a 2,4 Gbps−2,400 millones de bits por segundo− para el próximo milenio: significa transmitir una enciclopedia de treinta volúmenes en menos de un segundo.

Todo esto no debe preocuparnos demasiado. Las tecnologías avanzan inexorablemente. Lo que interesa saber es si esas tecnologías y esos medios pueden ser usados pedagógicamente. Hasta ahora, Internet se considera tanto un medio de comunicación como un medio educativo. Queda claro que es un medio de comunicación, pero no lo es tanto la afirmación que lo convierte en un medio educativo.

Si bien tal como dijimos antes, los entornos tecnológicos significan un avance crucial en las potencialidades de la educación a distancia, también es cierto que dichos entornos exigen y ponen en juego en las personas habilidades cognitivas y metacognitivas enteramente nuevas que los adultos actuales deben adquirir gradualmente para actuar eficazmente en la formación.

En la educación a distancia la información –en distintos soportes– se ha convertido en la materia prima para definir rumbos de acción y planificar toda su actividad. El objetivo es que la misma esté disponible para todo aquel que la requiera, en el instante que la necesite y en el lugar donde se encuentre.

El nuevo paradigma de la información y la introducción de entornos tecnológicos multimediales en educación, tanto en la educación en general como en la educación a distancia en particular, supone en los alumnos el desarrollo de nuevas competencias, la puesta en juego de estrategias cognitivas y metacognitivas diferentes a las utilizadas en contextos educativos tradicionales y un abordaje de la comunicación diferente. Tratar eficazmente la información en este paradigma implica poseer otras competencias.

Las competencias para gestionar el propio aprendizaje y el grado de motivación puestos en juego en la situación, por una parte, y los sistemas de símbolos utilizados en las herramientas informáticas, cada uno por sus propiedades intrínsecas y en función de cómo se los combine para la presentación del mensaje, parafraseando a H. Lasswell, determinarían parcialmente quién adquiere, cuánto conocimiento, de qué clase de mensajes, y con qué profundidad de elaboración.

Dentro de la modalidad Enseñanza a Distancia se establece una estrecha relación entre el qué y el cómo enseñar. La computadora es una referencia constante. Todas las tareas del curso empiezan y acaban en la computadora. Los datos y la información se presentan en plataformas multimediales, textos, disquetes, videos y audiocassettes.
También nos quedan algunos interrogantes para orientar nuevas investigaciones:

- ¿Cuáles son las barreras en la comunicación que genera el medio telemático que puedan afectar el potencial de interacción?
- ¿Cómo adquirir confianza para comunicarse en un "espacio virtual y público" donde perdemos el control de quiénes y cómo se reciben nuestros mensajes al perder el contacto "cara a cara" y los signos no verbales que completan el significado?
- ¿Qué capacidades y actitudes desde lo cognitivo, afectivo y emocional juegan en la consolidación de un ambiente de aprendizaje virtual?

Las experiencias de la educación a distancia se han difundido considerablemente en nuestro tiempo y señalan un futuro promisorio para su participación en los sistemas de enseñanza. El adelanto tecnológico de los medios de comunicación le asegura posibilidades crecientes de desarrollo y el aumento de la demanda cultural le ofrece ámbitos variados de aplicación. El concurso de ambos factores marca en todas partes la conveniencia de probar y definir sus modos de empleo como instrumento idóneo de capacitaciones, destinado a convertirse en una actividad regular cuyas características no difieren esencialmente de otros procedimientos educativos (UNESCO: Aprendizaje abierto y a distancia, 1.998).

Las actuales tecnologías en telecomunicaciones –cada vez más bidireccionales– permiten este tipo de interacción docente-alumno y alumnos entre sí. Las comunicaciones vía Internet y el Correo Electrónico son dos ejemplos muy actuales y claros de este enfoque interactivo en los procesos de interactividad en la Enseñanza a Distancia. La aplicación de las tecnologías multimediales a la educación a distancia implica abrir nuevos espacios de comunicación, para ofrecer más formación, más accesible, a más personas, durante más tiempo y de mejor calidad. La clave reside en una adecuada gestión pedagógica y didáctica del proceso, con el apoyo decisivo de la tecnología apropiada.

REFERENCIAS BIBLIOGRÁFICAS

GRÜNBerg, J. A. (1993). Profesores y computadores: una investigación sobre los factores que afec-
tan el uso de computadores en colegios secundarios. Montevideo (Uruguay): ORT Uruguay.
don: Chapman.
velopment.
Aires: FUNDEC, 1 y 2.
UNESCO (1998). Aprendizaje abierto y a distancia: perspectivas y consideraciones políticas. Ma-
drid: IUED-UNED.

PERFIL ACADÉMICO-PROFESIONAL DEL AUTOR

Es coautora de los libros: Hacia la informatización del Aprendizaje (tomes I y II), y Multimedios y Educación.

Jorge E. Grau es Coordinador académico y Profesor del Posgrado en Informática Educativa y de la Maestría en Informática Educa-
tiva, ambos de la Universidad Nacional de Educación a Distancia de España. Profesor de "Tecnologías de la Información y de la
Comunicación" y "Gestión de Innovaciones" de la Maestría en Gestión de Proyectos Educativos de la Universidad CAECE. Coordi-
nador académico del Posgrado en Educación a Distancia de la Universidad CAECE. Profesor de "Diseño de Material didáctico" de
la Maestría en Enseñanza de las Ciencias Exactas y Naturales de la Universidad Nacional del Comahue. Fue Investigador del Co-
icet, Profesor de la Universidad de Buenos Aires y de la Universidad Tecnológica Nacional, y Secretario Académico de la Facul-
tad de Ciencia y Tecnología de la Universidad del Salvador. Es coautor de los libros: Hacia la informatización del Aprendizaje (to-
mos I y II), y Multimedios y Educación. Y autor de los libros: Tecnología y Educación, y Tecnología y Sociedad.

María Irma Marabotto
Jorge E. Grau
FUNDEC
C/ Simbrón, 2983
1417 Buenos Aires
Argentina