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Chapter 1 

Introduction 
 

The purpose of this chapter is to explain the objectives and structure of the PhD thesis. 

This thesis is the culmination of the PhD studies at the Universidad Nacional de 

Educación a Distancia (UNED). An overview of the structure of the PhD studies is also 

given in this chapter. 
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1.1 Motivation 

 

Aerospace missions often involve the optimisation and solution of complex problems, 

where the modelling of multivariable systems leads to sets of equations without 

analytical solution. While the power of modern computers has increased over the last 

years, and further development are foreseen in the next decades, the complexity of 

aerospace missions and its solutions cannot rely purely in the computational power of 

modern devices, as this is unaffordable by several orders of magnitude, surpassing the 

computational capabilities of any machine today or even in the near future. In particular, 

splitting each input variable of a complex aerospace system into a fine grid, and 

subsequently analysing any possible combination inside that grid in order to find the 

best possible solution, would lead to spending huge amounts of time, if the solution can 

ever be reached at all. 

 

Therefore, some intelligent approach of this kind of complex problems, involving 

aerospace systems, is mandatory and definitely more efficient. Such heuristic approach 

should be based on the intelligent searching of solutions, often involving time-

consuming computations but less demanding than an analytical and exhaustive 

exploration of the space of solutions. 

 

The basic idea behind the application of computational intelligence is similar to that 

made by a human being, whose expertise and skills when designing and solving new 

problems cannot be replaced by any algorithm. An effort has been done, thought, in that 

direction, this is, to develop intelligent computational algorithms that may emulate 

(often quite successfully) some of the skills and experiences of human experts. Ideally, 

an artificial intelligent (AI) algorithm should combine the flexibility of human 

knowledge when challenged by new problems, with the power and speed of machines. 

Even if currently such ideal combination is far from reality, undoubtedly major steps 

have been made in the right direction. In particular, regarding aerospace problems, some 

areas of mission design and analysis may rely on automatic optimisation to provide 

sometimes a definitive optimal solution or, more commonly, to give an initial nearly-
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optimal solution or set of solutions that can be further refined and tuned by scientists 

and engineers. Some examples of the state-of-the-art are provided in section 2.1. 

 

Three of the most interesting aerospace problems today are: optimisation and control of 

trajectories around Lagrange points; optimisation of launch trajectories; and 

optimisation of interplanetary trajectories, involving fly-bys in several planets in the 

solar system.  

 

1.2 Objectives 

 

The general goal of this PhD thesis is to describe the research and discuss the 

conclusions drawn on the application of Artificial Intelligence (AI) to aerospace 

problems, covering related topics such as launch trajectory optimisation, control of 

satellites around the Earth-Moon Lagrange points, and optimisation of interplanetary 

trajectories with gravitational assistances. Further information can be found on the 

articles by F. Alonso (author of this thesis) and M. Santos (supervisor of this thesis), 

published in several conferences and scientific journals and listed in section 1.4. 

 

1.3 Structure of this Document 

 

This PhD thesis is organized as follows. 

 

Chapter 1 describes the objectives, goals and structure of this PhD thesis. 

 

Chapter 2 provides an overview of general aerospace and aerodynamics concepts, 

needed in order to understand this PhD thesis, and the state of the art. 

 

Chapter 3 the application of fuzzy logic to the modelling, simulation and controlling of 

spacecrafts in the surroundings of Lagrange points are presented. 

 

In Chapter 4 the usage of genetic algorithms (GA) is discussed in the context of the 

optimisation of trajectories of launchers. 
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Chapter 5 describes the optimisation of interplanetary trajectories, using fly-bys, with 

genetic algorithms (GA) and Particle Swarm Optimisation (PSO) and Multi-Output 

Particle Swarm Optimisation (MOPSO). Results are compared and discussed. 

 

This thesis ends with Chapter 6, where the conclusions and future work on artificial 

intelligence applied to aerospace are presented. 

 

Finally, at the end of the thesis a list of references is given. 

 

1.4 List of Publications 

 

1.4.1 Articles in Journals 

 

Autores:  F. Alonso Zotes, M. Santos 

Título: Particle swarm optimisation of an interplanetary trajectory from Earth to 

Jupiter 

Revista:  Engineering Application of Artificial Intelligence (EAAI). 

  Pergamon-Elsevier Science. Oxford, UK. ISSN: 0952-1976 

Volumen, pág. (año): in press, 2011 

Calidad: JCR 2010: 1.344 

  (2010) Engineering Multidisciplinary 21/87 (Q1) 

 

 

Autores:  F. Alonso Zotes, M. Santos 

Título: Modelado, simulación y control de satélites situados en los puntos de 

Lagrange del sistema Tierra-Luna 

Revista:  Revista Iberoamericana de Automática e Informática Industrial (RIAI). 

  Comité Español de Automática CEA-IFAC. ISSN: 1697-7912 

Volumen, pág. (año): vol. 8, 204-215, 2011 

Calidad: JCR 2010: 0.195 

  (2010) Automation & Control Systems 56/60 (Q4) 
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Autores:  F. Alonso Zotes, M. Santos 

Título  Multi-criteria Genetic Optimisation of the Manoeuvres of a Two-Stage 

Launcher 

Revista:  Information Sciences. 

  Elsevier Science Inc. NY, United States. ISSN: 0020-0255 

Volumen, pág. (año): 180(6), 896-910, 2010 

Calidad: JCR 2010: 2.833 

  (2010) Computer Science, Information Systems 9/126 (Q1) 

 

 

1.4.2 Book Chapters 

 

Autores:  F. Alonso Zotes, M. Santos 

Título libro:  Computational Intelligence. Foundations and Applications 

Capítulo:  Genetic optimization of an interplanetary trajectory from Earth to Jupiter 

Editor(es):  D. Ruan, T. Li, Y. Xu, G. Chen, E. Kerre 

Editorial (año):  World Scientific, 1048-1053, 2010 

  ISBN: 978-981-4324-69-4 

 

 

Autores:  F. Alonso Zotes, M. Santos Peñas 

Título libro:  Computational Intelligence in Decision and Control 

Capítulo: GA Optimization of the height of a low earth orbit 

Editor(es):  D. Ruan, J. Montero, J. Lu, L. Martínez, P. D’hondt, E. E. Kerre 

Editorial (año):  World Scientific, 719-724, 2008 

  ISBN: 978-981-279-946-3 
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1.4.3 Conferences 

 

2010 IEEE ISKE International Conference on Intelligent System and Knowledge 

Engineering 

Authors: F. Alonso, M. Santos 

Title: Intelligent satellites control based on fuzzy logic in the Earth-Moon libration 

points 

Date, location: 15-16/11/2010, Hangzhou, China 

Journal: Proceedings of 2010 IEEE Int. Conference on Intelligent System and 

Knowledge Engineering ISKE 2010, IEEE Press, ISBN: 978-1-4244-6792 

Pages, year: 605-610, 2010 

CORE:  A 

 

 

2010 IEEE World Congress on Computational Intelligence WCCI (IEEE CEC 2010) 

Authors: F. Alonso Zotes, M. Santos 

Title: Delta-V Genetic Optimization of a Trajectory from Earth to Saturn with Fly-by in 

Mars 

Date, location: 18-23/07/2010, Barcelona, España. 

Journal: Conference Proceedings of WCCI 2010, ISBN: 978-1-4244-6910-9 

Pages, year: 1836-1841, 2010 

CORE:  B 

 

 

ICATT 2010, 4th International Conference on Astrodynamics Tools and Techniques 

Authors: F. Alonso Zotes, Matilde Santos Peñas 

Title: From Earth to Kuiper belt: swarm optimisation algorithm applied to 

interplanetary missions 

Date, location: Madrid, Spain, 3-6/05/2010. 

Journal: Proceedings WPP-308, 4th International Conference on Astrodynamics Tools 

and Techniques  

Year: 2010. 
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The 9th International FLINS Conference on Foundations and Applications of 

Computational Intelligence, 2010 

Authors: F. Alonso Zotes, Matilde Santos Peñas 

Title: Genetic Optimization of an Interplanetary Trajectory from Earth to Jupiter. 

Date, location: Chengdu, China, 2-4/08/2010. 

Journal: Computational Intelligence. Foundations and Applications. World Scientific, 

pp. 1048-1053, 2010. ISBN: 978-981-4324-69-4, D. Ruan, T. Li, Y. Xu, G. Chen, E. 

Kerre 

Year: 2010. 

 

 

The 8th International FLINS Conference on Computational Intelligence in Decision and 

Control, 2008 

Authors: F. Alonso Zotes, Matilde Santos Peñas 

Title: Optimization of the height of a Low Earth Orbit. 

Date, location: Madrid, Spain, 21-24/09/2008. 

Journal: Computational Intelligence in Decision and Control. World Scientific, pp. 

719-724. 2008. ISBN: 978-981-279-946-3, D. Ruan, J. Montero, J. Lu, L. Martínez, P. 

D’hondt, E. E. Kerre 

Year: 2008 

 

 

JJAA 2008, XXIX Jornadas de Automática 

Authors: F. Alonso-Zotes, M. Santos 

Title: Modelado y simulación con Modelica y Dymola de cinco satélites situados en los 

puntos de Lagrange del sistema tierra-luna 

Date, location: Universitat Rovira y Virgili, Tarragona, España, 3-5/09/2008. 

Journal: Actas del Congreso. Ed. Universitat Rovira i Virgili,ISBN 978-84-691-6883-7 

Year: 2008 

 

 

JJAA 2007, XXVIII Jornadas de Automática 

Authors: F. Alonso, M. Santos 
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Title: Optimización de lanzamiento vertical de dos fases utilizando un algoritmo 

genético multicriterio 

Date, location: Huelva, España, 5-7/09/2007. 

Journal: Actas del Congreso (CD-ROM). ISBN: 978-84-690-7497-8 

Year: 2007. 

 

2nd International Symposium on Formation Flying Missions and Technologies 

Also presented in: 2nd ESA Workshop on Astrodynamics Tools and Techniques, 

September 2004, ESTEC, Noordwijk, The Netherlands  

Authors: Bengoa, G.; Alonso, F.; García, D.; Graziano, M.; Beech, T.; Ortega, G 
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Date, location: September 2004, Washington D.C., USA 

Journal: Proceedings 2nd International Symposium on Formation Flying Missions and 
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Year: 2004. 

 

2nd ESA Workshop on Astrodynamics Tools and Techniques 

Authors: Bengoa, G.; Alonso, F.; García, D.; Graziano, M.; Beech, T.; Ortega, G 

Title: FAMOS-V2: Formation Flying and Rendezvous and Docking Tool for 

Exploration Mission in Circular and Elliptical Orbits. 

Date, location: September 2004, ESTEC, Noordwijk, The Netherlands 

Year: 2004 

 

1.5 PhD on Systems Engineering and Automatics 

 

As a result of a collaboration agreement between Universidad Nacional de Educación a 

Distancia (UNED) and Universidad Complutense de Madrid (UCM), the PhD program 

on Systems Engineering and Automatics was given by the Computing and Automatics 

Department of UNED (http://www.dia.uned.es) and the Computers Architecture and 

Automatics Department of UCM (http://www.dacya.ucm.es). 
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This doctorate program focuses on important aspects of Automatics and Computer 

Science, applied to Control Engineering, with the aim of providing the students with 

specific tools for further research in Systems Engineering and Automatics. 

 

The structure of the doctoral studies is as follows: 

 

1. First phase. 

This phase consists of a learning period and the development of a research project. The 

latter is necessary to achieve the Diploma de Estudios Avanzados (DEA). 

 

The following subjects were studied during the learning period: 

 

- Dynamic Systems Simulation 

Modelling and simulation are nowadays relevant subjects in all engineering and 

science fields. Numerical simulation is, altogether with the study of experimental 

results from real systems, the only technique to accurately analyse general non-

linear systems under variable conditions. In the framework of process modelling and 

control, dynamic hybrid models are especially relevant, which are described with 

continuous and discreet equations; the combination of these formulae is a powerful 

modelling technique that deals with continuous changes in parameters, as well as 

changes in the structure of the model itself. This course includes the following 

subjects: modelling principles for hybrid systems; symbolic handling of equations; 

algorithms for simulation; programming in Modelica. The teachers of this course 

are: Dr. Sebastián Dormido Bencomo, Dr. Mª Antonia Canto Díez, Dr. Alfonso 

Urquía Moraleda, Dr. Victorino Sanz Prat, Dr. Miguel Ángel Rubio González and 

Dr. Carla Martín Villalba. 

 

- Intelligent control 

The aim of this subject is to provide a detailed overview of advanced control 

techniques, based on Artificial Intelligence. This subject includes the following 

topics: expert systems, neural networks, fuzzy logic, genetic algorithms, neurofuzzy 

applied to pattern recognition, artificial learning. The teacher of this course is Dr. 

Matilde Santos Peñas (supervisor of this thesis). 
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- Neural networks and applications 

This subject covers the basis of the main types of neural networks, such as feed-

forward, dynamic networks, competitive networks, etc, including a deep analysis of 

their structure, functionalities, goals, characteristics, etc. The aim of this analysis is 

to understand how they work, to apply this knowledge to any type of neural 

networks, and to acquire skills to design a neural network for specific problems or 

applications. An overview of the common characteristics and several classifications 

are provided. The following networks are described: perceptron, adaline, multi-

lawyer perceptron and madelaine, backpropagation, dynamic network Hopfield and 

competitive network ART. The teachers of this subject are Dr. José Antonio López 

Orozco and Dr. Juan Jiménez Castellanos. 

 

- Aerospace systems control 

The syllabus of this course in aerospace systems and control includes: plane 

modelling and control, avionics, helicopter control, launchers, orbital motion, 

rendez-vous, attitude control, interplanetary missions and re-entry. The teacher of 

this course is Dr. José María Girón Sierra. 

 

After the learning period, a research project was carried out on the topic of optimisation 

of launchers. The title of this project was “Genetic Algorithm applied to the 

Optimisation of a Two Stage Launcher”, which director was Dr. Matilde Santos Peñas. 

 

2. Second phase. 

This phase consists of the preparation and development of a research work, whose result 

is this PhD thesis. The aim of this thesis is to apply the knowledge and skills acquired 

during the first phase of the doctoral program to solve problems in the aerospace field. 

 

 



 

 

Chapter 2 

Introduction to Aerospace Problems 
 

The purpose of this chapter is to justify the application of Artificial Intelligence (AI) to 

complex aerospace problems, and to summarize the state of the art of this fascinating 

subject. A description of the basics on astrophysics, astrodynamics and aeronautics is 

also provided, with the aim of refreshing the knowledge of such fundamental concepts, 

and in order to improve the understanding of this thesis in case the reader is not familiar 

with those particular areas of physics and engineering. A brief on artificial intelligence 

is provided at the end of this chapter. 
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2.1 Overview of related Works and State of the Art 

 

Preliminary works [1][2][3][4][5][6][7][8][9][10] have shown the efficiency of 

intelligent computational techniques when dealing with complex systems such as 

aerospace applications. The results proved the value of fuzzy logic for controlling the 

position of satellites; genetic algorithms (GA) for the optimisation of ascent trajectories, 

given a set of constrains; genetic algorithms and particle swarm optimisation (PSO) for 

optimisation of interplanetary trajectories involving fly-bys in planets. 

 

2.1.1 Fuzzy Logic, Lagrange Points and Satellite Control 

 

Modelling and control are intensively studied and researched in multiple engineering 

fields, like for example the quite interesting investigations presented in [12] 

[15][16][17][18][74][75][88][94]. More specifically, fuzzy logic works can be found in 

[12][74][75][94]. In [12], a quite interesting and innovative approach is presented, 

combining fuzzy control and genetic algorithms. Whereas works based in fuzzy logic 

are common, in general works based on fuzzy logic with application to control of 

satellites in Lagrange points is quite scarce, and possibly [5] and [10] are pioneers. 

Some alternative approach to [5][10] can be found in [67], also related to PIDs. In [82] a 

PID controller (adaptive-predictive) is applied to a microsatellite. Several control 

strategies are developed in [24][35] for a varied set of aerospace applications. A mission 

related to Lagrange points was launched in 2010 by ESA, Herschel-Planck [58], 

however an impulsive control is applied in that case, with a low and irregular 

frequently, quite different from the continuous control applied in [5][10]. Related to 

continuous control, a LQG/LQR control with continuous propulsion is applied in [23] in 

order to achieve a stable position in the Lagrange points, while keeping the relative 

position of several satellites (formation flying and keeping). In [97] an analysis of the 

Lagrange points is presented, in a binary system different from the Earth-Moon 

(considered in this thesis). Also interesting are [55][57][60][59][95][54][78]. In [49] a 

quite innovative approach to the applications of Lagrange points is presented. 
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2.1.2 Genetic Algorithms and Launchers 

 

GAs are non-deterministic search methods that implement some operators observed in 

the natural evolution of life forms, such as crossovers and mutations. After each 

generation, the next offspring is intended to improve the performance index provided by 

the parents. More specific information on GAs can be found in [52] and [72], and a brief 

summary in section 2.3.2.1 of this PhD thesis. Crossovers are performed between 

numerical string (chromosome) encoded individuals. A parents’ random selection 

mechanism is introduced to bias the population replacement towards increasing the 

selected performance index. The higher the performance index of an individual is, the 

higher the probability of being chosen as a parent, so those good characteristics of the 

chosen parents shall hopefully pass to the generated offspring. The chromosomes of the 

parents are combined and a one-point crossover is performed. The best individual in the 

previous generation substitutes the worst individual of the new generation. Elitism 

prevents the best element of the population from being deleted to make room for a 

worse new individual. Once the GA generates the offspring, a mutation operator 

changes individuals’ genes randomly. When the population is not centred on a 

maximum, a low mutation rate is applied, thus the GA performs the search for the 

optimum point mostly mixing and combining existing individuals into new ones, 

whereas raising the mutation rate switches to a broad search when a maximum has been 

reached and no local improvement can be expected. An outer calculation adjusts the 

mutation rate in response to the observed behaviour, and when a lot of individuals come 

up to a specific point of the searching space, the mutation probability automatically 

increases, avoiding premature convergence to a local function extreme. 

 

A major difficulty when optimizing parameters in a launch mission is to provide 

algorithms that convergence towards an optimum. Continuation methods, in which a 

branch of the solution is followed, may be adequate in some cases, and the optimum of 

a nearby problem may be used as a good initial guess of the solution to the new 

problem. But even making wise use of the continuation method, a branch of the solution 

may bifurcate or disappear. And in any case it is difficult or impossible to prove that the 

found solution is the global optimum and not a local one. Furthermore, completely new 

missions may arise for which a desired neighbouring problem is absent. Since it is hard 
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to guess where the domain of convergence towards the global optimum is in a general 

case, an exploratory work may become recommendable. Exhaustive search, in which 

the space of optimization variables is explored with a fine grid, is unaffordable except in 

very simple cases. 

 

Evolutive approaches have been used to optimize some types of trajectories of launchers 

[26][48] but not the parameters of the launcher and the parameters of the trajectory in 

order to reach a given trajectory profile in an optimum way. Fuzzy logic and genetic 

algorithms are put together in [12], following a quite interesting investigation. In [30] 

the authors present a brief review of the very limited prior uses of GAs to determine 

optimal spacecraft trajectories. It also applies a multi-objective GA to the optimization 

of low-thrust interplanetary spacecraft missions (Earth-Mars and Earth-Mercury 

missions) and so does [91]. In [84] a brief review is presented of the scarce prior uses of 

GAs to determine optimal spacecraft trajectories, where a guidance method for the 

ascent trajectory of a single stage to low-earth-orbit (LEO) launch vehicle is developed 

with the aid of a GA, maximizing the payload delivered to LEO. Evolutive approaches 

for RLV re-entry is presented in [26] and [96]. Multi-objective GA optimisations of 

low-thrust interplanetary spacecraft missions (Earth-Mars and Earth-Mercury missions) 

are presented in [48] and [14]. In most of the references gathered in [48] the objective is 

to minimize the propellant required for the ascent trajectory from the surface of the 

Moon, between Earth and Mars, and for developing comet sample return missions. 

 

2.1.3 Genetic Algorithms, Particle Swarm Optimisation and 

Interplanetary Trajectories 

 

Evolutive approaches have been used to optimise some types of trajectories of 

launchers, usually RLV re-entry [30][26][48]. Multi-objective GA optimisations of low-

thrust interplanetary spacecraft missions are presented in 

[22][62][84][91][102][103][104]. In most of them the objective is to minimize the 

propellant required for the ascent trajectory from the surface of the Moon, between 

Earth and Mars, and for developing comet sample return missions. There is an extensive 

collection of single objective Particle Swarm Optimisation (PSO) algorithms 

[38][41][69]. The usage of Multi Objective Particle Swarm Optimisation (MOPSO) 
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algorithms [13][46][71][85][92] is quite promising; however the optimisation of 

interplanetary trajectories using MOPSO is quite scarce to date. There are some papers 

related to interplanetary missions and low thrust, non-keplerian orbits, reflecting an 

increasing interest during the last decade in evolutionary techniques, as an efficient 

optimisation tool for these aerospace applications [103][104]. An evolutionary 

technique is applied to unmanned air vehicles in [34]. Evolutionary neurocontrol is 

analysed in [33], while in [50] there is an interesting development of formulae to handle 

low thrust orbits using the Lagrange planetary equations. A Pareto GA is applied in 

[6][56] to the optimisation of interplanetary trajectories. Gravity assists and low-thrust 

trajectories are combined in [77][102]. Particularly interesting is the exponential 

sinusoid approach to optimize low-thrust trajectories as explained in [62][102], which is 

valid as an initial nearly-analytical guess for further refined solutions, saving time for 

otherwise time-consuming numerical simulations based on artificial intelligence (AI) 

optimisation algorithms. Following this approach, a shape-based algorithm is presented 

in [90]. More information on global optimisation for Mission Analysis can be found in 

[81]. 

 

There are some papers related to interplanetary missions and low thrust, non-keplerian 

orbits, reflecting an increasing interest during the last decade in evolutionary 

techniques, as an efficient optimization tool for these aerospace applications [30][52] 

[92]. Evolutionary neurocontrol is analysed in [33], while in [50] there is an interesting 

development of formulae to handle low thrust orbits using the Lagrange planetary 

equations. A Pareto GA is applied in [56] to the optimisation of interplanetary 

trajectories. Particularly interesting is the exponential sinusoid approach explained in 

[62][63], which is valid as an initial nearly-analytical guess for later refined solutions, 

saving time for otherwise time-consuming numerical simulations with others AI 

optimisation algorithms. Following this approach, a shape-based algorithm is presented 

in [90]. Whereas shape-based algorithms are highly interesting, a more generic 

approach is pursued in the present thesis, where impulsive manoeuvres and evolutive 

algorithms are combined in order to find optimum solutions, as in [6][7][8][9][11]. 

Some work on low-thrust manoeuvres is also presented, based on article [6], where 

propagation of orbital motion is minimized by applying a Lambert solver in small arcs 

of orbit, obtaining a quicker optimisation process that otherwise would be extremely 

time consuming and therefore unfeasible. 
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There is an extensive collection of single objective Particle Swarm Optimisation (PSO) 

algorithms [38][41][69]. The usage of Multi Objective Particle Swarm Optimisation 

(MOPSO) algorithms [13][46][71][85][92] is quite promising. However, the 

optimisation of interplanetary trajectories using MOPSO is quite scarce to date; still, it 

is possible to find some articles suggesting or actually combining both concepts 

[30][103][104][91]. In particular, gravity assists and low-thrust trajectories are 

combined in [77][102]. More examples on global optimisation of multiple gravity assist 

trajectories can be found in [65], focused on pruning techniques. More information on 

global optimisation for Mission Analysis can be found in [22][81]. 

 

2.2 Fundamental Aerospace Concepts 

 

The aim of this section is to explain the mathematics and physics behind the models 

used in this thesis. This section provides an overview of basic concepts related to 

celestial mechanics, gravity, launchers, manoeuvres, Lagrange points and interplanetary 

trajectories. 

 

2.2.1 Gravity field 

 

According to physics today, four basic forces lead all processes in Universe: strong, 

weak, electromagnetism and gravity. The latter is responsible of the macroscopic 

structure of the Universe, and consists on the attraction between two punctual masses 

according to the Newton’s Law of Universal Gravitation as expressed in (1): 

 
2r

Mm
GF   (1) 

where: 

F is the gravitational force 

G is the universal gravitational constant 

M y m are the values of the masses of the particles that attract to each other 

r is the distance between particles. 
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Taking into account that the two particles attract each other, it is possible to write the 

formula for the gravitational force in the following vector form (2): 

 r
r

Mm
G

r

r

r

Mm
GF

32
  (2) 

where: 

F  is the vector of the force applied on particle m 

r  is the vector from m to M 

r

r
 is a unitary vector in the direction of r  

 

A punctual particle is a mathematical concept that does not occur in reality. Indeed, 

particles have not only mass, but also volume. The gravitational force applied by a real 

body (such as a planet) over its surrounding can be computed according to the 

distribution of its mass in its entire volume. In case of a spherical planet with an 

homogenous distribution of mass (constant density), the gravitational force over any 

point outside the surface of that planet can be computed by solving an integral formula 

(3), leading to the conclusion that this force is equivalent to the attraction applied by a 

punctual particle with the same mass than the whole planet, placed in its centre of mass 

(which in such case is also the geometrical centre of the planet). 

  
V

g dVr
r

r
Ga 

3
 (3) 

where: 

ga is the gravitational acceleration 

  is the density in a given point inner to the planet 

 

However, in general planets do not have a homogeneous distribution of mass. Hence, 

solving the integral formula (3) is possible only if the distribution of mass in the planet 

is exhaustively known. Gravitational force is derived from a gravitational potential [20], 

which in case of real planets is written as a series of Bessel functions, whose parameters 

are estimated from data of well-known trajectories of natural or artificial satellites. Such 

Bessel series are useful to compute the gravitational force taking into account the non-

sphericity of the planet, as a function of the latitude, the longitude and the height respect 
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to that planet. In the case of the Earth and Mars, the knowledge of their gravity fields 

and non-sphericities is very exhaustive. A possible expression of the gravitational 

potential [20] is given in (4): 

 

  
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where: 

U is the gravitational potential 

 is the gravitational parameter GM (M is the mass of the planet) 

Jn are coefficients to be determined by experimental observation 

r0 is the equatorial radius of the planet 

Pn are Legendre polynomials 

L is the geocentric latitude 

 

Alternative expressions for the harmonics of the gravitational field of a planet due to its 

non-sphericity can be found in many books, like for example [40]. Formula (4) yields to 

formula (5) when the harmonics are ignored and the planet is considered as if with 

homogeneous density (i.e. as if the gravitational field were created by a punctual mass): 

 
r

U


  (5) 

Non-sphericity has important long-term effects in the orbits of satellites, as well as in 

their attitude (orientation). The gravitational perturbations due to the non-sphericity of 

the planets are called tide forces. Whereas in the Earth the water of the oceans aligns in 

the direction of the Earth-Moon axis, a similar effect takes place when the natural 

satellite of a planet orientates in a certain direction respect to the planet, due to the non-

sphericity of the satellite; this is the case of our Moon, whose visible surface never 

changes when seen from the Earth. Such effect is exploited in some artificial satellites, 

which achieve a certain attitude without the need of commanding any attitude 

manoeuvre. 
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2.2.2 Orbital Trajectories in an Isolated System 

 

A system is said to be isolated when it does not interact with any other system. Let it be 

a system consisting only on two punctual masses, with no external forces acting over 

them. As explained in section 2.2.1, both masses shall attract each other according to (1) 

and (2). Depending on the initial position and velocity of both particles, they may 

follow converging trajectories and crash into each other; or they may approach each 

other but without crashing, and then travel away forever; or they may move respect to 

the other cyclically. 

 

Hence, there are two types of cases: those when the relative motion between the two 

particles describes closed trajectories; and those when such trajectories are open. As 

said above, we are considering only two particles in our system, ignoring effects 

different from the gravitational force. Under these premises, such trajectories are called 

ideal or keplerian [20][40], and in general they consist on ellipses or hyperbolas, as well 

as straight lines, parabolas or circumferences in particular cases. 

 

Ellipses are the trajectories of two particles when they describe closed curves. In 

particular, one particle shall describe an ellipse respect to the other, which shall occupy 

one of the foci of the ellipse. An ellipse may collapse into a straight line, in case of two 

particles that crash into each other. A circumference is also a particular case of an 

ellipse, when the two foci are in the same position. 

 

Hyperbolas are open curves, when the two particles has a relative speed such that the 

gravitational force is not enough to keep them together, so both particles travel away 

from each other. A hyperbola may also collapse into a straight line. 

 

Parabolas represent the borderline case between ellipses and hyperbolas, when the 

relative speed of the particles is just enough to take them apart, so both of them 

asymptotically reach a null speed after enough time. In ballistic, a common practice is to 

ignore air drag, in which case the trajectory of a projectile is elliptical; in turn, such 

ellipse is approached to a parabola, however this approach is not valid in case of long 

distances (such as missiles). 
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2.2.3 Orbital Energy 

 

The specific orbital energy [20] of a body orbiting around a planet is the sum of the 

potential and kinetic energies of that body per unit of mass. 

 

The specific orbital energy is an orbital invariant, due to the principle of conservation of 

energy: ignoring the influence of third bodies and other external effects, the total energy 

of the orbiting body shall not vary. During each orbit, there are exchanges between 

orbital and kinetic energy, while their sum remains constant. The kinetic energy of a 

body per unit of mass is shown in (6), where v is the velocity of the orbiting body at a 

given instant. The potential energy per unit of mass is shown in (7). 

 2

2

1~
vEc   (6) 

 
r

GM
E p ~

 (7) 

 

Note that equation (7), which is equivalent to (5), is the conservative field that yields to 

the calculation of the gravitational force in (1); the value of the gravitational field is null 

at infinite distance, and decreases towards negative values (i.e. increases in absolute 

value) when decreasing the distance to the planet. The spatial gradient of the potential 

energy in a radial direction (8) is the gravitational force, thus matching equation (1). 
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Summing (6) and (7) leads to (9), which is the specific orbital energy of the orbiting 

body: 

 
r
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2

~~~ 2

 (9) 

 

Figure 1 show some geometric parameters of an ellipse. 
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Figure 1: An elliptic orbit 

 

Conservation of energy between the apoapsis A and the periapsis P (which are, 

respectively, the furthest and nearest points to the central body or planet) can be 

analyzed from equation (9), as shown in equation b), which yields to c). 
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where: 

rA is the distance from the apoapsis to the central body 

rP is the distance from the periapsis to the central body 

vA is the velocity of the orbiting body in the apoapsis 

vP is the velocity of the orbiting body in the periapsis 

 

The angular momentum of the orbiting body respect to the central body is also 

invariant. Computing the value of the angular momentum is quite simple in the apoapsis 

and the periapsis d), as in such points of the orbit the position vector of the orbiting 

body respect to the central body is perpendicular to the speed. 

 PPPAAA hvrvrh   d) 
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where hA and hP are the angular momentum in the apoapsis and periapsis, respectively. 

Equation d) yields to e): 

 
P

AA
P r

rv
v   e) 

Substituting equation e) in equation c) yields to f) and g): 
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From Figure 1, it is trivia to obtain equation h): 

 PA rra 2  h) 

Equations g) and h) yield to equation i): 
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Replacing equation i) in equation a)i)(9) for apoapsis, we obtain equation j). 
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From Figure 1 and equation h), it is trivia to obtain equation k): 

 PA rra 2  k) 

Considering j) and  k), we obtain equation l): 
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The specific orbital energy is constant all over the orbit, thus equation l) can be written 

in general as in equation m): 

 
a

GM
Eorb 2

~   m) 

Equation m) proves that, apart from the mass of the central body and the universal 

gravitational constant (which values remain constant), the calculation of the specific 
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orbital energy depends purely on a, which is the semi major axis of the orbit. The 

specific energy of a body placed statically on the surface of a planet (i.e., without any 

velocity respect to the planet) can be computed considering only the potential energy, 

according to equation n), which is a particular case of equation a)i)(7). 

 

 
R

GM
E 0

~
 n) 

where R is the distance from the surface to the centre of the planet. 

 

Comparing equations m) and n), the additional energy required to place a body in orbit, 

departing from the surface of the planet, and ignoring the rotation of that planet, can be 

computed from equation o): 

 

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Equation o) is useful for calculations related to the energy per unit of mass that is 

required to launch an object for the surface of a planet in order to place it in orbit. Such 

calculus, however, is approximate and not accurate, due to the ignored effects of air 

drag, efficiency of motors, rotation of the planet, etc. Equation o) is useful when 

comparing the energy required launching objects into very different orbits, assuming 

that the dispersion of energy is similar for those orbits. 

 

2.2.4 Orbital Elements 

 

Five independent quantities are sufficient to completely describe the size, shape and 

orientation of an orbit, while a sixth quantity is required to define the position of a 

satellite in the orbit at a particular time. Such quantities can be expressed in several 

ways, perhaps being the most intuitive the three components of the position vector of 

the satellite plus the three components of its velocity. 

 

A no so obvious way of defining an orbit and the position of an orbiting body in it is 

through the so called orbital elements. These are quantities directly related to the 

geometry of the ellipse. The exact set of elements may vary depending on the 
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application and the singularity of the orbit (i.e., if it is parabolic, circular or straight 

line), but the most classical set [20] (sometimes undefined for some of those singular 

orbits) is as follows: 

 

- semi-major axis, a: See Figure 1. If this quantity is positive, the orbit is an 

ellipse, and then a is half the length of the major axis. If this quantity is negative, 

this quantity is half the distance between the two branches of an hyperbola. If 

this quantity is infinity, the resulting orbit is parabolic. Finally, if this value is 

zero, then the orbit is a straight line. 

 

- eccentricity, e: This quantity represents the ratio between the foci distance of a 

conic and its major axis, and it is always defined as positive. Its value is between 

0 and 1 in an ellipse. The eccentricity of a circle is 0, while in a parabola this is 

exactly 1. In an hyperbola, the eccentricity is greater than 1. 

 

- inclination, i: This is the angle between the orbital plane and an arbitrary plane, 

normally defined as the equatorial plane of a planet, or the orbital plane of the 

Earth around the Sun in case of heliocentric orbits. 

 

- longitude of ascending node, : Let it be the line of nodes of an orbit, defined as 

the intersection between the orbital plane and a reference plane. The orbit passes 

through the line of nodes in two points or nodes, called ascending and 

descending node, depending on the direction of the probe in those two nodes. 

Let it be an arbitrary direction in the reference plane, normally defined as that of 

the vernal equinox. Then, the longitude of the ascending node is defined as the 

angle between the line of nodes and the vernal equinox. 

 

- argument of periapsis, : This quantity represents the angle, in the orbital plane, 

between the ascending node and the periapsis. 

 

- time of periapsis, tp: This is the time at which the probe is in periapsis, respect to 

some specified reference initial time. 
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This list is not exhaustive, as it is possible to define a different set of variables that may 

include for instance: 

 

- the semi-latus rectum, also called parameter of the conic, p: See Figure 1. The 

relation between p, e and a is given by (1): 

  21 eap   (1) 

 

- the true anomaly at epoch, 0: The angle of the probe, in the orbital plane, 

respect to the periapsis, is called true anomaly. Given this quantity in a certain 

instant of time, the position of the satellite is defined. 

 

- the argument of latitude at epoch, u0: The argument of latitude is the angle of the 

probe, in the orbital plane, respect to the ascending node. 

 

- the true longitude at epoch, l0: This is the sum of the longitude of the ascending 

node  and the argument of latitude at epoch u0. 

 

2.2.5 Lagrange Points 

 

Given a binary system (two celestial bodies orbiting each other, with no relevant 

influence of third bodies), in which the two central bodies describe two perfect circular 

trajectories around each other, it is possible to define five points in the rotary reference 

system in which the gravitational forces from the two bodies perfectly compensates the 

centrifugal force. 

 

Such points, called Lagrange points or libration points, are quite interesting, as it is 

possible to place a spacecraft in any of those points, and the spacecraft shall keep its 

position respect to the two central bodies without any need of manoeuvring or fuel 

consumption. In practice, only two of the five Lagrange points are stable, while strictly 

speaking the Lagrange points only exist when the two trajectories of the central bodies 

around each other are perfectly circular (no eccentricity at all), and there are not effects 

due to third bodies (other planets, Sun), or non-sphericity gravitational harmonics. 
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A representation of a binary system and its five Lagrange points is provided in Figure 2. 

The masses of the two planets, M1 and M2, are represented as red circles. The two 

planets rotate around each other describing perfectly circular orbits respect to the centre 

of masses CM, with a constant angular speed . If there are not gravitational fields from 

third bodies (i.e., ignoring the rest of the Universe), the position of CM remains fixed. 

Three of the five Lagrange points (L1, L2 and L3) are in the straight line that passes 

through M1 and M2. The other two Lagrange points (L4 and L5) rest on the intersection 

of two circles, centred in each planet and with radius equal to the distance between M1 

and M2. Thus, it is possible to represent the two green equilateral triangles shown in 

Figure 2, whose vortexes rest on M1, M2, L4 and L5. When M1 has much more mass 

than M2, then CM is near M1, so the orbit of M2 passes near L4 and L5. Otherwise, L4 

and L5 rest outside the orbit of M2 around CM, as M2 is a bit nearer to CM than M1, 

while the distance from M2 to L4 and L5 is the same than from M1 to M2. Segment 

from M1 to M2 has an angle of 60 degrees respect to the segments joining M1 and M2 

with L4 and L5. In Figure 2 the most common notation has been used, so L1 is between 

M1 and M2, L2 is beyond M2, L3 is beyond M1, L4 is in the direction of the movement 

of the less massive body M2, and L5 is in the direction of the movement of M1. 

 

Figure 2: Representation of the Lagrange points in a binary system 
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It is possible to compute the position of the Lagrange points by finding those points in 

which the gravitational force compensates the centrifugal force of the binary system. 

Given the mass m of a particle placed in a Lagrange point (we will see later that the 

value of such mass is irrelevant for computations), given the position vector r of such 

particle respect to the CM in the rotatory reference system, given the masses M1 and M2 

of central bodies M1 and M2, given their positions 1R  and 2R  respect to the CM in the 

rotary reference system, and given the rotary speed of the binary system , then 

centrifugal force on mass m is p): 

 rmFcentr
2  p) 

The value of the two gravitational forces applied by each central body on the particle is 

q): 
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 is the unitary vector in the direction of each central body. 

 

On the Lagrange points, the centrifugal force compensates the joint gravitational forces 

of the two central bodies, as shown in r): 
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As said above, mass m can be simplified in r), which yields to s): 
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Whereas equation s) is valid, a more practical equation should be achieved for each of 

the five Lagrange points separately. Proving that there are only five Lagrange points is 

beyond the scope of this section. 
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Considering the geometry shown in Figure 2, scalar equations t), u) and v) are valid for 

L1, L2 and L3, respectively. 
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Equations t), u) and v) can be written in vectorial form as in w), x) and y): 
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Regarding L4, considering the angle between the segment joining L4 to M1and segment 

joining M1 and M2, it is possible to solve for the position of L4 from z): 

 
2
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2

*

14

LL
RrL   z) 

where: 

  12, RRLLL yx   is a vector from M1 to M2 (see Figure 2 and Figure 3) 

 xy LLL ,*   is a vector perpendicular to L  (see Figure 2 and Figure 3) and ending in 

L4 (so it begins in the middle point of the segment joining M1 to M2). 
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Figure 3: Relation between vectors L , *L  and *L  

 

Analogously, the position of L5 can be solved from aa): 
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Proving that L4 and L5 are equilibrium points is out of the scope of this section. Also, 

any formal stability analysis of the five Lagrange points is out of scope, however it may 

be useful to point out that only L4 and L5 are stable, while L1, L2 and L3 are “saddle” 

points. Nevertheless, all the Lagrange points are not stable in real systems, due to 

perturbations from third bodies, to non-sphericity of the central bodies and their gravity 

fields, and most important, to the eccentricity of the central bodies around each other. 

However, the Lagrange points (which strictly speaking do not exist in real systems) are 

still valid as the drift from equilibrium position is very slow, thus it is possible to place 

spacecrafts in the Lagrange points of the Earth-Moon or Earth-Sun binary systems for 

observation of the central bodies or the rest of the Universe, while keeping a fixed 

position to the Earth and avoiding fuel consumption, thus increasing the life of the 

missions. Temporarily placing probes near Lagrange points may become the base of 

longer interplanetary trips [49]. In practice, in Herschel-Planck [58] and other missions 

no satellite is placed exactly in the Lagrange points, but in orbits around them instead, 

involving manoeuvres to correct the drift in position from time to time, so the instability 

of the Lagrange points is compensated. 
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2.2.6 The Gauss’ Problem and Orbit Transfers 

 

The Gauss´ problem, also known as the Lambert problem, may be defined as follows 

[20]: given two positions r1 and r2 in an orbit, given the time of flight t from r1 to r2, and 

the direction of motion (“short way” or “long way”, as the orbiting object may follow 

the orbit in two possible directions), find velocities at r1 and r2, that shall be called v1 

and v2 respectively. Solving this orbit determination problem leads to the definition of 

the arch of orbit connecting two different orbital positions. Also, this is particularly 

useful when r1 belong to the current orbit, and r2 belongs to a different orbit that the 

spacecraft should reach in a given time t. Solving the Gauss’s problem leads, in this 

case, to defining the arch of orbit connecting the initial and final orbits, that the 

spacecraft should follow when transferring from the first to the second. The speeds v1 

and v2 define, respectively, the desired speeds when initiating or finishing the transfer, 

which in turn define the additional speeds or delta-Vs that must be achieved with a 

combination of engines and, depending on the conditions, a fly-by around a planet (see 

section 2.2.6). 

 

The Gauss’ problem has not an analytical solution, thus it must be solved using iterative 

methods. There is an extensive literature [21][40][20] describing the various iterative 

strategies for this interesting problem (often relying in variables with not an obvious 

physical meaning). Some interesting works can also been found in [53][64][70]. It is not 

intended to present a exhaustive analysis of all the different methods available in 

literature, however a brief summary is introduced here regarding the main two branches  

or families of such approaches to solve the Gauss’ problem: universal variables and p-

iteration. For details on these methods, a better understanding of the heavy mathematics 

behind, a meaningful interpretation of the involved variables, suggestions on initial 

values and alternative iterations for those variables, and considerations on convergence, 

divergence and computational speed, please refer to the literature. An interpretation of 

variables f, g, x, y and z can be found in [21] and especially in [40]. A historical 

approach (quite interesting, from an academic point of view in order to understand the 

different methods in place today to solve the Gauss’ problem) can be found in [20]. A 

combination and automatic selection of the two main algorithms (and variations) is 
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mandatory in order to improve convergence and speed, depending on the geometry of 

the problem; bearing this dynamic selection in mind, the approach followed in [64] has 

been used in Chapter 5. 

 

2.2.6.1 Solution of the Gauss Problem using the p-iteration Method 

 

First, constants k, l and m are calculated, as shown in equations (1), (1)(a) and (2), 

where  is the true anomaly of the probe (see section 2.2.4) and  is the angle between 

r1 and r2. A first guess for p (normally called “parameter” or “semi-latus rectum”) is 

calculated using (3), based on the mean values of the limits of this parameter  as shown 

in equations (4) and (5), corresponding to two parabolic orbits passing through r1 and r2. 

From (6) the semi-major axis a of the conic will be calculated, thus defining the type of 

conic (hyperbola if a is negative, ellipse if a is positive). Then, values for f, g and f are 

solved from equations (7), (8) and (9), so the elliptical (E) or hyperbolic (F) eccentric 

anomaly can be computed, from (10) and (11) in the elliptical case, or from (12) and 

(13) in the hyperbolic one (note that there is no ambiguity in determining F, as this is 

always assumed to be positive, so only  (12) or (13) is required). Using  (14) for an 

elliptical trajectory or (15) for an hyperbolic one, it is possible to estimate the time of 

flight, which most probably will not match the desired time of flight as p has been 

guessed, thus p needs to be adjusted to a new value and the whole process must be 

repeated from (3) until the obtained time of flight equals that of the problem. In order to 

calculate a new estimation for p, the linear interpolation described in (16) may be used, 

however other alternatives are also valid as explained in literature. Finally, once 

convergence is achieved, g  must be computed from (17), and then v1 and v2 are 

calculated from (18) and (19), respectively. 
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 112 vgrfv    (19) 

 

The p iteration method converges in all cases except when r1 and r2 are exactly 

collinear, which is not a probable scenario as numerical methods are in place, thus the 

initial and final position vectors are subjected to some numerical accuracy. 

Nevertheless, the colinearity scenario is typically associated to a free fall (r1 and r2 in 

the same direction) or a Hohmann transfer (r1 and r2 in opposite directions), being the 

latter generally the optimum transfer manoeuvre between two circular orbits, which 

would be applicable when travelling from one position to another, but this specific 

manoeuvre is highly improbable in any of the patched conics of an analysed 

interplanetary trajectory, as it involves several planets with quite arbitrary positions (see 

section 2.2.7 and Chapter 5). 

 

2.2.6.2 Solution of the Gauss Problem via Universal Variables 

 

From r1 and r2, and taking into account the direction of motion, constant A should be 

evaluated from equation (20). Using a trial value of variable z, equations (20)(a) and 

(21) should be evaluated, so then variable y can be computed from equation (22), and 

variable x from (23). The trial value of z is then checked based on the time of flight 

(TOF) calculated from equation (24). Procedure should be repeated until a stable value 

of t is achieved. Value of z may be interpolated based in equation (25), which is 

analogue to equation (16), however other more successful methods can be found in 

literature. Then, equations (26),(27) and (28) are evaluated and, from the values of f, g 

and g , the initial and final speeds of the arch of orbit, v1 and v2, are obtained from 

equations (18) and (29). 
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Any computational algorithm for solving the Gauss problem via universal variables  

should consider the possibility of negative values of y, prior to the evaluation of x with 

equation (23). This check is necessary only for positive values of constant A (“short 

way” trajectories) [20]. 

 

2.2.7 Fly-by or Gravitational Assistance around Planets 

 

The fly-by trajectory consists on using the gravity field of a planet to apply a delta-V to 

a probe, which may accelerate considerably, depending on the approaching and leaving 

directions respect to the planet (the kinetic energy gained by the probe comes from the 

negligible reduction of the planet’s speed). Considering the size of the sphere of 

influence of a planet respect to the size of its orbit, and comparing the interplanetary 

times of flight with the duration of the fly-by, any planet may be considered as a 
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dimensionless point of mass at which the spacecraft changes its velocity instantly due to 

the fly-by. 

 

Taking into account a safe radius of curvature of the fly-by is necessary in order to 

obtain practical results, otherwise considering a planet as a punctual mass would lead to 

a nearly-zero approach and an unrealistic high acceleration due to the gravity force. 

When using a geometrical analysis (see below), the lack of a defined minimum radius 

shall lead, under extreme conditions, to fly-by around, for example, a grain of dust (if 

such grain were included in the solar system model). While such extreme situation is 

not possible, it improves the understanding of the need of some defined radius of 

curvature for fly-bys (infinity, in the case of the grain). More likely but still unrealistic 

scenarios would involve fly-by through the atmosphere or even the surface of the planet. 

Such unrealistic situations are avoided by defining radius of curvature, which are 

directly related to the size of the planet, and indirectly to the mass; for instance, a heavy 

planet may be used to change the direction of a probe quite quickly, while a light planet 

may not be used for such demanding changes, if any fly-by is possible at all. 

 

As shown in Figure 4, the probe approaches the planet with a velocity va respect to the 

heliocentric reference system, and v,a respect to the planet. When departing from the 

planet, the velocity of the probe respect to the heliocentric reference system is vb, while 

the velocity respect to the planet is v,b. Since the trajectory of the probe respect to the 

planet is hyperbolic, the values of modules v,a and v,b should be equal to the same 

value v. 

 

 

Figure 4: Fly-by in a planet P 
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The relations between va, vb, v,a, v,b and the velocity of the planet vP are shown in 

equations bb) and cc): 

 Paa vvv ,  bb) 

 Pbb vvv ,  cc) 

Obtaining the value of v is trivial dd): 

 aa vvv ,,    dd) 

Equation ee) shows how to compute the cosine of angle  between vb and vP, from 

which vb can be calculated using the theorem of the cosine ff), as represented in Figure 

4. 
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2.2.8 Propulsion Systems 

 

The specific impulse Isp of a propulsion system is defined as the provided force 

(momentum variation) per propellant unit [98]. Spent fuel is disposed and expelled 

through the rocket nozzle. The fuel budget may be given as weight (kg·m/s2) or mass 

(kg). Thus, the specific impulse units shall be in seconds (s) or in meters per second 

(m/s). In this thesis, the specific impulse units are in meters per second. The force or 

thrust provided by the rocket is computed by multiplying the specific impulse of the 

propellant and the mass flow thought the active nozzles. The flow of mass thought the 

nozzles should be taken into account to calculate the current mass of the spacecraft 

during each stage, according to equation (1): 

 
spgI

T

dt

dm
  (1) 

where T is the thrust and g is the gravity acceleration at the surface of the Earth. 
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2.2.9 Gravity Turn 

 
 

Gravity turn refers to one of the phases of a launch. During that phase, as seen in Figure 

5, the probe or launcher is pushed by the thrust of the propulsion system (section 2.2.8), 

while pulled downwards by the gravitational force of the Earth (section 2.2.1). 

Obviously, the thrust direction of any launcher or vehicle is applied in the same 

direction of the movement for optimal design (i.e., thrust in the direction of the 

aerodynamic axis). The equations governing the motion during the gravity turn 

manoeuvre [27] are equations (2)(3)(4)(5): 
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where: 

m is the mass of the spacecraft during each stage considering equation (1), 

V is the spacecraft speed, T is the thrust, 

D is the air drag (see section 2.2.10), 

x is the horizontal downrange distance, 

h is the vertical altitude distance, 

ag is the gravitational acceleration at each point, 

R is the radius of the Earth, and 

 is the flight path angle of the vehicle, which is defined as the angle between the 

velocity vector of the launcher and the local horizon. 
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The calculation of equations (2)(3)(4)(5) is based in a rotating frame, which y axis is 

oriented in a positive altitude direction, and x axis in a local horizon forward direction, 

as represented in Figure 5. In particular, (2) and (3) have been calculated geometrically, 

while (4) and (5) were obtained by equilibrium of forces in vehicle along and transverse 

axes. These forces are the thrust T, the weight P, the air drag D and the centrifugal force 

Fc (see Figure 5), which appears in the specified non-inertial rotating frame. 

 

 

Figure 5: Local horizon rotating frame for gravity turn modelling 

 

2.2.10 Air Drag 

 

The air drag force is provided by equation (6): 

 2

2

1
VAD ef  (6) 

where: 

Aef is the effective area for air drag calculations, 

 is the air density, and 

V is the speed of the spacecraft. 

 

There are many different Earth atmospheric models that provide with useful information 

for air density calculation , for an average day, a hot day, a cold day, a tropical day, 

etc. These models are updated every few years to include the latest atmospheric data. 

Models are generated by considering atmospheric measurements that are averaged and 
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matched a curve to produce estimated equations, which assume that the pressure and 

temperature change only with altitude [20]. One of the most important models is the 

U.S. Standard Atmosphere 1976 one [100]. In Figure 6 the air density is shown against 

the height (up to 200 km), highlighting that the Earth’s atmosphere is an extremely thin 

sheet of air which density drops quickly with altitude. Therefore, the air drag effects are 

especially important near the Earth’s surface, and almost negligible at high altitudes 

(but still important enough to be considered for accurate calculations in long LEO 

missions around the Earth). 
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Figure 6: Air density evolution in altitude in Earth’s atmosphere (U.S. Standard 

Atmosphere 1976) 

 

2.3 Artificial Intelligence and Intelligent Strategies 

 

Several concepts has been used and applied during the development of the PhD degree: 

neural networks, fuzzy logic, genetic algorithms, expert systems, particle swarm 

optimisation, etc (see section 1.5). All of these intelligent strategies are based on the 

processes of learning and solving problems by human beings, particularly when a 

mathematical formulation lead to complex models with no analytical solutions, or to 

variables that can be better expressed and understood in terms of qualitative descriptions 

rather than exact values. Combining such human skills with the power of computers is 
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the aim of the artificial intelligence. Whereas for sure all the intelligent strategies 

mentioned above are highly interesting, three of them have been intensively used during 

the research and research at this PhD degree: fuzzy logic, genetic algorithms and 

particle swarm optimisation. A brief summary of each technique is presented in this 

section. 

 

2.3.1 Fuzzy Logic 

 

While fuzzy logic [31][32][86] is mostly used for machine control nowadays, other 

applications out of that scope are also possible, such as implementation of controllers 

for satellites. Other applications for tuning PIDs are available in [67]. Fuzzy concepts 

are related to variables that are better described qualitatively, rather than with exact 

numbers. Genetic algorithms and neural networks may also deal with fuzzy variables, 

and some neural networks are exactly equivalent to fuzzy systems [66]. Fuzzy logic has 

the advantage of handling variables like human beings, so the human experience is 

easily modelled, especially in those cases and contexts when such experience is already 

applied successfully. Also, whenever modelling a complex system is not possible or too 

expensive, or processing and simulating a complex model is time-consuming, fuzzy 

controllers may become an interesting alternative. 

 

The values of the input variables in a fuzzy control system are mapped into fuzzy sets. 

The process to associate values of the variables with fuzzy sets is called fuzzyfication, 

and is performed via membership functions that transform the value of the input 

variables into fuzzy values of the fuzzy sets. The output variables are also defined as 

fuzzy sets. For example, given a set of input variables, the first variable may belong to a 

fuzzy set which values are “high” and “low”, the fuzzy set for the second variable may 

have values “hot”, “warm”, “cold”, etc; analogously, the output variables of the system 

may belong to fuzzy sets with values such as “on” and “off”; “nominal”, “warning” and 

“stop”; “maximum power”, “nominal power” and “no power”, etc. In summary, some 

implemented rules of the fuzzy system are applied to the inputs and to combinations of 

inputs, and the results of the rules are mapped into fuzzy sets. Based on these results, 

the output variables are generated and converted into practical values through a process 

called defuzzyfication. 
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2.3.2 Evolutionary Strategies 

 

A major difficulty when optimising parameters in a complex system is to provide 

algorithms that converge towards an optimum. Exhaustive search is unaffordable except 

for very simple cases. In general, using an algorithm based on an intelligent exploration 

of solutions such as genetic algorithms (GA) [52] or Particle Swarm Optimisation 

(PSO) [69] is necessary. These techniques are evolutionary: from an initial set of 

guesses, these are improved by combining information between them, as the exploration 

of solutions continues, and new solutions with better performances are found after each 

step, until ideally an optimum solution is achieved. 

 

2.3.2.1 Genetic Algorithms (GA) 

 
 

GAs are non-deterministic, evolutionary, search methods that implement some 

operators observed in the natural evolution of life forms, such as crossovers and 

mutations. After each generation, the next offspring is intended to improve the 

performance index provided by the parents. More specific information on GAs can be 

found in [52] and [72]. 

 

Crossovers are performed between numerical strings (chromosome) encoded 

individuals. A parents’ random selection mechanism is introduced to bias the population 

replacement towards increasing the selected performance index. The higher the 

performance index of an individual is, the higher the probability of being chosen as a 

parent, so those good characteristics of the chosen parents shall hopefully pass to the 

next generation. The chromosomes of the parents are combined and a one-point 

crossover is normally performed, however performing crossovers in more points is also 

possible. The best individual in the previous generation substitutes the worst individual 

of the new generation. Elitism prevents the best element of the population from being 

deleted to make room for a worse new individual. 
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Once the GA generates the offspring, a mutation operator changes individuals’ genes 

randomly. A possible technique is to apply a variable mutation [2][3][5][7][8][9][1]: 

when the population is not centred on a maximum, a low mutation rate is applied, thus 

the GA performs the search for the optimum point mostly mixing and combining 

existing individuals into new ones, whereas raising the mutation rate switches to a broad 

searching space when a maximum has been reached and no local improvement can be 

expected. An outer calculation adjusts the mutation rate in response to the observed 

behaviour, and when a lot of individuals come up to a specific point of the searching 

space, the mutation probability automatically increases, avoiding premature 

convergence to a local function extreme. 

 

Given a complex system, a set of individuals is defined. Each individual consists on the 

concatenation of a representation of each of the input values of the system. Hence, given 

an individual, it represents a certain combination of values of the input variables. This 

representation is usually binary), as conceptually represented in Figure 7, (or 

“calibrated” binary, as explained below) but this is not mandatory and any other 

representation is also valid. In Figure 7, an individual is represented as an example, 

consisting in a certain combination of values for the three input variables of a system. 

 

 

Figure 7: Example of individual in GAs 

 

Let it be  one of the adjustable parameters (system input variable) of the GA, which 

maximum and minimum values are max y min, respectively. Let it be N the number of 

bits used for binary-coding the value of . Then, it is possible to code up to 2N different 

values of  in those N bits. A traditional binary interpretation of the bits would be based 

on equation gg): 

  
i

i
idec b 12  gg) 

where dec is the value of  according to a traditional representation of N bits, i is the 

position of each bit (the first bit is assumed to refer to 20) and bi is the value of each bit. 
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While representation in gg) is valid, it does not represent all possible values of  

efficiently, in case min is much bigger than 0, or if max is much lower than the value 

represented when all bits are set to 1; in such cases, many possible representations shall 

never be used, thus wasting the potential of the N bits, while the valid values of  are 

confined altogether in a narrow set of representations, thus losing all the potential 

accuracy that the N bits may offer. Also, negative values would require some special 

representation, preferably continuous so jumps when executing the GA are avoided, but 

this issue is not trivia with the traditional binary coding, even if one of the bits is used as 

the sign of the represented value. Bearing these issues in mind, an alternative binary 

representation is desirable, applying a rescale and an offset, so a binary representation 

consisting in all 1s is associated to max, and a representation of all 0s is associated to 

min. Such alternative representation is based in equation hh), which permits the usage 

of the whole range of values of the N bits. The joint of these two operations, rescale and 

offset, is sometimes called “calibration”, however this term is used in other contexts 

with different meanings, usually referring to the testing and initial set-up of a machine, 

an actuator or a sensor. 

   min
max

12



 




N
dec  hh) 

Crossing between individuals lead to an offspring that may take the characteristics of 

the parents. Thus, only the best individuals are chosen in order to generate the next set 

of individuals. There are many different possible implementations of the selection 

algorithm, which normally select parents randomly but with some favouritism for those 

individuals with better characteristics (better performance, according to some criteria 

function related to the optimisation of the output variables of the system). It is expected 

that, using this technique, the positive characteristics of the chosen parents are taken by 

the next generation, while those individuals with worse characteristics (worse 

performance, according to the criteria function) tend to disappear. A selection of parents 

exclusively based on performance and with no random selection may lead to 

homogeneous results in the population; this homogeneity decreases the success of the 

GA as it may miss better solutions far away in the space of input variables, thus some 

random factor is desirable when selecting parents, even if some individuals with bad 
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characteristics are chosen. Some elitism is also desirable, to ensure that the best 

individual of a given generation is not lost in the next generation. 

 

The combination of parents, represented in the left part of Figure 8, consists on splitting 

the binary strings or chromosomes in a certain random position (one-point cross-over), 

or in several positions (several-point cross-over). In Figure 8 a one-point cross-over is 

represented. Once the strings or chromosomes are split, their parts are exchanged and a 

new individual is created. Finally, the mutation is applied randomly to one or more bits 

(some GA are implemented so a maximum of 1 bit can be modified by the mutation 

operator). 

 

 

Figure 8: Representation of the cross-over and mutation operators in GA 

 

2.3.2.2 Particle Swarm Optimisation (PSO) 

 
 

PSO is a population-based, swarm intelligent, search algorithm based on the simulation 

of the social behaviour of birds within a flock or any other swarm organism [69], using 

physical movements of the individuals within the swarm. Many different techniques can 

be applied to implement PSO, so the evolutionary mechanism of the swarm algorithm 

adapts to the global and local exploration of the search space area. Whereas other 

evolutionary algorithms are based on parent representation and selection of individuals, 

PSO and Multi-Objective PSO (MOPSO) rely on leaders to guide the whole population. 

PSO refers to single-output analysis, while MOPSO refers to PSO when more than one 

output is available [13]. One of the first works on swarm algorithms is reported in [69]. 

A survey of the state-of-the-art of particle swarm optimization is summarized in [92]. A 

comparison of multiobjective evolutionary algorithms is presented in [109], while in 
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[71] some suggestions are explained for improving both spread and convergence in 

swarm algorithms and Pareto-fronts. Data structure and turbulence concepts are applied 

to swarm algorithms in [46]. 

 

An exhaustive and detailed explanation on PSO and MOPSO, and their different 

variants, is beyond the scope of this section, however a brief explanation on these 

techniques is provided with the purpose of improving the understanding of forthcoming 

chapters. 

 

Given a complex system, let it be a population of individuals, each defined by its 

position in the space of input variables. The updated position of every i-th individual 

after the k-th step can be described with the general formulae (1) and (2): 

   01,,,1,, cxxcvv
leadersj

kijijikiki  



 (1) 

 kikiki vxx ,1,,    (2) 

where: 

kiv ,
 is the velocity vector of the i-th individual in transition from step k-1 to step k. 

ci,j are random numbers 

c0 is a random number (sometimes called “turbulence factor”) that introduces a random 

component into the updated final position of each individual, similar to mutation in GAs 

jix ,
 is the j-th leader for the i-th individual 

kix ,
is the position (decision vector) of the i-th individual in k-th step. 

 
As shown in (1) and (2), a leader is defined for each individual in the population, and 

the position of each individual is changed by weighting the current distance to each 

leader with some random numbers, and combining these weighted distances into a 

single vector that represents the change in the position of the individual in the space of 

input variables. 

 
Whereas formulae (1) and (2) are quite intuitive, it is not obvious to define the leaders 

for each individual, and there are many different criteria in scientific articles, using local 

leaders, past history of each particle, etc. Nearly all PSO approaches use as one of the 

leaders the individual with the best global results in the population. Normally, a second 

leader is the best historical result of each individual (so this second leader is “personal” 
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to each individual). In order to identify and characterize the best individual of the 

population, a fitness function should be defined, based on the relevant output or outputs 

of the system. When the fitness function has only one output, then the selection of the 

best individuals is quite straight forward, proved that the fitness functions is wisely 

chosen. There are other interesting considerations when designing a PSO algorithm, 

such as distribution of random weights, dynamic assignment of leaders, turbulence 

factors, etc. 

 

2.3.2.3 Multi Output Particle Swarm Optimisation (MOPSO) 

 
 

When the fitness function of a PSO has several outputs (i.e., when several outputs of the 

system are relevant for optimisation), each output may conflict with each other and the 

selection of the leaders is not as obvious as in section 2.3.2.2, where the selection of the 

leader was based on a single output. Some strategies for selection are required for 

defining and identifying the PSO leaders when a multi-output criteria function is in 

place. Multiobjective optimisation problems are quite common in every area of 

knowledge [47][108][61]. In such problems, the objectives to be optimised are normally 

in conflict respect to each other, hence there is not a single solution for these problems. 

Traditionally, multiobjective optimisation problems are solved with multi-input, single-

output target functions, combining all the objectives into just one formula to be 

optimised. This approach has been proved to be useful in many problems, but it is not 

always easy to find the best fitness function, being a more interesting approach to obtain 

a global view of all the different dominant solutions, presented as Pareto-fronts. Such 

global view may be particularly necessary when analysing the influence of the 

variations of some inputs in all the outputs. Whereas this analysis can be made for 

single-output functions (applying gradient methods, for instance), some difficulties may 

arise when there are many variables, local solutions or discontinuities. Swarm 

algorithms avoid these drawbacks and support the multi-output, Pareto-front concept 

better than other AI algorithms [29][28]. In such multi-objective problems, it is 

necessary to implement in the MOPSO algorithm how to choose the leaders (for 

instance, the nearest solution in the Pareto-front). 
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The function to optimise in a general multi-objective minimization problem may be 

written as in (3): 

         xfxfxfxfy k,...,, 21  (3) 

where  nxxxx ,...,, 21  is the vector of decision variables and  nyyyy ,...,, 21  is the 

vector of outputs. 

 

If (3) cannot be analytically evaluated, it is mandatory to use some numerical 

calculations and iterative processes in order to find the optimum solution. Given two 

different potential solutions, represented as vectors 
Ay  and By , the first one would be 

dominant respect to the second one if (4) is verified. If the inequality is strictly fulfilled, 

then By  is called a dominated solution. 

 iyy iBiA  ,,
 (4) 

Note that minimization problems are considered here, without loss of generalization, as 

(3) and (4) can be easily adapted to maximization problems. Dominated solutions are 

not interesting in optimisation problems, as the interpretation of (4) is that solution Ay  is 

better than 
By , for any of their components. Therefore, 

By  can be discarded. However, it 

may happen that Ay  surpassed 
By  in only some (but not all) outputs, and vice versa; in 

that case, 
Ay  and 

By are both non-dominated solutions to each other, and both may offer 

interesting properties and results. 

 

The aim of the MOPSO is to find a set of non-dominated solutions (Pareto-front), which 

have to be saved in some data structure during the execution of the algorithm. The size 

of this structure may grow in size very quickly, as more non-dominated solutions are 

found in every step. After each step, the new position of the individuals in the 

population must be compared to every solution in the Pareto-front, to perform some 

substitution if necessary. This increases the complexity and the computational time in 

every step, as the Pareto-front becomes bigger. In order to ensure that solutions are 

varied and heterogeneous, some mechanism must be used so the distribution of the 

decision vectors in the Pareto-front is smooth and uniform. Dealing with these three 

issues (size of the Pareto front, comparison of Pareto front to individuals in the 

population, and mechanism to ensure a smooth distribution) lead to establish a limit of 
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the number of solutions in the Pareto-front. Individuals with new positions in the space 

of input variables become candidates to join the Pareto-front, if they are non-dominated 

respect to any other Pareto-front solution. Before they finally join the Pareto-front 

(discarding some other solution already in the Pareto-front), a comparison is performed 

between the candidate to join and the candidate to be dismissed, in terms of distances to 

other solutions in the Pareto-front. The substitution is performed by considering only 

the highest distance, so the density in the Pareto-front is kept as low as possible. In spite 

of this technique, that ensures some variety of the solutions, sometimes the Pareto-front 

is not as broad as expected, due to isolated solutions and strong discontinuities in 

global, single-output optima. 

 

 



 

 

Chapter 3 

Modelling, Simulation and Fuzzy 

Control of Satellites in Lagrange 

Points 
 

The aim of this section is to present the modelling and analysis of the behaviour of five 

satellites placed at the five Lagrange points of the Earth-Moon system, and to control 

their position with conventional and fuzzy PD controllers. 
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3.1 Introduction 

 

The modelling of the five satellites placed at each of the five Lagrange points of the 

Earth-Moon system [10] has been developed including solar wind effects, non-spherical 

gravitational fields and the drift of the orbital elements of the Moon orbit. A continuous 

propulsion is applied to each satellite, computed with fuzzy PD controllers, and the 

results are compared to classic PD controllers. The aim of those controllers is to keep 

the position of the satellites in spite of the disturbances (solar wind, etc). 

 

As explained in section 2.2.55, the Lagrange points (also known as libration points) of a 

system of two planets, one orbiting around the other in perfect circles, are those points 

where the centrifugal and gravitational forces cancel out, for the corresponding rotating 

reference frame [20][49]. Therefore, a satellite placed on those Lagrange points shall 

maintain its position respect to the two central bodies, without the need of applying any 

thrust or propulsion [98]. Two of the Lagrange points are stable, however a satellite near 

one of those two points would describe circles around the equilibrium position. The 

other three Lagrange points are unstable, with slow drifts away from the equilibrium 

position. 

 

However, those theoretical Lagrange points are not possible in real systems, due to 

several effects (perturbations) that make impossible to exactly cancel the centrifugal and 

gravitational forces: each central body does not describe a perfect circumference around 

the other planet, effects from third bodies, effects from solar wind, non-spherical 

harmonics of the gravitational fields of the planets, drift of the gravitational parameters 

of the Moon, etc. In a real system, though, it is possible to keep the position of a 

satellite in a Lagrange point applying a low thrust, so fuel expenses are also low and the 

mission may last for a long time. In order to design such a mission, a control system is 

required that stabilizes the position of a spacecraft in each Lagrange point in spite of 

perturbations. Indeed, the five Lagrange points are interesting for observation mission 

with a long duration. 
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Satellite control based on PD controllers was presented in [4] and [10]; in the latest, 

most complex models were present, as described in this section. An adaptive-predictive 

controller is applied to a microsatellite, based on a PID, in [82]. Dynamic programming 

is presented in [80]. Some original aerospace control strategies are found in [35][24]. 

For the particular case of Lagrange points, in mission Herschel-Planck [58] an 

impulsive control is in place, where each impulsive manoeuvre is computed without any 

automation. A LQG strategy is applied to the simulations in [23] in order to achieve a 

stable position around the Lagrange points, in the context of formation flying. In [97] an 

analysis of the Lagrange points is presented, for the Neptune-Triton system. Also 

interesting are [55][57][60][59][95][54][78]. In [49] a quite innovative approach to the 

applications of Lagrange points is presented. Whereas those works are related to PD 

controllers, satellite control and Lagrange points, in [4] and [10], perhaps for the first 

time, a continuous fuzzy PD controller is analyzed for all the Lagrange points of the 

Earth-Moon system. 

 

3.2 Description of the Model 

 
 

The models of the Earth-Moon-satellites system were written in modelling language 

Modelica [79], and the simulations were run in Dymola [37]. Modelica is a non-

proprietary, object-oriented, equation based language to model complex physical 

systems containing, e.g., mechanical, electrical, electronic, hydraulic, thermal, control, 

electric power or process-oriented subcomponents. Dymola is a software to simulate the 

dynamic behaviour and complex interactions between systems of many engineering 

fields, such as mechanical, electrical, thermodynamic, hydraulic, pneumatic, thermal 

and control systems. Aerospace applications of Modelica and Dymola like in [4] and 

[10] are scarce to date, and the approach presented in those articles is quite original. 

Indeed, Modelica is normally used for modelling complex physical systems with 

elements from mechanics, electricity, electronics, hydraulics, thermal engineering, etc 

[99]. Dymola provides an environment that supports the implementation and simulation 

of the Modelica models, including plots and 2D and 3D animations, normally for the 

engineering fields listed above. A 3D animation was introduced in the model described 

in this section, with the purpose of visualising the movement of the Moon, the Earth and 
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the satellites around the centre of mass of the whole system, which remains in the same 

position during the simulation. 

 

The Earth and the Moon are implemented as a 3D system that includes the drift of the 

gravitational parameters of the Moon around the Earth [20]. As explained in section 

2.2.1, the gravitational force is due to a gravitational field, which can be written a series 

of harmonic functions [68], whose parameters can be computed and estimated from the 

trajectories of known natural and artificial satellites. Based on equation (4), 50 

harmonics has been considered for the Earth, and 20 for the Moon. The non-sphericity 

of the Earth and the Moon has important long-term effects in the motion of the satellites 

and their orientation (attitude), specially the harmonic J2 [40]. 

 

The solar wind has been modelled according to [44] and [45], based on (5): 

   2
solarsolarsolar vrP   (5) 

where: 

Psolar is the solar pressure, 

 is a parameter that depends on the distance to the Sun (rsolar), 

 is the ionic density, and 

vsolar is the speed of the solar wind. 

 

The value of the perturbation due to the solar wind is the result of multiplying Psolar and 

the equivalent area of the satellite (the area seen from the Sun, which depends on the 

orientation of the satellite in case the satellite has no spherical symmetry). 

 

The third body effects (due to the gravitational forces of other bodies in the Solar 

system) are not relevant. The biggest third body effect corresponds to the Sun, which is 

around 0.0059 m/s2, thus no relevant for the modelling and simulation of the Earth-

Moon system. 

 

Each satellite is modelled as a punctual mass. Three forces act on each satellite: solar 

wind, gravitational force and thrust from the propulsion system, as seen in (6): 

 thrustsolargravity FFFF   (6) 
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where F is the sum of the three aforementioned forces. 

 

Based on section 2.2.1, the gravitational force due to the joint effects of the Earth and 

the Moon can be computed according to (7): 

    
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where: 

gravityF  is the gravitational force on each satellite, due to the two central bodies (Earth  

and Moon, in this section) 

M1 and M2 are the mass values of the two central bodies 

m is the mass of the satellite 

r is the position of the satellite respect to the centre of mass of the Earth-Moon system 

1R  and 2R  are the positions of the two central bodies respect to the centre of mass of 

the Earth-Moon system 

 

Whereas in [4] the trajectories of the satellites were simulated in free drift (i.e. without 

applying any controlled thrust), in [10] a PD control loop is applied as shown in Figure 

9. The inputs of the controller are the three components of the difference between the 

position of the Lagrange point and the actual position of the satellite. Based on this 

error, the controller computes the thrust (control signal) of the propulsion system, which 

delivers a variable force with a very low mass flow and high specific impulse [20][93]. 

The product of these two values is the force of the propulsion system, as explained in 

section 2.2.8. In this case, while the thrust is low, this is enough to cancel the slow drift 

of the satellites away from the Lagrange points, while ensuring a quite low fuel expense 

that permits a long life of the mission [57]. 

 

 

Figure 9: Control loop for satellites in the Lagrange points 
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The Lagrange points have been modelled as explained in section 2.2.5. The need of a 

controller is justified by the unstable nature of those points, particularly in real systems 

with external perturbations and where the movement of each of the planets around the 

other is not a circumference. 

 

As Modelica is an object-oriented language, some objects have been created in [10] that 

could be reused to create new models without the need of programming from scratch. 

Indeed, the idea of using objects in Modelica is to create a library that can be used for 

modelling aerospace projects, and in this section. In general, some of the objects in 

Modelica can be reused directly, and some others need a small modification [99]; also 

in general, there are not too many objects in the standard Modelica libraries for 

aerospace modelling, thus [10] is interesting to cover such a gap. For details on these 

Modelica objects, please refer to [10]. The configuration of the system in the initial time 

of the simulation is shown in Figure 10. The reference system is inertial and its origin is 

the centre of mass of the Earth-Moon system; the Y axis passes through the Earth and 

the Moon in the perigee of the Moon; the X axis is contained in the plane of motion; the 

Z axis is perpendicular to the visual plane of Figure 10. In the initial time, the Moon is 

in the perigee, thus on the Y axis. The Earth-Moon system rotates clockwise in Figure 

10. The initial positions and velocities of all the bodies can be defined from geometry, 

in order to let Dymola simulate the system from the initial time. 

 

The model was validated as explained in [10]. The five satellites are first simulated 

without control (free drift) as in [4], and later a controller is added (see section 3.3). 

Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15 show the drift of the satellites 

during 107 seconds (around 116 days). The red line corresponds to the x-axis, and the 

blue line to the y-axis. The z-axis is not interesting and has not been represented. 
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Figure 10: Initial time of the simulation of the satellites in the Earth-Moon 

Lagrange points 

 

In Figure 11 the drift of the satellite in L1 is appreciated from the very beginning and in 

less than six days it is already several hundreds of thousands of kilometres away from 

the equilibrium position. The behaviour of the satellite seems cyclic but the initial 

position is never recovered. 

 

 

Figure 11: Position errors of a satellite in free drift near L1 

 

The free drift of the satellites in L2 (Figure 12) and L3 (Figure 13) is initially slower 

than in the case of L1, however the differences between the centrifugal and gravitational 
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forces becomes important and after 107 seconds those satellites are around thirty times 

farer from the equilibrium positions than in the case of L1. 

 

 

Figure 12: Position errors of a satellite in free drift near L2 

 

 

Figure 13: Position errors of a satellite in free drift near L3 

 

The satellites in L4 (Figure 14) and L5 (Figure 15) show an unstable position as well, 

however the drift is dramatically slower (only 16 mm after 107 seconds). Such results 

confirm the stability analysis explained in section 2.2.5. 
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Figure 14: Position errors of a satellite in free drift near L4 

 

 

Figure 15: Position errors of a satellite in free drift near L5 

 

3.3 Control Results 

 

As shown in Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15, a control 

strategy is necessary in order to ensure that the satellites remain in the Lagrange 

positions. As a continuation of [4], PD controllers (conventional and fuzzy) were 

implemented in [10]. No integrator has been implemented in the controller, due to the 

double-integrating action of the transfer function of the satellite in Figure 9 (in the 

control loop, the input to the satellite is force, and the output is the position). The 

parameters of the controller were adjusted based on the convenience of the results. The 
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purpose of the controllers is to analyze if placing satellites in Lagrange points and 

controlling their thrust automatically with a fuzzy algorithm is feasible. The most 

important plots shall be shown, following the approach of [10] and for the same reason: 

to avoid repeating again and again the same plots with not added value or information. 

A summary of the results in presented in Table 1. 

 

3.3.1 Conventional P and PD Controllers 

 

A proportional controller is applied to compute the thrust of the propulsion system of 

the satellites. In Figure 16 and Figure 17 the two components of the error of position in 

the x and y axis are shown, for L4 and L5. The position error is always within 6 meters 

for L1, within 25 cm for L2, and within 40 m for L3. Some initial transitory is observed 

in L1, L2 and L3, as initially the acceleration of the Lagrange points is different from 

that of the satellites, hence both the position and the velocity become different almost 

instantly, and only recovered after a few days. An initial transitory is also observed in 

the position error of satellites in L4 and L5, however the position error is within 10 cm 

afterwards, much smaller than in L1, L2 and L3. With the P controller, the applied 

thrust on each satellite is proportional to the position error. As the error is small, so is 

the propulsion, permitting low fuel expenses. 

 

 

Figure 16: Position errors of a satellite in L1 (P controller) 
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Figure 17: Position errors of a satellite in L4 (P controller) 

 

In order to improve the behaviour of the satellites and to avoid the initial transitory 

error, the controller is improved [10] with a derivative action in the controller. As a 

result, the initial transitory has disappeared from Figure 18 and Figure 19, where the 

position error for L3 and L5 is shown. The steady error has also been improved: within 

2 m for L3, being this the biggest error. The thrust is similar to that when the P 

controller was applied, without the initial transitory in propulsion. 

 

 

Figure 18: Position errors of a satellite in L3 (PD controller) 
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Figure 19: Position errors of a satellite in L5 (PD controller) 

 

3.3.2 Intelligent Fuzzy P and PD Controllers 

 

In order to improve the free drift behaviour, in [10] two additional control strategies, 

based on fuzzy logic, were implemented. For the fuzzy P controller, the inputs are the 

components of the position error vector, and the outputs are the components of the 

thrust (control signals). For the fuzzy PD controller, the inputs also include the 

components of the derivative of the position error. 

 

Regarding the P controller, two fuzzy sets were considered, labelled as “positive error” 

and “negative error”. Both fuzzy sets were implemented with ramp functions between 0 

and 1, reaching such values when the error was 10 km (see Figure 20). The output 

variable “thrust” was defined as two fuzzy sets: “no propulsion” and “propulsion”. The 

“no propulsion” covers the case in which the sum of the truth values of the inputs is 

below a certain threshold (i.e., small error implies no propulsion), whereas “propulsion” 

covers the case in which the sum of truth values of the inputs is above such threshold 

(i.e., big error implies propulsion). This strategy reduces the action of the controller, 

hence reducing the fuel budget, as the propulsion is no continuous like in section 3.3.1., 

and the control is applied only when necessary.  
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Figure 20: Fuzzy sets of the fuzzy P and PD controllers 

 

The defuzzyfication formula ii) is used by the fuzzy P controller to compute the value of 

the thrust: 

    kFthrust  ii) 

where: 

+ is a 3-element vector of input truth values for the fuzzy set “positive error” (one 

component per spatial direction) 

- is a 3-element vector of input truth values for the fuzzy set “negative error” (one 

component per spatial direction) 

k is a parameter of the controller, which represents the maximum thrust that can be 

produced by the propulsion system of the satellites. 

 

Equation ii) is a representation of the fuzzy rules that can be analyzed as follows: the 

value of the thrust (control signal for each dimension of the space) has a sign such that 

the satellite shall approach the Lagrange point, reducing the error, thus reducing the 

truth values of the input fuzzy sets. Indeed, the equilibrium is achieved if and only if the 

position error is null, in each direction. The value of the propulsion is bigger if any of 

the two s increases. 

 

The results of the P controller can be seen in Figure 21 (for L3, similar to L1 and L2) 

and Figure 22 (for L4, similar to L5), improving the results of the conventional P 

controllers. The position errors in L3 are stable in the long term. Errors in L1 and L2 are 

reduced to only 2 cm, while the biggest error is in L3 and still within 1.5 meters. The 
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reduction of errors is especially effective for the initial transitory. A slight improvement 

is appreciated for L4 and L5, as the fuzzy controller tends to smooth the output (thrust). 

In the five Lagrange points, the errors have been reduced to the order of magnitude of 

the solar wind and the non-spherical gravitational fields, while the effects due to the 

eccentricity of the orbit of the Moon has virtually disappeared. 

 

 

Figure 21: Position errors of a satellite in L3 (fuzzy P controller) 

 

 

Figure 22: Position errors of a satellite in L4 (fuzzy P controller) 

 

Similarly to the P controller, the PD controller in [10] is based in the fuzzy sets labelled 

as “positive error” and “negative error”. For the derivative of the error there are other 

two fuzzy sets labelled as “positive derivative error” and “negative derivative error”. 

Formula jj) is in use for the PD controller: 
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    kFthrust  jj) 

where: 

   d ,min , where d+
 contains the truth values of the fuzzy set for “positive 

derivative error” for each spatial component. 

   d ,min , where d-
 contains the truth values of the fuzzy set for “negative 

derivative error” for each spatial component. 

 

According to jj), the thrust (control signal, in each direction) is applied when the 

satellites is far from the satellite and moving away, thus the PD controller applies less 

often than in the case of the fuzzy P controller. 

 

As appreciated in Figure 23 and Figure 24, the fuzzy PD controller improves the 

position error. The initial transitory has been removed, however the position error has 

increased slightly. 

 

 

Figure 23: Position errors of a satellite in L3 (fuzzy PD controller) 
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Figure 24: Position errors of a satellite in L4 (fuzzy PD controller) 

 

3.4 Conclusions 

 

In [4] and [10] several objects and models were implemented in Modelica with the 

purpose of simulating  two planets and their libration points, and analyzing the 

behaviour of the satellites placed in their surroundings. Several effects have been 

introduced such that the system is quite realistic and definitively far from any 

theoretical or ideal condition: drift in gravitational parameters of the Moon, eccentricity 

of the orbit of the Moon, solar wind, non-spherical gravitational fields, etc. P and PD 

controllers, fuzzy and classic, were implemented in order to reduce or remove the 

position errors, with successful results. The models in [10] are developed with 

Modelica, which is useful for the modelling and simulation of dynamic systems, whose 

parameters vary in time [76]. Several objects are implemented, so they can be used and 

combined easily to produce all the models seen in this section. Those objects were 

design specifically for aerospace applications, filling a gap in the standard libraries of 

Modelica. It was an advantage to implement the models with a modelling language 

instead of using a traditional language, as the equations could be written and coded 

directly (quite simpler than directly solving for the positions of the Lagrange points and 

implementing the solution in another language). The results included plots and 

animations based on the software Dymola. A summary of the results is presented in 

Table 1.  
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 P PD Fuzzy P Fuzzy PD 

L1 2 2 0.02 0.4 

L2 0.02 0.08 0.02 0.04 

L3 40 12 1.5 2.5 

L4 0.12 0.12 0.012 0.025 

L5 0.12 0.12 0.012 0.025 

Transitory 106 s - 106 s - 

Table 1: Position errors (m) of the satellites in the Lagrange points, for 

conventional P, conventional PD, fuzzy P and fuzzy PD controllers 

 

Four different controllers were implemented: P and PD, classic and fuzzy. All of them 

were useful to stabilize the position of the satellites in the Lagrange points. The 

behaviour of the satellites in L4 and L5 was especially good, and the position errors 

have virtually disappeared. For L1, L2 and L3, both P controllers conventional and 

fuzzy are quite feasible and successful. The PD controllers are better, as the initial 

transitory was removed and steady errors were reduced. 

 

In general, the energy required by the propulsion system is an important parameter and 

a limitation to the length of space missions, due to the fuel budget. For all the satellites, 

the implemented controllers require a quite low propulsion, thus ensuring longer 

mission lives. Additionally, if the propulsion system requires an extremely low thrust 

(based on ions or plasma [107]), this energy does not depend on fuel budget and could 

be achieved using solar panels; in this case, the limiting parameter of the mission would 

not be the fuel budget (energy), but the power of the solar panels. As shown in Table 2, 

the maximum power for all satellites and controllers is quite low in general, and 

particularly low for the PD controllers. The values for L1 and L3 are especially better if 

a fuzzy PD is used instead of a classic PD. All these power levels can be obtained from 

solar energy with the modern electric propulsion systems, based on ions and plasma, 

such as the GOCE mission of ESA [36]. 
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 P PD Fuzzy P Fuzzy PD 

L1 85 70 65 55 

L2 1.2 0.40 1.0 0.40 

L3 75 65 65 55 

L4 0.5 0.35 0.5 0.35 

L5 0.5 0.35 0.5 0.35 

Table 2: Maximum power (W) of the propulsion systems of the satellites in 

Lagrange points,  for conventional P, conventional PD, fuzzy P and fuzzy PD 

controllers 

 

The results could improve with other types of controllers (for instance, non-linear 

controllers), however this is not strictly necessary, in sight of the results presented in 

this section. The approach followed in [10] is quite innovative and different from that 

used in other space missions. For example, in Herschel-Planck [58], the intention is not 

to exactly reach the Lagrange point L2 (the only one, in that mission), but to move 

around it, keeping an arbitrary variable distance and correcting drifts with manoeuvres 

every four or six weeks. The applied manoeuvres are impulsive, while in [10] the thrust 

is continuous in order to keep each satellite exactly in the Lagrange point. An 

amalgamation of the two approaches should be interesting, combining the aim of 

keeping a distance to the equilibrium position with a continuous control based on P and 

PD, conventional and fuzzy, and based on a continuous thrust provided by ion and 

plasma drives, which permit a low thrust for very long periods of time. Such mixed 

approach could also include other control strategies, based on PIDs, filters, non-linear 

control, etc, as well as other perturbations and models. The new lines of research, open 

by [10], are endless and interesting. 

 

 



 

 

Chapter 4 

Genetic Algorithms Applied to 

Launchers Optimisation 
 

The aim of this chapter is to present the application of Genetic Algorithms (GAs) to the 

optimisation of launcher trajectories and launchers design. This is an interesting field in 

aerospace that requires the support of complex models and simulations, where analytical 

solutions are not possible. As in any other field of engineering where there is no 

obvious strategy in the search of a solution, heuristic methods such as GAs provide an 

automatic tool for finding the optima. Three cases are studied in this chapter. A first 

approach to the problem is given in [1] (see section 4.1), where a vertical launch is 

studied, focusing on the design of the ascent vehicle given the trajectory. Following that 

article, the subject was further analyzed in [2][3][5] (see sections 4.2 and 4.3), covering 

the design and the optimisation of two trajectories for a given launcher, using more 

realistic trajectories. 
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4.1 Fuel Optimisation of a Two-stage Launcher following a 

Vertical Trajectory 

 

4.1.1 Introduction 

 

The purpose of this section is to present and explain the application of a multi-criteria 

genetic algorithm (GA) to the optimisation of a vertical launch, with the aim of 

maximizing the lineal momentum [1]. The launcher has two stages, each one with a 

certain amount of propellant. The aim of the GA is to take a decision on the amount of 

propellant for each stage. 

 

Such preliminary analysis is interesting from a theoretical point of view, while normally 

there are more complex launch strategies to place an ascent vehicle in orbit [2][3][5] 

(see sections 4.2 and 4.3 of this PhD thesis). The content of [1] may have some potential 

applications as well in far future [101], however [1] is a proof that, nowadays, a purely 

vertical launch is not feasible. The content of the article should be understood as a 

preliminary analysis of the potential applications of GA to launchers, as such experience 

eventually led to more sophisticated results in [3][5]. 

 

To solve for the optimum vertical launch, a GA was implemented in Matlab, and the 

model of the launcher was implemented in Simulink. In later works [2][3][5], Simulink 

was dismissed in order to improve performance. Each of the two stages of the launcher 

are implemented as different Simulink models, which compute and integrates the 

motion equations of the ascent vehicle, providing values for height, speed and 

acceleration continuously during the whole simulated mission. The GA tunes the input 

variables of the two models, until the optimum solution is found. 

 

The aim of the problem is to define the amount of fuel in each stage of the launcher, so 

the linear momentum is maximized by the end of the mission. The initial mass of the 

ascent vehicle is 2.500.000 kg, including dry and fuel masses; as a result, the higher the 

fuel mass, the lower the payload and dry mass, and vice-versa. Once the fuel of the first 
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stage is over, the dry mass of that stage (including rockets, motors, fuel storage deposit) 

detaches from the main body, so the total weight of the spacecraft decreases. According 

to this criterion, the first stage should detach as soon as possible. However, attending to 

the fact that the first stage is more powerful, the detachment of such stage should occur 

as late as possible. Hence, there are two opposite criteria to design the amount of fuel of 

the first stage, and ultimately to produce the detachment sooner or later. 

 

In both the first and second stages, more fuel leads to a longer impulse time, at the cost 

of increasing the initial weight of the spacecraft. If the amount of fuel is low, the weight 

decreases, but the fuel will run out quickly. With too much fuel, the spacecraft shall be 

too heavy to move at all. 

 

The linear momentum is the product of the mass and the velocity. Thus, ideally the 

problem is solved when both quantities are as high as possible. However, a high mass 

results in a lower acceleration, thus the final speed is also lower, eventually decreasing 

the linear momentum in spite of the higher mass. If the total initial mass is fixed (as in 

this section), a big amount of fuel improves the final speed, but this implies a lower 

final mass, thus eventually a lower linear momentum shall be achieved. 

 

Final mass, by itself, is important in aerospace missions, and it represents the payload 

(useful load) of the mission (scientific material, astronauts, etc). In other problems, this 

final mass may become the parameter to maximize, but this is not the case in this 

section. The purpose is to maximize the final linear momentum. This maximization 

problem is analogous to that when the objective is to target and impact space objects in 

order to modify their orbit, such as missiles [20][21], space debris [83][43] or meteors. 

 

4.1.2 Implementation of the GA for Momentum Optimisation 

 

Information on GAs can be found on [52][72]. The genetic algorithm shall maximize 

the final linear momentum of the spacecraft (1), by adjusting the initial fuel of the first 

and the second stages during the launch. Limit values of these design parameters are 0 

and 1.000.000 kg. 
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 ff vmz ·  (1) 

where fm is the final mass of the launcher and fv is the final speed. 

 

The figures representing the amounts of fuel has been coded into binary, and put 

together as the chromosomes of a chain of bits. There are 14 bits per parameter (first 

stage fuel, second stage fuel), so there are 268435456 possible combinations, hence 

confirming the problem cannot be solved by random “try and error” techniques. The 

optimal solution cannot be found with analytical methods, due to the complexity of the 

problem and of the involved models (see section 4.2.3). 

 

Each GA offspring consists on a population of 10 individuals. Total number of 

offspring is 300. The initial population is created randomly. A valid method to select 

individuals for crossing is to choose those with the best performance index. This leads 

to improving the individuals of the next offspring, at the cost of falling into local 

minima as the population becomes homogeneous. Thus, a random selection has been 

implemented, with a higher probability of choosing the individuals with a higher 

performance index. 

 

Once the individuals have been selected for a potential crossing, the probability of 

applying a crossing to each individual is 0.8; this means that 20 % of the chosen 

individuals will be copied into the next offspring without any modification, while the 

remaining 80 % will be crossed with each other to generate new individuals. The 

crossing is based on a one-point crossover, and the two parents disappear from the 

population. 

 

After the crossing operation, the mutation operator is applied, with a probability of 

0.001 for each bit; this means that some individuals may remain unchanged, some 

others may change in one bit; and some others may change in several bits (highly 

improbable, though). 
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4.1.3 Description of the Optimisation Problem 

 

Final mass and speed are necessary to compute the performance index (1). The final 

mass depends on the fuel mass of the two launch stages, while the final speed depends 

on the thrust produced by the spent fuel in those two stages. 

 

The final mass can be computed according to (2): 

 2110 cicf mmmmm   (2) 

 

where: 

0m is the initial mass of the spacecraft 

1cm is the fuel mass of the first stage 

1im is the dry mass of the first stage 

2cm is the fuel mass of the second stage 

 

The dry mass of the first stage consists on motors, rockets and other structures that are 

useless once the fuel is over, thus this dry mass detaches so the total mass of the 

spacecraft is lower. The value of 1im  is 1.000.000 kg. The second stage has not dry 

mass, as the target of the criteria function (1) is to maximize the linear momentum, thus 

getting rid of this stage implies reducing the final mass and lowering the performance 

index. Hence, there is no reason to detach the second stage to decrease the weight, as 

there is not further acceleration of the spacecraft. 

 

Final height of the spacecraft is not important in this problem. However, some 

reasonable considerations have been taken into account. If only one, very heavy stage is 

used, the final linear momentum shall be extremely high, even if the final speed is low. 

Such a design would maximize the output of equation (1), however, such a design is not 

reasonable and at least a height of 200-300 km is expected to consider that the 

spacecraft has a reasonable mission. A restriction has been implemented in the model, 

to consider valid only those launches that reach 250 km. Apart of this, there is no 

further interest in final height. Some additional restrictions have been imposed to ensure 

that the final mass of each stage is not null, otherwise this means that the whole 



Genetic Algorithms Applied to Launchers Optimisation 88 of 186 

launcher is made of fuel, with no physical sense. A boundary condition ensures that the 

final mass of the first stage is not lower than the fuel mass of the second stage. Also, if 

the initial thrust at launch is not enough to accelerate the total initial mass of the 

spacecraft, the performance index is set to zero, so that solution is discarded for 

crossing. Analogously, only a positive acceleration at the beginning of the second stage 

firing is allowed. 

 

Final speed of the spacecraft can be computed by solving for the dynamics equations of 

the launcher, including models for the air drag, the gravity and the thrust. Assuming that 

the positive forces on the spacecraft are upwards, the total force on the spacecraft is 

given by (3): 

 PDTFT   (3) 

 

where: 

TF  is the total force on the spacecraft 

T is the thrust 

D is the air drag 

P is the gravitational force 

 

The first stage uses solid fuel which specific impulse (see section 2.2.8) is 5.000 m/s, 

while the mass flow is 10.000 kg/s. The specific impulse of the second stage is 7.000 

m/s, with a mass flow of 2.000 kg/s. The calculation of the thrust for the first and 

second stages is as in (4): 
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where: 

Ispi is the specific impulse for stage i 

im is the mass flow through the nozzles in stage i 

 

Air drag can be computed as explained in section 2.2.10. To calculate the air density, an 

exponential model was used in [1], based on equation (5): 
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 )exp()( 21 hkkh   (5) 

where: 

k1 and k2 are constants 

h is the height of the launcher 

 

For h = 0, air density is that at sea level, which value is around 1.2 kg/m3 as in equation 

(6): 

 3
1 /2.1)0( mkgkh   (6) 

Atmospheric pressure at sea level can be computed by integrating (5) in a “column” or 

air as in (7): 

 

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gm
P

0

21 )exp(  (7) 

where: 

P is the pressure at sea level 

mairg is the weight of the “column” of air 

g is the gravitational acceleration near the surface of the Earth (nearly constant) 

A is an arbitrary area at sea level, base of the air “column” 

dV is a differential volume of air 

 

Formula (7) is valid only if the atmosphere is modelled as a thin lawyer in comparison 

to the radius of the Earth. This condition is necessary due to geometric considerations, 

but also in order to consider a constant gravitational acceleration. Taking into account 

that the atmosphere finishes at height of around 100 km (where air density is around 

10.8 mg/m3), and that the radius of Earth is around 6370 km, formula (7) should be 

valid. Nevertheless, errors from this estimation are smaller than those due to random 

factors: weather conditions, non-homogeneous atmosphere, etc. Solving for (7) yields to 

(8): 

 
2

1

k

gk
P   (8) 

where obviously 1
2 00011618.0  mk . 
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As explained in section 2.2.10, the effective drag area is equal to the product of the 

cross area and a coefficient, which in this case has been considered as 0.25. For a cross 

area of 35 m2, the effective drag area is around 10 m2. 

 

Gravitational force has been computed according to section 2.2.1, with some numerical 

considerations to avoid multiplying or dividing by large numbers, as explained in 

section 4.2.3 and in [2][3]. 

 

4.1.4 GA Optimisation Results 

 

Figure 25 shows the evolution of the results in every new offspring (best value of each 

offspring, and best historical value). As shown in this figure, the initial random 

individuals are crossed and the performance index improves. 

 

 

Figure 25: Evolution of individuals (GA applied to vertical launch) 

 

In the first offspring (left side of Figure 25), the optimum solution improves very 

quickly. Afterwards, the improvement is much slower. The final best performance index 

(1) by the end of the execution of the GA is 1.5527 x 109 kg·m/s (linear momentum) for 

mc1 = 813.049 kg and mc1 = 432.128 kg. The evolution of the height for this solution is 

represented in Figure 26, the speed evolution in Figure 27 and the acceleration 

evolution in Figure 28. A final height of around 700 km is achieved, before the second 

stage runs out of fuel. Final speed is around 6 km/s, which is a quite reasonable speed 
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for Low Earth Orbits (LEO), however note that in this section the problem consisted on 

a vertical launch, rather than on a final orbit as in [2][3][5]. Final acceleration is above 

45 m/s2. Acceleration increases as air drag and gravitational forces decreases. The latest 

decreases as the height increases (see section 2.2.1), and as the fuel is expelled through 

the nozzles, thus reducing mass. Acceleration decreases suddenly when the first stage is 

discarded and the second stage is fired, due to the lower thrust of the second stage in 

comparison to the first (4); mass also decreases as the first stage detaches, but this is not 

enough to compensate the lower thrust, thus acceleration jumps.  
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Figure 26: Height (GA applied to vertical launch) 
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Figure 27: Speed (GA applied to vertical launch) 
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Figure 28: Acceleration (GA applied to vertical launch) 

 

4.2 Design of Ascent Trajectory to a Final Stable Circular Orbit 

 

4.2.1 Introduction 

 

The aim of this section is to explain and analyze the results obtained after using a 

genetic algorithm (GA) to optimize the ascent trajectory of a conventional two-stage 

launcher [2][3]. The purpose of this optimization is to obtain a final stable circular Low 

Earth Orbit (LEO) with maximum height. A subset of parameterized variables are 

tuning and optimized by the GA in order to achieve the mission purpose while 

satisfying the constraints and maximizing the final height of the orbit, given the 

technical characteristics and limitations of the launcher design, and a fixed weight of the 

payload. Indeed, due to the complexity of the implemented models and the lack of 

analytical solutions to the required equations, an alternative non-traditional optimization 

algorithm such as GA is necessary to perform the optimization task, using a variable 

mutation rate that broadens the search area whenever the population becomes uniform, 

avoiding local maximums and exploring for global ones. 

 

The preliminary analysis considered in the Automatics Workshop hold in Spain on 

September 2007 [1] led to a successful set of results that highlighted the added value of 

genetic algorithms utilization for the optimization of tuning parameters in complex 
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systems, where common optimization techniques are not applicable. In particular, 

genetic algorithms are useful for optimizing the ascent trajectory of launchers. A more 

ambitious research was performed in [3] based on a realistic approach to the launch 

optimization problem, which final purpose is, in this case, the injection of the spacecraft 

in a circular LEO with maximum height. While the GA in [1] focused in the spacecraft 

design, the article in [3] focused in the ascent trajectory parameters. An even more 

sophisticated approached, solving for two different trajectories, was later on presented 

in [5] (see section 4.3). 

 

In [3] a realistic model has been implemented based on the Ariane 5 technical data [87]. 

This commercial launcher consists on two rocket-propelled stages plus a payload, which 

depending on the mission usually is nuclear power propelled and is not considered part 

of the launcher. The first stage provides thrust during the vertical trajectory, pitch-push 

over and gravity turn phases. It consists on two P238 engines attached to a main H158 

engine. This set of engines is capable of providing a very high demanding thrust, in 

order to counteract both the gravity field of the Earth when it is at its maximum value, 

and the air drag of the atmosphere when the air density is the highest. The spacecraft 

relies on these extremely powerful engines during that first stage, when the ascent 

trajectory is mostly vertical. These engines are very heavy, therefore they are discarded 

once the thrust demand drops in higher, less dense atmosphere layers, when the vertical 

component of the speed is less important, and at that point a lighter and less powerful 

engine is used instead. The two P238 are discarded once their fuel is exhausted, still 

during the first stage, and then the launcher relies on the H158 alone, until all of its fuel 

is burnt and the second stage is switched on. The second stage, which includes an 

Aestus engine, provides the thrust necessary to reach a LEO orbit, applying a bilinear 

tangential manoeuvre. The launch mission is completed once the LEO is reached. Then, 

the second stage and other remains of the launcher are discarded altogether. The 

payload relies in its own propulsion system to perform the defined space mission. 

 

A fixed payload weight is considered. The technical data of the Ariane 5 engines 

specify the thrusts and the burn times of the first and second stages of the mission. The 

tuning parameters of the ascent launch trajectory are the vertical ascent trajectory 

period, the pitch-push over period and the pitch-push over final angle. These three 

tuning parameters have a great impact in the final radius of the LEO and in the final 
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speed of the spacecraft. Thus, the target multi-criteria function of the GA considers both 

the LEO height and the similarity between the final speed and the circular orbit speed 

for the achieved orbit. Taking into consideration these mission specifications and 

constraints, the target function is implemented and maximized by the GA, tuning the 

three input parameters accordingly. The multi-criteria optimization algorithm refers in 

this case to an algorithm that combines different criteria into a single criterion, and it 

does not consider different criteria separately, which would result in non-dominated 

solutions [47] as explained in sections 5.2.3 and 5.4. 

 

4.2.2 Implementation of GA for Height Optimisation 

 

In [3] three variables in a ten bits codification define a net of some 1 billion nodes. 

Thus, using an algorithm based in an intelligent exploration of solutions such as GA is 

necessary. In this case, the GA explores 20 individuals during a maximum of 100 

generations, with a mutation rate that increases as the individuals in the population 

become more similar between them. When no improvement occurs during 15 

generations, convergence is assumed and the algorithm is interrupted. 

 

The function to maximize (criteria function) is represented in equation (9): 

 
orbf

f

vv

h
z




1
 (9) 

Where: 

hf is the final altitude of the launcher at the end of the launch mission (i.e. the height of 

the stationary LEO), 

vf is the final launcher speed (which should be purely horizontal, after applying the 

bilinear tangential manoeuvre), and 

vorb is the necessary spacecraft speed to maintain the final circular LEO in the long-term 

[20], as calculated by equation (10), which guarantees the equilibrium 

between the gravity and centrifugal forces at the rotating reference frame: 
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g
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In the denominator of equation (9) a unitary term has been added in order to prevent 

improbable but still possible divisions by zero during the GA execution. The variables 

involved in equation (9) depend on the tuning parameters of the manoeuvres performed 

during the launch mission. Thus, the multi-criteria target function strongly depends on 

the vertical ascent trajectory period (duration of the first manoeuvre), the angle at the 

end of the pitch-push over manoeuvre (which is the angle at the beginning of the gravity 

turn manoeuvre), and the period of this pitch-push over manoeuvre. 

 

The GA should be able to maximize the target function, so the altitude of the final LEO 

is high whereas the difference between the theoretical circular LEO speed and the actual 

final launcher speed are kept similar. The target function is complex and involves 

several numerical simulations per individual in the space of search. 

 

4.2.3 Description of the Optimisation Problem 

 

The first stage of the modelled launcher, based on Ariane 5 [87], consists on a cryogenic 

H158 [105] main stage which hosts a large tank with two compartments, one for 130 

tonnes of liquid oxygen and one for 25 tonnes of liquid hydrogen. This stage also hosts 

a Vulcain engine at the base with thrust of more than one meganewton (MN). This stage 

weighs about 15 tonnes when empty. Attached to the sides are two solid propellant 

P238 boosters. The second stage of the launcher is on top of the main stage and below 

the payload. It consists on an Aestus engine [19] fuelled by high volatile liquids such as 

monomethylhydrazine and nitrogen tetroxide. A summary of the two stages technical 

specifications implemented in the model is presented in Table 3. The flow of mass 

thought the nozzles should be taken into account to calculate the current mass of the 

spacecraft during each stage, according to equation (1) in section 2.2.8 of this thesis. 
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 H158 P238 Aestus 

Isp (m/s) 4,300 2,750 3,400 

Propellant mass (kg) 155,000 277,000 8,910 

Empty stage weight (kg) 15,000 4,000 150 

Burn time (s) 589 129 1,100 

Mass flow (kg/s) 263 2,147 8.1 

Provided force (N) 1,118,000 6,050,000 27,540 

Table 3: Facts sheet for H158, P238 and Aestus engines 

 

The launch mission consists on several manoeuvres [106], whose effects are simulated 

and analyzed well in advance before a launch takes place, during the design phase. 

However, normally dynamic corrections of the trajectory are mandatory during the 

launch mission, due to the presence of undesired effects such as atmospheric weather 

conditions. Nowadays, several on-board and on-site computers carry out the necessary 

calculations based on the sensors’ data, in order to apply dynamic corrections of the 

ascent trajectory once the launcher mission has begun. 

 

The first manoeuvre is the vertical launch ascent. The launcher ascent trajectory is 

purely vertical during some seconds. No gravity turn can be flown from the start in a 

conventional launch site. The duration of this manoeuvre is a tuning parameter, to be 

optimized by the GA.  

 

The second manoeuvre is the pitch-push over. A gravity turn cannot be flown unless 

some flight angle is achieved, otherwise the launcher ascent trajectory shall remain 

purely vertical (see [1] and section 2.2.9 of this thesis). There must be some push over 

manoeuvre to get the trajectory out of the vertical direction and establish a defined 

flight-path angle, which value, a GA tuning parameter, is typically small. The dynamics 

involved in this manoeuvre are highly complex, and its duration is short. This duration 

is also a GA tuning parameter. Based in small duration and small final angle, the thrust 

and velocity of the launcher are assumed to remain nearly in the same direction, thus a 

valid approximation for this manoeuvre is a constant angle rate based in an average 

value.  
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The third manoeuvre is an elementary gravity turn. While rocket thrust serves for 

acceleration along the current velocity vector, the gravitational acceleration turns the 

direction of the speed, giving shape to a typical trajectory that is extremely sensitive 

with respect to the state vector at the beginning of the manoeuvre. The equations 

governing the motion during the gravity turn are presented in section 2.2.9 of this thesis. 

 

During the vertical launch ascent, the pitch push-over manoeuvre and part of the 

gravity-turn manoeuvre, the full first stage of the launcher (H158 + 2xP238) provides 

the required very high thrust. During the gravity-turn manoeuvre, the two P238 boosters 

are discarded and the manoeuvre continues relying in the H158 engine alone, until all of 

its propellant is exhausted. At this point, the H158 engine and the remains of the first 

stage are discarded, then the second stage is ignited and a bilinear tangent manoeuvre is 

performed and the thrust is provided by the Aestus engine alone. This fourth manoeuvre 

is an optimal guidance law in presence of a uniform gravitational acceleration [106]. 

Indeed, in this case, the bilinear tangential guidance law is nearly optimal since the 

gravitational acceleration is nearly uniform. The formulation of the manoeuvre [25] is 

shown in equation (11): 

   00 tantantantan  
f

f t

t  (11) 

where 0 is the flight path angle at the beginning of the manoeuvre, f is the flight path 

angle at the end (usually, like in this case, equals to zero, since the aim of the bilinear 

tangential manoeuvre is to place the spacecraft in a circular orbit), and tf is the duration 

of the manoeuvre. This duration is based on the technical specifications of the Aestus 

engine [19], given the mass flow of burn propellant and the total amount of propellant 

available at the beginning of the second stage. Once the propellant is fully exhausted, 

the bilinear tangent manoeuvre should be completed and the second stage discarded. At 

this point, the payload mission begins. 

 

The air drag force is provided by equation (6) in section 2.2.10.The effective area may 

be calculated as the multiplication of the transversal area and a non-dimensional air drag 

coefficient. This coefficient depends on the limit thermal layer at the launcher surface, 

and also on the launcher geometry, among other relevant factors. The effective air drag 
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area may be 25 % of the actual transversal area if the launcher is very aerodynamic. In 

this case, a 50 m2 effective area has been considered for the full first stage, 30 m2 for the 

H158 stage alone and 10 m2 for the second stage. One of the most important models is 

the U.S. Standard Atmosphere 1976 one [100]. 

 

Earth’s gravity field [20] pulls the spacecraft down with a value given by the Newton’s 

Universal Gravity Law, as explained in section 2.2.1. The distance from the spacecraft 

to the centre of the Earth equals to (12): 

 hRr   (12) 

where R is the radius of the Earth (6,370 kilometres approximately) and h is the height 

of the launcher respect to the Earth’s surface. When h = 0 (at Earth’s surface), the 

gravitational force equals mg, as shown in (13): 

  
2

0
R

GMm
mghF   (13) 

Thus, equation (14) is obtained: 

 2gRGM   (14) 

 

Substituting (12) and (14) in (1) yields equation (15), which is more convenient than 

(1); indeed, in equation (15) variables directly related to the launch mission are involved 

for the calculation of the gravity force on the launcher, whereas the multiplication of 

very large and small figures is avoided. 
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4.2.4 GA Optimisation Results 

 

In Figure 29 the evolution of the performance index is shown for the simulated 

generations. Each n-th line points out the value of the n-th best solution per generation. 

Best six solutions per each generation are highlighted. The performance indexes of the 

randomly generated initial individuals are improved as the GA performs the crossing 

and mutating operations along the generations. In each generation, results are clearly 
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improved while the GA searches for the final optimum solution. It may be assumed that 

this final solution is the best possible one for this particular problem; otherwise the 

solution provided by the GA could be refined by using other optimization techniques. If 

this is the case, the solution provided by the GA may be used as an initial guess. 

 

There are some erratic lines in Figure 29, which are associated to the worst solutions per 

generation. Indeed, bad solutions appear randomly at any moment during the GA 

execution, particularly due to the mutation operator, and sometimes also due to 

inconvenient crossings between better solutions. In general, bad individuals are 

discarded in the following generation since the probability of being chosen as a parent is 

low. It is possible to note in Figure 29 that mutations occur specially when the 

individuals have similar performance indexes and the population becomes uniform, 

usually when a local maximum has been reached. Rising dynamic variable mutation rate 

allows a broader search in the space of potential solutions, avoiding getting stuck in a 

local maximum of the target function. This is an added value to more traditional 

implementations of GAs. 

 

Best solutions are clearly stable in Figure 29. The implemented algorithm guarantees 

that the best solution is never lost when generating a new offspring. This is not 

guaranteed for the second best and following solutions, but still Figure 29 shows a 

satisfactory tendency for them. Elitism for the very best solution not only improves the 

best performance index in the next generations, but also other individuals become 

better. 
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Figure 29: Evolution of performance indexes for every individual in the population 

along the generations (GA applied to launch trajectory optimisation, final circular 

orbit) 

 

The best value of the GA target function has been obtained for the trajectory parameters 

shown in Table 4. 

 

Vertical ascent duration 6.82 seconds 

Pitch-push over duration 20 seconds 

Pitch-push over final angle 84.784 degrees 

Table 4: Values of the parameters for the best GA solution (GA applied to launch 

trajectory optimisation, final circular orbit) 

 

Figure 30 shows the optimum solution of the altitude evolution of the launcher for 

different downrange distances. The altitude evolution in time is shown in Figure 31. The 

speed evolution is presented in Figure 32, whereas the acceleration evolution is shown 

in Figure 33. All the plots are divided in areas according to the usage of engines in each 

stage: first, H158 engine with two P238 boosters for vertical ascent, pitch-push over and 

beginning of the gravity turn manoeuvre; second, H158 engine alone for the rest of the 

gravity turn manoeuvre; third, Aestus engine for bilinear tangent manoeuvre; and 

finally, free drift, whose representation allows to check the successful stability of the 

achieved LEO. It is interesting to note that the H158 + 2xP238 stage duration is really 
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short in comparison to the other stages of the launch mission, since the two P238 

boosters are discarded relatively soon. 

 

 

Figure 30: Launcher altitude evolution profile (GA applied to launch trajectory 

optimisation, final circular orbit) 

 

Figure 30 provides a clear view of the optimum trajectory profile. This shape of the 

ascent trajectory is typical of Ariane 5 and other launchers. In the best solution obtained 

from the GA, 20 tonnes has been delivered to a circular LEO. Final altitude is around 

3,790 km. Indeed, according to Ariane 5 specifications, it is possible to deliver 20 

tonnes of payload to a LEO, which altitude is typically 500 – 4,000 km. This 

comparison confirms the results described in this work. 

 

Final speed for the optimum solution is around 6.25 km/s according to Figure 32. This 

means only a 0.16% difference regarding the LEO circular speed for that gravitational 

radius. Furthermore, the final LEO circular orbit is really stable, as confirmed in Figure 

30 and Figure 31. Indeed, the LEO is maintained in free drift after a reasonable number 

of seconds. 

 

Gravitational corrective manoeuvres would be necessary in the long-term in order to 

compensate effects such as errors in measurements and in engines, non-spherical effects 

in Earth’s gravitational field, solar wind, other bodies gravitational acceleration (mainly 
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Sun and Moon), etc [98]. The achieved LEO is not stable after a while due to these 

effects, of which only the air drag has been considered in the implemented model. 

 

 

Figure 31: Launcher altitude evolution in time (GA applied to launch trajectory 

optimisation, final circular orbit) 

 

 

Figure 32: Launcher speed evolution in time (GA applied to launch trajectory 

optimisation, final circular orbit) 

 



Genetic Algorithms Applied to Launchers Optimisation 103 of 186 

 

Figure 33: Launcher acceleration evolution in time (GA applied to launch 

trajectory optimisation, final circular orbit) 

 

As shown in Figure 33, acceleration increases as air drag decreases, due to the rapid 

decrease of air density. This air drag also descends due to the smaller transversal area of 

the spacecraft as propulsion stages are discarded. Acceleration also increases when the 

weight decreases, as the gravitational acceleration decreases and the fuel is burnt and 

expelled thought the nozzles. Transitions in the acceleration are due to engine changes 

(with different impulse each) and to the spacecraft mass changes (when a stage is 

discarded). Indeed, each new stage provides less impulse than the previous one; that is 

why the acceleration decreases in spite of the discarded weight of the previous stage. 

The acceleration peaks bring sudden changes in the slope of the speed as shown in 

Figure 32, and concavity shape changes in the altitude evolution in Figure 33. 
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Figure 34: Launcher flight path angle evolution (GA applied to launch trajectory 

optimisation, final circular orbit) 

 

 

Figure 35: Launcher mass evolution (GA applied to launch trajectory 

optimisation, final circular orbit) 

 

Figure 34 shows the launcher flight path angle, which evolves from 90 degrees at the 

beginning of the launch mission to 0 degrees at the end, and then remains constant 
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during the LEO free drift. The flight path angle also remains constant during the vertical 

ascent manoeuvre at the beginning of the launch mission, which is not well noticed in 

Figure 34 due to the short period of this manoeuvre in comparison to the duration of the 

whole launch mission. For the same reason, the constant angle rate during the pitch-

push over manoeuvre is difficult to see either. The evolution of the flight path angle, 

and the effects of changing active engines, can be clearly seen during the gravity turn. 

The characteristic shape of the bilinear tangential guidance is appreciated during the 

Aestus stage, in which the tangent of the flight path angle changes in linear proportion 

to time. 

 

Figure 35 shows the launcher mass evolution, whose decreasing rate varies depending 

on each stage: high mass decreasing rate at the beginning, when the H158 engine and 

the two P238 boosters are switched on; lower mass decreasing rate when only the H158 

engine is burning fuel; and the lowest mass decreasing rate during the Aestus stage. At 

the end, the mass remains constant since no more fuel is burnt. Payload may spend 

some fuel for mission operations and corrective gravitational manoeuvres, which are not 

included in the launch mission and therefore have not been considered in the model. 

 

4.3 Design of a Hyperbolical Trajectory for an Ascent Vehicle 

 

4.3.1 Introduction 

 

The aim of this section is to analyse the results obtained when using a genetic algorithm 

(GA) to optimise the ascent trajectory of a conventional two-stage launcher [5]. Due to 

the complexity of the implemented models and the lack of analytical solutions to the 

system equations, and in order to deal with the uncertainty, an alternative non-

traditional algorithm provided by soft-computing techniques such as GA is necessary to 

perform this task. The purpose of the optimisation is to achieve an escape trajectory. A 

subset of variables are tuned and optimised by the GA in order to achieve the mission 

purpose while satisfying the constraints and maximizing the goals, i.e., the final height 

of the orbit in the first case, and the final speed in the second case. The technical 

characteristics and limitations of the launcher and a fixed payload weight have been 
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considered. In this case, a variable mutation rate has been implemented that broadens 

the search area whenever the population becomes uniform. The results are very 

promising in both cases and can help in the design of a space mission as an initial guess. 

 

The preliminary analysis considered in a previous work [4] led to a successful set of 

results that highlighted the added value of genetic algorithms for the optimisation of 

tuning parameters in complex systems, where analytical optimisation techniques are not 

applicable. In particular, genetic algorithms have been proved to be useful for 

optimising the ascent trajectory of launchers. 

 

In a later article [3], a more ambitious research was performed based on a new approach 

to the launch optimisation problem, which final purpose was, in that case, the injection 

of the spacecraft in a circular LEO with maximum height. While the GA in Chapter 6 

was focused on the spacecraft design, in [3] the GA was focused on the ascent trajectory 

parameters. 

 

A third case was considered in paper [5] as an extension of [2]. Models are improved to 

make them more realistic, and a GA is used in order to optimise the four manoeuvres of 

the ascent trajectory of a two-stage launcher in the first stages of an interplanetary 

mission, from the launching to the final escape trajectory. Due to the complexity of the 

implemented models and the lack of analytical solutions to the system equations, an 

alternative non-traditional algorithm provided by soft-computing techniques such as GA 

is used to perform this task. 

 

As in [3] (see section 4.3), in [5] a realistic model has been implemented based on the 

Ariane 5 technical data [87], and a fixed payload weight is also considered. Again, the 

tuning parameters of the ascent launch trajectory are the vertical ascent trajectory 

period, the pitch-push over period and the pitch-push over final angle. These three 

parameters have a great impact on the final trajectory of the spacecraft. The target 

multi-criteria function of the GA considers the final height to ensure air drag free 

conditions and to maximize final speed, so the three tuning parameters are adjusted 

accordingly. The multi-criteria optimization algorithm refers in this case to an algorithm 

that combines different criteria into a single criterion, and it does not consider different 
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criteria separately, which would result in non-dominated solutions [47] as explained in 

sections 5.2.3 and 5.4. 

 

4.3.2 Implementation of GA for Speed Optimisation 

 

A major difficulty when optimising parameters in a launch mission is to provide 

algorithms that converge towards an optimum. Continuation methods, in which a branch 

of the solution is followed, may be adequate in some cases, and the optimum of a 

nearby problem may be used as a good initial guess of the solution of the new problem. 

But even making wise use of the continuation method, a branch of the solution may 

bifurcate or disappear. And in any case, it is difficult or impossible to prove that the 

obtained solution is the global optimum and not a local one. Furthermore, completely 

new missions may arise for which a desired neighbouring problem is absent. Since it is 

hard to guess where the domain of convergence towards the global optimum is, in a 

general case, an exploratory work may become recommendable [52][72]. Exhaustive 

search, in which the space of optimisation variables is explored with a fine grid, is 

unaffordable except in very simple cases. In the case covered by this article, three 

variables in a ten bits codification define a net of some 1 billion nodes. Thus, using an 

algorithm based in an intelligent exploration of solutions such as GA is necessary. In 

this article, the GA explores 20 individuals during a maximum of 100 generations, with 

a mutation rate that increases as the individuals in the population become more similar 

between them. Since there are no means to prove the solution obtained by the GA is the 

best possible optimisation, some criteria has to be established to stop the GA iterations. 

In this case, it can be assumed that enough good values have been reached when no 

improvement has occurred after a certain number of generations. After many simulation 

experiments, it was concluded that no improvement is likely to happen if the best 

solution does not evolve after being constant for 15 or more generations. This 

assumption is quite reasonable as it is very unlikely that the best solution per generation 

remains constant for so long, given the extremely high variability of the individuals and 

the broad and intensive searching of the solution space when mixing heterogeneous GA 

individuals with similar optimum performance indexes. 
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The target of the GA is to achieve maximum speed at a air drag free height 

(approximately 45,000 km), as represented in equation (16): 
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where hf is the height at the end of the simulation and hp is the considered air drag free 

height. The value of this height is arbitrary. However the results do not depend on this 

value, as the maximization of speed at any height beyond the atmosphere also 

guarantees the maximization of the speed at any other height, as long as the spacecraft is 

inside a conservative, gravitational field. The two variables hf and vf again depend on 

the same parameters as in the first problem. 

 

The GA should be able to maximize the target function (16), so the altitude of the final 

LEO is high whereas the difference between the theoretical circular LEO speed and the 

actual final launcher speed are kept similar. The target function is complex and involves 

several numerical simulations per individual in the space of searching. 

 

To summarize, the launcher manoeuvres depend on the following input variables: 

vertical ascent duration, pitch-push over duration, and pitch-push over final angle. Since 

the manoeuvres are correlative, these input variables not only affect the shape and 

duration of the trajectories, but each manoeuvre has a strong influence on the others and 

on the launching mission as a whole. Since analytical analysis of the whole launching 

trajectory is not possible, simulation is necessary to calculate the parameters involved in 

the formulae of the performance indexes as given above (particularly, final speed and 

height), which therefore depend at the same time on how the input variables are tuned. 

GAs are non-deterministic search methods that implement the natural evolution of life 

forms by some genetic operators such as crossovers and mutations that are applied to an 

initial population of individuals (possible solutions). After each generation, the next 

offspring are intended to improve a performance index and therefore to be a better 

solution. More specific information on GAs can be found in [52] and [72], as well as in 

section 2.3.2.1 of this PhD thesis. 

 

Once the GA generates the offspring, a mutation operator changes individuals’ genes 

randomly. When the population is not centred on a maximum, a low mutation rate is 
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applied, thus the GA performs the search for the optimum point mostly mixing and 

combining existing individuals into new ones, whereas raising the mutation rate 

switches to a broad searching space when a maximum has been reached and no local 

improvement can be expected. An outer calculation adjusts the mutation rate in 

response to the observed behaviour, and when most of individuals come up to a specific 

point of the searching space, the mutation probability automatically increases, avoiding 

premature convergence to a local extreme. It has been observed (at least in this 

particular problem) that a quicker and more optimum convergence is achieved when a 

variable mutation rate is used rather than a fixed one. 

 

4.3.3 Description of the Optimisation Problem 

 

The first stage of the modelled launcher, based on Ariane 5 [87], consists of a cryogenic 

H158 main stage which hosts a large tank with two compartments, one for 130 tonnes 

of liquid oxygen and one for 25 tonnes of liquid hydrogen. This stage also hosts a 

Vulcain engine [105] at the base with thrust of more than one meganewton (1 MN). 

This stage weighs about 15 tonnes when empty. Attached to the sides are two solid 

propellant P238 boosters. 

 

The second stage of the launcher is on top of the main stage and below the payload. It 

consists on an Aestus engine [19] fuelled by high volatile liquids such as 

monomethylhydrazine and nitrogen tetroxide. 

 

A summary of the two stages technical specifications implemented in the model is 

presented in Table 3 (section 4.2.3). The flow of mass thought the nozzles should be 

taken into account to calculate the current mass of the spacecraft during each stage, 

according to equation ff)(1) in section 2.2.8 of this thesis. 

 

The launch mission consists on several manoeuvres [106], as explained in section 4.2.3. 

During the vertical launch ascent, the pitch push-over manoeuvre and part of the 

gravity-turn manoeuvre, the full first stage of the launcher (H158 + 2xP238) provides 

the required very high thrust. During the gravity-turn manoeuvre, the two P238 boosters 

are discarded and the manoeuvre continues relying in the H158 engine alone, until all of 
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its propellant is exhausted. At this point, the H158 engine and the remains of the first 

stage are discarded. Then the second stage is ignited and a bilinear tangent manoeuvre is 

performed and the thrust is provided by the Aestus engine alone. This fourth manoeuvre 

is an optimal guidance law in presence of a uniform gravitational acceleration [106]. 

The formulation of the manoeuvre [25] was shown in equation (11). The air drag force 

is provided by equation (6) in section 2.2.10.The effective area may be calculated as the 

multiplication of the transversal area and a non-dimensional air drag coefficient. This 

coefficient depends on the limit thermal layer at the launcher surface, and also on the 

launcher geometry, among other relevant factors. As in section 4.2.3, the effective air 

drag area may be 25 % of the actual transversal area if the launcher is very 

aerodynamic. In this case, a 50 m2 effective area has been considered for the full first 

stage, 30 m2 for the H158 stage alone and 10 m2 for the second stage. One of the most 

important models is the U.S. Standard Atmosphere 1976 one [100]. Modelling of the 

gravitational force is based on [20] and section 2.2.1, with the numerical considerations 

explained in section 4.2.3. 

 

4.3.4 GA Optimisation Results 

 

In Figure 36 the evolution of the performance indexes is shown for all the generations. 

Each n-th line points out the value of the n-th best solution per generation. Best six 

solutions per each generation have been highlighted. As in section 4.2, results clearly 

improved as the GA searches for the final optimum solution, finding the optimum 

quicker in this case (around 30 generations). This optimum may be used as an initial 

guess and refined if desired in order to achieve a better solution. 
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Figure 36: Performance indexes for every individual in the population (GA applied 

to launch trajectory optimisation, hyperbolical trajectory) 

 

The best value of the GA target function has been obtained for the trajectory parameters 

shown in Table 5. While in Table 4 the results were more appropriate of a final circular 

LEO, the escape trajectory implies a vertical trajectory and the tuning parameters are 

adjusted in that way. A perfectly vertical trajectory beyond the initial seconds is 

however highly inadvisable, as proven in [4]. 

 

Vertical ascent duration 5 seconds 

Pitch-push over duration 10.12 seconds 

Pitch-push over final angle 1.5533 degrees 

Table 5: Values of the parameters for the best GA solution (GA applied to launch 

trajectory optimisation, hyperbolical trajectory) 
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Figure 37: Launcher altitude evolution profile (GA applied to launch trajectory 

optimisation, hyperbolical trajectory) 

 

 

Figure 38: Launcher altitude evolution in time (GA applied to launch trajectory 

optimisation, hyperbolical trajectory) 
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Figure 39: Launcher speed evolution in time (GA applied to launch trajectory 

optimisation, hyperbolical trajectory) 

 

 

Figure 40: Launcher and satellite flight angle evolution in time (GA applied to 

launch trajectory optimisation, hyperbolical trajectory) 

 

Figure 37, Figure 38, Figure 39 and Figure 40 show the evolution of the latitude, speed 

and flight angle of the escape hyperbolical trajectory of the launcher. The altitude 

increases (Figure 37, Figure 38) without any limit as speed decreases (Figure 39). The 

speed tends asymptotically to its stable final value. As the distance to Earth increases, 

the relative direction of the spacecraft respect to the Earth approaches 90 degrees 

(Figure 40) as it is expected. 
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4.4 Conclusions 

 

In section 4.1 a very simple model of a launch, following a completely vertical path, has 

been optimised with the support of a genetic algorithm, proved useful to solve this case. 

The optimum solution, while interesting, is not enough to leave the Earth gravitational 

field, as the escape speed is not achieved, in spite of the powerful engines and the quite 

overestimated specific impulses of the fuel. Thus, this analysis confirms that vertical 

launching is not a good idea, and that is why normally other strategies are in place when 

designing launch missions [4][3]. Normally, instead of a purely vertical launch, the 

ascent trajectories are designed in such a way that the launcher departs from the ground 

in a vertical direction (or at some angle respect to the local horizon), and then it is 

successively turned into an horizontal direction of flight with the support of the 

gravitational force of the Earth (gravity turn). 

 

In sections 4.2 and 4.3 a genetic algorithm has been used to optimise the manoeuvres 

involved in an ascent trajectory for a typical launcher such as Ariane 5. The results, 

similar to those given by the launcher vehicle manufacturer, have been proved to be 

successful and useful, not only for the calculation of optimal solutions, but also as a 

realistic initial guess for other methods that may refine the solution provided by the GA. 

The problem of obtaining an acceptable guess of the ascent trajectory is critical when a 

new launcher is considered or when the desired mission is too different from the ones 

already studied for that vehicle. Two different cases have been considered: the purpose 

of the first optimisation is to obtain a final stable circular Low Earth Orbit (LEO) with 

maximum height, while in the second the aim of the optimisation is to achieve an 

escape trajectory with maximum speed. As an added value to traditional GAs, a variable 

mutation rate has been implemented, with satisfactory results. Raising the dynamic 

mutation rate when the population becomes homogeneous broadens the exploration area 

in the space of potential solutions, avoiding local maximums, and improving the 

successful and efficient search for an optimum solution. The results are very promising 

in both cases and can help in the design of a space mission as an initial guess. 

 

 



 

 

Chapter 5 

Optimisation of Interplanetary 

Trajectories 
 

The aim of this chapter is to provide a description of several evolutive techniques 

applied to the optimisation of interplanetary trajectories. Such trajectories consist on the 

departure from Earth and arrival to a planet [7][8][9] or some other destination (such as 

the Kuiper belt [6]), performing fly-bys in other planets, while the whole delta-V and 

total time of flight are minimized. 
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5.1 GA applied to Optimisation of Interplanetary Trajectories 

with Gravitational Assistance 

 

5.1.1 Introduction 

 

The aim of this section is to analyse the results obtained when using a genetic algorithm 

(GA) to optimise the interplanetary trajectory of a spacecraft. The desired trajectory 

should visit a planet, after performing a gravitational assistance or fly-by in planet Mars 

[7][8][9]. The GA tunes a set of variables, in order to achieve the mission purpose while 

satisfying the constraints and minimizing the delta-V of the mission. Due to the 

complexity of the implemented models and the lack of analytical solutions, an 

alternative non-traditional algorithm provided by soft-computing techniques such as GA 

is necessary to achieve an optimum solution. The positions of planets as provided by Jet 

Propulsion Laboratory (JPL) have been considered. A variable mutation rate has been 

implemented that broadens the search area whenever the population becomes uniform. 

The results are very useful from the point of view of mission analysis and therefore can 

be used as an initial guess for further optimizations. They can also be the first step for a 

more refined analysis and time-consuming simulations based on more complex models 

of orbital perturbations. 

 

The preliminary astrodynamic mission analysis presented in [4][3][5] have led to a 

successful understanding of the processes involved when optimising complex systems 

such astrophysics applications by artificial intelligence techniques. The set of results 

highlighted the added value of genetic algorithms (GA) for the optimal tuning of 

parameters in dynamical systems, with the purpose of maximizing the performance and 

the ascent trajectory of launchers, given a set of constrains. In this section a genetic 

optimisation of a complex trajectory is presented, aimed to reach Jupiter or Saturn from 

a Low Earth Orbit (LEO) around the Earth, and performing a fly-by (gravitational 

assistance) in Mars, while minimizing the fuel budget or total delta-V of the whole 

mission. Due to the complexity of the implemented models and the lack of analytical 



Optimisation of Interplanetary Trajectories  117 of 186 

solutions to the equations of the system, the approach provided by the GA was required 

to perform this optimisation, with satisfactory results. 

 

Two different interplanetary missions are considered and optimised with GA: a mission 

to Jupiter, and a mission to Saturn. Both analysis are based on the optimisation of the 

total delta-V of the interplanetary mission. A realistic model of the Solar System has 

been implemented using the data from the Jet Propulsion Laboratory JPL [96]. A first 

delta-V is applied when the spacecraft is in a LEO around the Earth, in order to reach 

planet Mars after a given time of flight. The gravity field of Mars is used to modify the 

direction and speed of the probe, with the support of an additional delta-V provided by 

the engines of the spacecraft, which finally reaches planet Jupiter or Saturn after leaving 

Mars. Once arrived at this final destination, the probe may continue its journey, leaving 

the Solar System in case of a hyperbolical trajectory; or turning around the Sun in case 

of an elliptical orbit. A third delta-V may be applied to reduce the speed and to achieve 

an orbit around Saturn. 

 

The tuning parameters of the GA are the initial epoch for departing from the Earth, the 

time of flight from Earth to Mars, and the time of flight from Mars to the destination 

(Jupiter or Saturn). In order to calculate the required delta-V to travel from the Earth to 

Mars, initial values have to be given to calculate the position of the Earth at departure 

and the position of Mars at arrival. That is, defining the input data that are required for 

the solution of the Gauss’ problem, also known as Lambert’s problem [20][73]. The 

algorithms that solve the Gauss’ problem (see section 2.2.6) provide as outputs the 

velocities at the tips of the arch of the orbit, thus fully defining the orbit itself and 

providing the required delta-V at origin, and the final velocity at the destination. In 

Mars, the calculation of the approaching velocity respect to the planet provides the 

information required to calculate the velocity at departure after the fly-by, using basic 

geometrical calculations. The calculation of the trajectory from Mars to Jupiter or 

Saturn is once again based on the Gauss’ problem, given the position of Mars at 

departure, the position of the destination planet at arrival, and a given time of flight. 

Obviously, in order to ensure a proper patching of the two different trajectories (from 

Earth to Mars, and from Mars to the destination planet), the arrival position and time in 

Mars are equal to those at departure from that planet. 
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5.1.2 Implementation of the GA for Interplanetary Trajectory 

Optimisation 

 

Exhaustive search, in which the space of solutions is explored with a fine grid, is 

unaffordable except for very simple cases. In this application, three variables (tE, tEM 

and tMS) in a 10 bits codification define a net of some 1 billion nodes. Thus, using an 

algorithm based on an intelligent exploration of solutions such as GA is necessary. In 

this article, the GA explores an initial population of 100 individuals during a maximum 

of 1000 generations, with a mutation rate that increases as the individuals in the 

population become homogeneous. Since there are no means to prove the solution 

obtained by the GA is the best possible optimisation, some criteria is needed to stop the 

GA; in this case, it can be assumed that a good enough solution is found if no 

improvement has occurred after 50 generations. This assumption, taken after running 

many simulations with different number of individuals and generations, is reasonable as 

it is very unlikely that the best solution per generation remains constant for so long, 

given the extremely high variability of the individuals and the broad and intensive 

searching of the solution space when mixing heterogeneous GA individuals with similar 

optimum performance indexes. 

 

The target of the GA is to achieve an interplanetary trajectory from the Earth to another 

planet (missions to Jupiter [8][9]and Saturn [7] have been studied) with a fly-by in 

Mars, while minimizing the fuel budget (delta-V). A function to maximize a 

performance index z has been considered (17): 

 Totalvz 1  (17) 

As represented in equation (18), the total delta-V depends on the tuning parameters of 

the GA (tE, tEM and tMJ). The exact formula is provided later, in (20). 

 ),,( MPEMETotalTotal tttvv    (18) 

The performance index in equation (17) is maximized as the total delta-V decreases. 

Since the roulette method is used to select the parents in the GA, equation (17) 

encourages the elimination of bad solutions, whereas higher negative powers would 

force the disappearance of not-so-bad solutions, thus impoverishing the performance of 

the GA. 
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GAs are non-deterministic search methods that implement the natural evolution of life 

forms by some genetic operators such as crossovers and mutations that are applied to an 

initial population of individuals (possible solutions). After each generation, the next 

offspring is intended to improve a performance index (17) and therefore to lead to a 

better solution. More specific information on GAs can be found in [52][72]. In [7][8][9] 

each input variable (chromosome) is converted into bits, after rescaling according to 

hh). In that formula,  is the original value of the considered value, res is the rescaled 

value, min and max are the limits of the valid values, and N is the number of bits (10 in 

this case) for the binary representation of each variable. After converting res into bits, 

twenty zeros should represent the lowest possible value min, whereas twenty ones 

should represent the highest possible value max, thus ensuring that the whole range of 

bits is used, and increasing accuracy. For a fixed number of bits, a smaller range of 

binary numbers and a poorer accuracy would be achieved if the rescaling were 

suppressed. An individual is the concatenation of three chromosomes, i.e., the three 

input variables: tE, tEM, tMP (see section 5.1.3), where tMP refers to tMJ or to tMS depending 

on the considered destination planet.  A parents’ random selection mechanism 

(proportional to the performance index) is introduced to bias the population replacement 

towards increasing the selected fitness function. A one-point crossover is carried out at a 

randomly chosen bit of the two parents, which are split into two parts each, and then 

those parts are exchanged to assemble two new individuals. The best individual in the 

previous generation substitutes the worst individual of the new offspring; elitism 

prevents the best element of the population from being deleted to make room for a 

worse new individual. 

 

Once the GA generates the offspring, a mutation operator changes individuals’ genes 

randomly. When the population is not centred on a maximum, a low mutation rate is 

applied. Then the GA performs the searching for the optimum mostly mixing and 

combining existing individuals into new ones. On the other hand, raising the mutation 

rate switches to a broader searching space when a maximum has been reached and no 

local improvement can be expected. Variable mutation rates have been proved useful in 

[5]. An outer calculation (19) adjusts the mutation rate in response to the observed 

behaviour, and when most of the individuals come up to a specific point of the 
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searching space, the mutation probability automatically increases, avoiding premature 

convergence to a local maximum. 

 






 


best

worstbest
m z

zz
P 101.0  (19) 

where zbest and zworst are the best and worst solutions respectively in a generation and Pm 

is the mutation rate. The GA operators (cross-over and fixed mutation) could have been 

enough to sample the search space, however in [5] a quicker convergence and a better 

optimum solution were achieved when using a variable mutation rate. 

 

5.1.3 Description of the Optimisation Problem 

 

The models explained in this section are implemented in Matlab. With the purpose of 

modelling the departure, arrival and fly-by manoeuvres of the probe at each planet, 

these planets are modelled as dimensionless points of mass. In fact, the longest 

planetary radius in the Solar System corresponds to Jupiter (66,850 to 71,500 km), and 

this is much shorter than any of the major semi-axes of the patched conic orbits 

involved in the analysed interplanetary mission (for example, the perihelion of the 

Earth’s orbit is around 147·106 km). As a result of the comparison of these dimensions, 

it is possible to conclude that, for a mission analysis optimisation, the dimensions of the 

planets are irrelevant. The ephemeris of the planets are calculated from tables and 

formulae provided by [96]. The departure from the Earth at epoch tE, to reach Mars after 

a certain time tEM, requires an arch of an orbit around the Sun, that is defined by the 

heliocentric velocities at departure from Earth, v1,EM and arrival to Mars, v2,EM. The 

required delta-V at the Earth, vE must achieve v1,EM taking into account the velocity 

vEarth of planet Earth. In order to calculate v1,EM and v2,EM, the Gauss’ problem is solved. 

Knowing the arrival velocity v2,EM to planet Mars, it is possible to calculate the module 

of the departing speed v respect to Mars, after performing a fly-by. Solving the Gauss’ 

problem for the trajectory from Mars to Jupiter given a time of flight tMJ, or to Saturn 

given a time of flight tMS, leads to knowing the velocities at the beginning and at the end 

of this trajectory, v1,MJ and v2,MJ respectively for the case of the trajectory from Mars to 

Jupiter, or v1,MS and v2,MS respectively for the case of destination in Saturn. For 

simplicity, from now on v1,MP shall refer to both v1,MJ and v1,MS, and v2,MP shall refer to 
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v2,MJ and v2,MS. Then, once the direction of v1,MP and the departing speed v respect to 

Mars are known, it is possible to calculate the actual velocity of the probe after the fly-

by respect to the heliocentric reference system, as it is parallel to v1,MP (so the required 

delta-V after the fly-by is minimized). Then the additional delta-V vM required to 

achieve v2,MP may be calculated. A final delta-V vx (vJ
 for Jupiter and vS for Saturn) 

may be calculated to achieve an orbit around Saturn, if required. This is not necessary if 

the probe visits Saturn and then goes away. More details on fly-bys design can be found 

in section 2.2.7. 

 

Values tE, tEM and tMP (tMJ
 for Jupiter and tMS for Saturn) are tuning parameters of the 

GA, which purpose is to minimize the total delta-V vTotal (20) spent in the whole 

interplanetary mission. 

 xMETotal vvvv    (20) 

 

Please also note that, due to the extremely slow variation of all the planetary orbital 

elements (except obviously the mean longitude), the effect of the variations in the 

velocity of the planet can be ignored [40][96]. 

 

The Keplerian elements for the position of the planets, obtained from [96], contain the 

Keplerian elements and their rates, with respect to the mean ecliptic and equinox of 

J2000, valid for the time-interval 1800 AD  - 2050 AD, and could be easily extrapolated 

for a few years without significant loss of accuracy. Those orbital elements are semi-

major axis a, eccentricity e, inclination I, mean longitude L of the planet, longitude of 

perihelion  and longitude of the ascending node  (see section 2.2.4). Instructions for 

using those tables are provided by JPL. First, the Keplerian elements for a given epoch 

must be computed from the information of the table (values of the elements and their 

rates). Second, the argument of perihelion  and the mean anomaly M are calculated. 

From M it is possible to compute the eccentric anomaly E, following an iterative 

algorithm to solve the Kepler’s equation (21).  

 EeEM sin  (21) 
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The iterative algorithm begins with an initial guess of E, E0 (22), and a quick 

convergence is achieved following iterations n = 0,1,2,3… as shown in equations 

(23)(24)(25), until |E| < 10-6 degrees (this tolerance is enough for the present context). 

 MeME sin0   (22) 

  nn EeEMM sin  (23) 

 
nEe

M
E

cos1


  (24) 

 EEE nn 1  (25) 

 

The planet’s heliocentric coordinates in its orbital plane r’ (with x’-axis aligned from 

the focus to the perihelion) can be computed from equations (26) and (27). Although not 

explicitly mentioned in [12], the velocity of the planet can be computed from (28) and 

(29) [40], where  is the gravitational parameter of the Sun. 

  eEax  cos'  (26) 

 Eeay sin1' 2  (27) 
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To compute the coordinates r of the planet and its velocity in the J2000 ecliptic plane 

(with the x’- axis aligned toward the equinox) a rotation of the position [96] and 

velocity [40] in the orbital plane is necessary, as shown in (30) and (31), where the 

rotation matrix R3x2 from the 2-D coordinates in the orbital plane to those in the J2000 

ecliptic plane  modelled in 3-D  is based in three successive rotations (argument of 

perihelion, inclination and longitude of ascending node), and computed as shown in 

(32). 

 '23 rRr x  (30) 
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 '23 rRr x
   (31) 
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Please note that 21',' xrr  , while 31, xrr  . Please also note that, due to the 

extremely slow variation of all the planetary orbital elements (except obviously the 

mean longitude), the effect of these variations in the velocity of the planet have been 

ignored in (31). 

 

The Gauss´ problem may be defined as follows [7] (see section 2.2.6): given two 

positions r1 and r2 in an orbit, given the time of flight t from r1 to r2, and the direction of 

motion (“short way” or “long way”; we shall always use the “short way” solution in this 

article), find velocities at r1 and r2, that shall be called v1 and v2 respectively. Solving 

this orbit determination problem leads to the definition of the arch of heliocentric orbit 

connecting two different planets, providing the required delta-Vs at the planet of 

departure and the planet of arrival. These delta-Vs can be achieved with a combination 

of engines and, depending on the conditions, a fly-by. Arches of two different orbits are 

required to implement the trajectory from Earth to Jupiter or Saturn: a first arch from 

Earth to Mars, and a second arch from Mars to the destination planet. In the Earth-to-

Mars arch, v1 is the velocity necessary to reach Mars from the Earth, given a certain 

time of flight, and should be achieved by a delta-V provided by the engines of the 

spacecraft, taking into account that the spacecraft is already moving around the Sun as 

the Earth is orbiting (thus, part of v1 may be provided by the movement of the Earth, if 

the direction of the delta-V is wisely chosen). The calculation of the velocity v2 when 

arriving in Mars is useful to compute the departing velocity after the fly-by. In the 

Earth-to-Saturn arch, v1 is the velocity at Mars necessary to reach Saturn, given once 

again a time of flight tMJ. Velocity v1 can be achieved with the fly-by at Mars plus the 

support of the probe’s engines. The velocity at Jupiter v2 is irrelevant if the probe is 

intended to continue its journey, otherwise velocity v2 must be compensated with a new 

delta-V (provided this time by the engines of the probe only) if an orbit around Jupiter 

or Saturn is the final target of the interplanetary mission. The Gauss’ problem has not an 
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analytical solution, thus it must be solved using iterative methods (see section 2.2.6). 

The p iteration method has been implemented and converges in all cases except when r1 

and r2 are exactly collinear, which is not a probable scenario as numerical methods are 

in place. In fact, the initial and final position vectors are subjected to some numerical 

accuracy. In any case, the colinearity scenario is typically associated to a free fall (r1 

and r2 in the same direction) or a Hohmann transfer (r1 and r2 in opposite directions), 

being the latter generally the optimum transfer manoeuvre between two circular orbits, 

which would be applicable when travelling from one planet to another. But this specific 

manoeuvre is highly improbable in any of the patched conics of the analysed 

interplanetary trajectory, as it involves several planets [73]. 

 

Given a certain time of flight tEM, and an initial epoch tE for departure, it is possible to 

calculate the positions of planets Earth and Mars as explained above, thus the 

algorithms explained in section 2.2.6 can be used to solve the Gauss’ problem for the 

Earth-to-Mars trajectory (first arch of the whole interplanetary mission from Earth to 

Saturn), leading to the computation of the departing velocity from Earth v1,EM, and the 

arriving velocity in Mars v2,EM, both respect to the heliocentric reference system. 

Considering that the probe departs from a given LEO around the Earth, the initial speed 

of the probe respect to the Earth is negligible, in comparison with the velocity vEarth of 

the Earth around the Sun, and from the point of view of this Mission Analysis 

interplanetary study we may assume that the probe moves respect to the Sun at the same 

speed than the Earth. Thus, equation (33), based on equation bb), may be used to 

calculate the required delta-V vE to achieve v1,EM and to leave the Earth. 

 EarthEME vvv  ,1  (33) 

 

The fly-by trajectory (see section 2.2.7) consists on using the gravity field of a planet to 

apply a delta-V to a probe, which may accelerate considerably, depending on the 

approaching and leaving directions respect to the planet (the kinetic energy gained by 

the probe comes from the negligible reduction of the planet’s speed). Considering the 

size of the sphere of influence of Mars respect to the size of its orbit, and comparing the 

interplanetary times of flight with the duration of the fly-by, Mars may be considered as 

a dimensionless point of mass at which the spacecraft changes its velocity instantly due 
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to the fly-by. The relations between va, vb, v,a, v,b (see Figure 4) and the velocity of the 

planet Mars vMars are shown in (34) and (35), respectively based on bb) and cc). 

 Marsaa vvv ,  (34) 

 Marsbb vvv ,  (35) 

After solving the Gauss’ problem for the first arch of the trajectory, the approaching 

heliocentric velocity va of the probe to Mars is known (36), therefore it is possible to 

calculate v,a (34). The value of v is trivial (37). 

 EMa vv ,2  (36) 

 aa vvv ,,    (37) 

 

Given a certain time of flight tMS for the Mars-to-Saturn trajectory, it is possible to solve 

the Gauss’ problem for that trajectory, as the positions of Mars and Saturn are known 

from [96]. Being v1,MP the desired velocity when leaving Mars and having a particular 

direction, then the heliocentric velocity vb after fly-by should have the same direction, in 

order to reduce the required delta-V to achieve v1,MP. Equation (38) shows how to 

compute the cosine of angle  between v1,MP and vMars, from which vb can be calculated 

using the theorem of the cosine (39). The required delta-V vM for leaving Mars at the 

proper velocity v1,MP  may be calculated from (40). Whenever it is not possible to give 

form to a triangle from vectors v,b, vMars and vb (due to a high value of  respect to a 

low value of v,), the GA algorithm sets the delta-V to a very high number and the 

failed interplanetary mission is discarded by the GA when generating the next offspring 

(see criteria function, equation (17)). 

 
MSMars

MSMars

vv

vv

,1

,1cos


  (38) 

 222 cos2  vvvvv MarsbMarsb   (39) 

 MbMJ vvv ,1  (40) 

 

Once the probe arrives in the sphere of influence of Saturn, a last delta-V is required in 

order to achieve an orbit around the planet. The speed of the spacecraft should be 
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reduced down to nearly the speed of Saturn around the Sun. Indeed, the relative velocity 

of the probe in orbit around Saturn respect to Saturn itself, would be negligible in 

comparison to the orders of magnitude of Saturn orbital speed and the speed of the 

probe when approaching Saturn. Therefore, the required delta-V vx may be calculated 

as the difference between the velocity v2,MP of the spacecraft at the end of the second 

arch of the interplanetary trajectory, and the velocity vJupiter or vSaturn of planet Jupiter or 

Saturn (both called vp) around the Sun (41). 

 PMxS vvv  ,2  (41) 

5.1.4 GA Optimisation Results for the Trajectory to Jupiter 

 

The GA has been run in order to optimise the trajectory for Earth to Jupiter, with a fly-

by in Mars, and orbiting around Jupiter after the end of the mission. The tuning 

parameters and the allowed values are described in Table 6. The evolution of the best 

solution found by the GA at each generation is shown in Figure 41. The final optimum 

trajectory is shown in Figure 42, where the orbits of the planets Earth, Mars and Jupiter 

have also been represented for the given range of times. The positions of Earth, Mars 

and Jupiter are shown at departure, fly-by and arrival, respectively. The departing date 

for this optimum solution is 93,255 days after J2000 [14], the total delta-V is 9.32 km/s 

(2.82 km/s at departure from the Earth, 2.15 km/s after the fly-by in Mars, and 4.34 

km/s at arrival in Jupiter), and the mission duration have been 3,836 days. When 

arriving in Jupiter, an alternative to orbiting around this planet is to continue the journey 

without applying the last delta-V, in which case the fuel budget shall be lower and the 

total delta-V shall be 4.97 km/s. 

 

 Minimum value Maximum value 

Date of departure, tE J2000 100,000 days after J2000 

Earth-to-Mars time of flight, tEM 100 days 1000 days 

Mars-to-Jupiter time of flight, tMJ 500 days 20,000 days 

Table 6: Range of values for the tuning parameters (GA applied to Earth-Jupiter 

trajectory optimisation) 
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Figure 41: Evolution of the best delta-V during the execution (GA applied to 

Earth-Jupiter trajectory optimisation) 

 

Figure 42: Trajectory from Earth to Jupiter with fly-by in Mars (GA applied to 

Earth-Jupiter trajectory optimisation) 

 

The obtained results may be compared to a Hohmann manoeuvre. The Hohmann 

transfer [40] is a two-impulses transfer between two different coplanar circular orbits, 

and it is an optimum impulsive transfer manoeuvre if the radius of the final orbit is less 

than 15.6 times the radius of the initial orbit (Jupiter fulfils this condition). The two 

impulses are performed at opposites ends of the transfer orbit, and their values may be 
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calculated from (45) and (46), where the speeds of the planets of departure and arrival 

are already taken into account. 
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Although the orbits of the Earth and Jupiter have different inclinations and are not 

perfectly circular, the calculation of the total delta-V of a Hohmann transfer provides a 

quite realistic idea of the delta-V required for such an interplanetary mission, in case an 

optimum direct transfer is performed without fly-by in Mars. Considering the best 

possible case (alignment between Sun position, Earth position at departure and Jupiter 

position at arrival; and also, Earth orbital radius as if in perihelion, and Jupiter orbital 

radius as if in aphelion), the total delta-V for a Hohmann transfer would be 14.08 km/s, 

and the duration of this direct transfer would be 941 days. If the last delta-V to achieve 

an orbit around Jupiter is skipped, then the only thrust of the trajectory shall be at the 

Earth, and the delta-V shall be 8.51 km/s. Thus, in both cases the fly-by in Mars is 

useful to significantly reduce the fuel budget, however the mission duration (which was 

not a parameter to optimise by the GA) has significantly increased. It is also important 

to note that each of the delta-Vs at departure and arrival are lower in case of a fly-by in 

Mars, than with the Hohmann transfer, while the delta-V after the fly-by is also 

relatively small; this means that smaller engines will be required for the probe, which is 

an additional and important advantage respect to applying a Hohmann transfer. The 

results are summarized in Table 7. 

 

 

 
v at the 

Earth 

v after fly-

by in Mars 

v after arrival 

Jupiter 
Total v 

Mission 

time 

Hohmann 

transfer 
8.51 km/s - 5.57 km/s 14.08 km/s 941 days 

GA 2.82 km/s 2.15 km/s 4.34 km/s 9.32 km/s 3,836 days

Table 7: Range of values for the tuning parameters (GA applied to Earth-Jupiter 

trajectory optimisation) 
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5.1.5 GA Optimisation Results for the Trajectory to Saturn 

 

The GA has been applied in order to optimise the trajectory from Earth to Saturn, with a 

fly-by in Mars, and orbiting around Saturn after the end of the mission. The tuning 

parameters and the range of possible values are described in Table 8. 

 

 Minimum value Maximum value 

Date of departure, tE 10,000 days before J2000 8,000 days after J2000 

Earth-to-Mars time of flight, tEM 100 days 500 days 

Mars-to-Saturn time of flight, tMS 500 days 20,000 days 

Table 8: Range of values for the tuning parameters (GA applied to Earth-Saturn 

trajectory optimisation) 

 

The evolution of the best solution found by the GA at each generation is shown in 

Figure 43. 

 

 

Figure 43: Evolution of the best delta-V during the execution (GA applied to 

Earth-Saturn trajectory optimisation) 

 

The final optimum trajectory is described in Figure 44, where the orbits of the planets 

Earth, Mars, Jupiter and Saturn have also been represented for the given range of times. 
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The positions of Earth, Mars and Saturn are shown at departure, fly-by and arrival, 

respectively. The departing date for this optimum solution is 8,622 days before J2000 

[20], the total delta-V is 11.57 km/s (4.61 km/s at departure from the Earth, 2.02 km/s 

after the fly-by in Mars, and 4.93 km/s at arrival to Saturn). The mission duration was 

972 days. When arriving to Saturn, an alternative to orbiting around this planet is to 

continue the journey without applying the last delta-V, in which case the fuel budget 

will be lower and the total delta-V will be 6.63 km/s. 

 

 

Figure 44: Trajectory from Earth to Saturn with fly-by in Mars (GA applied to 

Earth-Saturn trajectory optimisation) 

 

The obtained results may be compared to a Hohmann manoeuvre. The Hohmann 

transfer [40] is a two-impulses transfer between two different coplanar circular orbits, 

and it is an optimum impulsive transfer manoeuvre if the radius of the final orbit is less 

than 15.6 times the radius of the initial orbit (Saturn fulfils this condition). Although the 

orbits of the Earth and Saturn have different inclinations and are not perfectly circular, 

the calculation of the total delta-V of a Hohmann transfer provides a quite realistic idea 

of the delta-V required for such an interplanetary mission, in case an optimum direct 

transfer is performed without fly-by in Mars. Considering the best possible case 

(alignment between Sun position, Earth position at departure and Saturn position at 

arrival; and also, Earth orbital radius as if in perihelion, and Saturn orbital radius as if in 

aphelion), the total delta-V for a Hohmann transfer would be 15.52 km/s, and the 

duration of this direct transfer would be 2,059 days. If the last delta-V to achieve an 

orbit around Saturn is skipped, then the only thrust of the trajectory will be at the Earth, 

and the delta-V will be 10.07 km/s. Thus, in both cases the fly-by in Mars is useful to 
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significantly reduce the fuel budget and the mission duration. It is also important to note 

that each of the delta-Vs at departure and arrival are lower in case of a fly-by in Mars 

than with the Hohmann transfer, while the delta-V after the fly-by is also relatively 

small. This means that smaller engines will be required for the probe, which is an 

additional and important advantage respect to applying a Hohmann transfer. The results 

are summarized in Table 9. 

 

 v at the Earth 
v after fly-by in 

Mars 

v after arrival 

to Saturn 
Total v Mission time 

Hohmann transfer 10.07 km/s - 5.45 km/s 15.94 km/s 2,059 days 

GA 4.61 km/s 2.02 km/s 4.93 km/s 11.57 km/s 2,390 days 

Table 9: Range of values for the tuning parameters (GA applied to Earth-Saturn 

trajectory optimisation) 

 

5.2 Swarm Algorithms applied to Optimisation of a Trajectory 

from Earth to Jupiter (EMJ) 

 

5.2.1 Introduction 

 

A very interesting aerospace optimisation problem nowadays is the design of 

interplanetary trajectories in the Solar System, using gravitational fly-bys in order to 

reduce fuel consumption and/or mission duration [11]. This is a complex optimisation 

problem due to the complexity of the models and the lack of analytical solutions, as 

well as to the presence of strong discontinuities. An exhaustive search of the space of 

input variables is unaffordable even with modern, state-of-the-art computing 

technology. Thus, a feasible approach requires artificial intelligence and modern 

optimisation techniques based on the intelligent selection of some potential solutions. 

These individuals evolve in order to generate better solutions until some optimisation 

criteria are met. In this section, two evolutive algorithms are considered, both based on 

particle swarm optimisation. In both cases, the trajectory to optimise departs from Earth 

and, after a fly-by in Mars, arrives in Jupiter. In the single-criteria case, only the fuel 
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consumption is considered as a variable to minimize, while in the multi-criteria case the 

fuel consumption and the total time of the mission are simultaneously are taken into 

account, building a Pareto front of non-dominated solutions that provides an interesting 

view of the possible options for the space mission. In both single- and multi-criteria 

cases, the swarm algorithms optimize some tuning parameters of the trajectory: launch 

epoch, and times of flight between planets. Results are compared to other works on the 

same problem. They demonstrate the benefit of applying these evolutive techniques to 

decrease both mission duration and propellant cost when using intermediate gravity 

assist bodies. 

 

Preliminary works [3][5][10][89] have shown the efficiency of intelligent computational 

techniques when dealing with complex systems such as astrodynamic applications. The 

results proved the value of genetic algorithms (GA) for the optimisation of ascent 

trajectories, given a set of constrains. These evolutive strategies have been also applied 

to interplanetary trajectories [6][7][8]. This section is based on [11] and is an extension 

of [8] and section 5.1 of this thesis, where GAs were used. In this section, two particle 

swarm algorithms are applied to the optimisation of a complex interplanetary trajectory 

of a spacecraft, aimed to reach Jupiter from a LEO (Low Earth Orbit) around the Earth, 

and performing a gravitational assistance in Mars, while minimizing the fuel budget and 

duration of the mission. The complexity of this dynamic system and the lack of 

analytical solutions of the model suggest the utilization of evolutive strategies to deal 

with it. In one case PSO (Particle Swarm Optimization) is applied to optimise the fuel 

consumption, whereas in the other case a Pareto-front is generated with a MOPSO 

(Multi Objective Particle Swarm Optimisation) that optimises both propellant and total 

mission duration simultaneously. 

 

5.2.2 Implementation of PSO algorithm for Interplanetary 

Trajectory Optimisation 

 

A major difficulty when optimising parameters in an interplanetary mission is to 

provide algorithms that converge towards an optimum. Exhaustive search is 

unaffordable except for very simple cases. In general, using an algorithm based on an 

intelligent exploration of solutions such as GA [52] or Particle Swarm Optimisation is 
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necessary. PSO is a population-based, swarm intelligent, search algorithm based on the 

simulation of the social behaviour of birds within a flock or any other swarm organism 

[69], using physical movements of the individuals within the swarm. Many different 

techniques can be applied to implement PSO, so the evolutionary mechanism of the 

swarm algorithm adapts to the global and local exploration of the search space area. 

Whereas other evolutionary algorithms are based on parent representation and selection 

of individuals, PSO and Multi-Objective PSO (MOPSO) rely on leaders to guide the 

whole population. PSO refers to single-output analysis, while MOPSO refers to PSO 

when more than one output is available [13]. One of the first works on swarm 

algorithms is reported in [69]. A survey of the state-of-the-art of particle swarm 

optimization is summarized in [92]. A comparison of multiobjective evolutionary 

algorithms is presented in [108], while in [71] some suggestions are explained for 

improving both spread and convergence in swarm algorithms and Pareto-fronts. Data 

structure and turbulence concepts are applied to swarm algorithms in [46]. 

 

In the PSO described in this section, we consider a population of 400 individuals and up 

to 1000 updates of the population. As in previous works [5][8], a condition has been 

introduced in the algorithm in order to stop the execution automatically after 50 

iterations without further improvement. This assumption, taken after running many 

simulations with different number of individuals and generations, is reasonable as it is 

very unlikely that the best solution remains constant for so long. In this case, only 75 

updates of the population were necessary, meaning that convergence was achieved after 

only 25 iterations. A fitness function that maximizes a performance index z has been 

considered (44), in order to minimize the total delta-V, vTotal, 

 Totalvz 1  (44) 

 

Each individual is defined by its position in the space of input variables (date of 

departure, tE, the Earth-to-Mars time of flight, tEM, and the Mars-to-Jupiter time of 

flight, tMJ). The updated position of every i-th individual after the k-th step can be 

described with the general formulae (45) and (46), based on hh)(1) and hh)(2): 

   01,,,1,, cxxcvv
leadersj

kijijikiki  



 (45) 
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 kikiki vxx ,1,,    (46) 

where: 

kiv ,
 is the velocity vector of the i-th individual in transition from step k-1 to step k. 

ci,j are random numbers 

c0 is a random number (sometimes called “turbulence factor”) that introduces a random 

component into the updated final position of each individual, similar to mutation in GAs 

jix ,
 is the j-th leader for the i-th individual 

kix ,
is the position (decision vector) of the i-th individual in k-th step. 

 

As shown in (45) and (46), a leader is defined for each individual in the population, and 

the position of each individual is changed by weighting the current distance to each 

leader with some random numbers, and combining these weighted distances into a 

single vector that represents the change in the position of the individual in the space of 

input variables. 

 

Whereas formulae (45) and (46) are quite intuitive, it is not obvious to define the leaders 

for each individual, and there are many different criteria in scientific articles, using local 

leaders, past history of each particle, etc. Nearly all PSO approaches use as one of the 

leaders the individual with the best global results in the population. There are other 

interesting considerations when designing a PSO algorithm, such as distribution of 

random weights, dynamic assignment of leaders, turbulence factors, etc. A very simple 

approached has been used in this section for PSO. No turbulence has been considered, 

as the complexity of the models and the discontinuities of the space of output variables 

jeopardize the success of any individual based in purely random decisions. Turbulence, 

however, is not fully discarded for future works, as random decision components such 

as variable mutation rates [8] may lead to interesting and satisfactory results. 

 

Two leaders have been considered in equation (45): the best global solution; and the 

best historical solution for each individual (sometimes known as “personal” solution). 

These leaders are weighted according to random numbers, taken from a uniform 

distribution between 0 and 1. This approach yields to computing the change in position 

for each individual according to (47): 
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    1,,21,,11,,   kipbestikileaderikiki xxcxxcvv  (47) 

where: 

c1 and c2 are random numbers, selected from an uniform distribution between 0 and 1. 

leaderix ,
is the nearest Pareto-front solution respect to the i-th individual. 

pbestix ,
is the best historical “personal” solution of the i-th individual 

 

Whereas this simple approach leads to good results, there has been already some 

research in order to further improve the PSO algorithm, in order to tailor the design of 

the swarm algorithm to the characteristics of the analysed problem and eventually 

leading to some general approach for interplanetary trajectory optimisation that up to 

date is missing in literature to the best of our knowledge. 

 

5.2.3 Implementation of MOPSO algorithm for Interplanetary 

Trajectory Optimisation 

 

Multiobjective optimisation problems are quite common in every area of knowledge 

[47][108]. In such problems, the objectives to be optimised are normally in conflict 

respect to each other, hence there is not a single solution for these problems. 

Traditionally, multiobjective optimisation problems are solved with multi-input, single-

output target functions, combining all the objectives into just one formula to be 

optimised. This approach has been proved to be useful in many problems, but it is not 

always easy to find the best fitness function, being a more interesting approach to obtain 

a global view of all the different dominant solutions, presented as Pareto-fronts. Such 

global view may be particularly necessary when analysing the influence of the 

variations of some inputs in all the outputs. Whereas this analysis can be made for 

single-output functions (applying gradient methods, for instance), some difficulties may 

arise when there are many variables, local solutions or discontinuities. Swarm 

algorithms avoid these drawbacks and support the multi-output, Pareto-front concept 

better than other AI algorithms [28][29]. The function to optimise in a general 

multiobjective minimization problem may be written as in equation (48): 

         xfxfxfxfy k,...,, 21  (48) 
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where  nxxxx ,...,, 21  is the vector of decision variables and  nyyyy ,...,, 21  is the vector 

of outputs. 

 

If (48) cannot be analytically evaluated (like in this article), it is mandatory to use some 

numerical calculations and iterative processes in order to find the optimum solution. 

Given two different potential solutions, represented as vectors 
Ay  and By , the first one 

would be dominant respect to the second one if (49) is verified. If the inequality is 

strictly fulfilled, then By  is called a dominated solution. 

 iyy iBiA  ,,  (49) 

Note that minimization problems are considered here, without loss of generalization, as  

(48) and (49) can be easily adapted to maximization problems. Dominated solutions are 

not interesting in optimisation problems, as the interpretation of (49) is that solution Ay  

is better than 
By . Therefore, 

By  can be discarded. However, it may happen that Ay  

surpassed 
By  in only some (but not all) outputs, and vice versa; in that case, 

Ay  and 

By are both non-dominated solutions to each other, and both may offer interesting 

properties and results. 

 

The aim of the MOPSO is to find a set of non-dominated solutions (Pareto-front), which 

have to be saved in some data structure during the execution of the algorithm. The size 

of this structure may grow in size very quickly, as more non-dominated solutions are 

found in every step. After each step, the new position of the individuals in the 

population must be compared to every solution in the Pareto-front, to perform some 

substitution if necessary. This increases the complexity and the computational time in 

every step, as the Pareto-front becomes bigger. In order to ensure that solutions are 

varied and heterogeneous, some mechanism must be used so the distribution of the 

decision vectors in the Pareto-front is smooth and uniform. Dealing with these three 

issues (size of the Pareto front, comparison of Pareto front to individuals in the 

population, and mechanism to ensure a smooth distribution) lead to establish a limit of 

the number of solutions in the Pareto-front, which in our case matches the size of the 

population. Individuals with new positions in the space of input variables become 

candidates to join the Pareto-front, if they are non-dominated respect to any other 

Pareto-front solution. Before they finally join the Pareto-front (discarding some other 
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solution already in the Pareto-front), a comparison is performed between the candidate 

to join and the candidate to be dismissed, in terms of distances to other solutions in the 

Pareto-front. The substitution is performed by considering only the highest distance, so 

the density in the Pareto-front is kept as low as possible. In spite of this technique, that 

ensures some variety of the solutions, sometimes the Pareto-front is not as broad as 

expected, due to isolated solutions and strong discontinuities in global, single-output 

optima. 

 

In this work, the aim is the intelligent optimisation of interplanetary trajectories from 

the Earth to Jupiter, using a swarm-based Pareto-front technique, and applying fly-bys 

in Mars. The tuning parameters of the swarm algorithm are the date of departure, tE, the 

Earth-to-Mars time of flight, tEM, and the Mars-to-Jupiter time of flight, tMJ. The 

MOPSO algorithm provides a useful Pareto-front of non-dominated solutions, from 

which the user may decide which solution or set of solutions are the most appropriate to 

design the Earth-to-Jupiter mission. That decision is based on the obtained delta-V and 

total time of flight of the mission. In fact, the consideration of non-dominated solutions 

is useful for analyzing the trade-off between these two output variables. For example, 

some optimum solution may require the lowest delta-V but at the expense of a higher 

total time of flight, while some other solution may reduce the time of flight but 

increasing the delta-V. Indeed, a Pareto-front is an excellent asset for this trade-off 

analysis. 

 

Two leading vectors are considered for each individual: the best global solution and the 

best historical solution achieved by each individual (sometimes known as the best 

“personal” solution). The best personal solution is particular for each individual and 

matches the last achieved solution that is non-dominated by any other historical 

decision vector of that individual. The best global leader is not clearly defined in 

multiobjective problems as more than one output is computed. In this algorithm, given 

any individual, the nearest non-dominated solution (i.e., the nearest solution of the 

Pareto-front) will be considered in calculations. For each individual in the population, 

both leaders (which differ from one individual to another) are combined to define a 

certain “velocity” in the space of input variables (i.e. a change in the decision vector), 

according to (50). In the following iteration, the position of the individual in the space 

of input variables is updated as in (51). 
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    1,,21,,11,,   kipbestikileaderikiki xxcxxcvv  (50) 

 kikiki vxx ,1,,    (51) 

where: 

kiv ,
 is the velocity vector of the i-th individual in transition from step k-1 to step k. 

c1 and c2 are random numbers, selected from an uniform distribution between 0 and 1. 

leaderix ,
is the nearest Pareto-front solution respect to the i-th individual. 

pbestix ,
is the latest, historically non-dominated solution of the i-th individual. 

kix ,
is the position (decision vector) of the i-th individual in k-th step. 

 

The MOPSO algorithm in this work considers 1000 individuals (also known as 

particles) and 1000 steps, leading to quite interesting results. Whereas this simple 

approach has been successful, there is some on-going research in order to tailor the 

parameters of the MOPSO algorithm to the optimisation problem of interplanetary 

trajectories, and to improve the results provided in the Pareto-front. 

 

5.2.4 Description of the Optimisation Problem 

 

The model of the whole system has been implemented in Matlab. It includes the Solar 

System and the spacecraft. The main parameters of the model, such as the ephemeris of 

the planets, the Keplerian elements and their rates, etc., are calculated from tables and 

formulae provided by [96]. With the purpose of modelling the departure, arrival and fly-

by manoeuvres of the probe at each planet, these planets are modelled as dimensionless 

points of mass. In fact, the longest planetary radius in the Solar System corresponds to 

Jupiter (66,850 to 71,500 km), and this is much shorter than any of the major semi-axes 

of the patched conic orbits involved in the analysed interplanetary mission (for example, 

the perihelion of the Earth’s orbit is around 147×106 km). As a result of the comparison 

of these dimensions, it is possible to conclude that, for a mission analysis optimisation, 

the dimensions of the planets are irrelevant. 

 

The departure from the Earth at epoch tE, to reach Mars after a certain time tEM, requires 

an arc of an orbit around the Sun, that is defined by the heliocentric velocities at 
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departure from Earth v1,EM and arrival to Mars v2,EM. The required thrust at the Earth 

vE must achieve v1,EM taking into account the velocity vEarth of planet Earth. In order to 

calculate v1,EM and v2,EM, the Gauss’ problem has to be solved [20] (see section 2.2.6). 

In this case we have applied the p-iteration algorithm. Considering that the probe 

departs from a given LEO around the Earth, the initial speed of the probe respect to the 

Earth is negligible, in comparison to the velocity vEarth of the Earth around the Sun. We 

may assume that the probe moves respect to the Sun at the same speed than the Earth. 

Thus, equation bb) has been applied and solved for Mars, yielding to equation (52), 

which can be used to calculate the required delta-V vE to achieve v1,EM and to leave the 

Earth. 

 EarthEME vvv  ,1  (52) 

 

The gravitational assistance manoeuvre consists on using the gravity field of a planet – 

Mars, in this case - to accelerate the probe (see section 2.2.7). The final value and 

direction of the velocity depends on the approaching and leaving directions respect to 

the planet. Considering the size of the trajectories from Earth to Mars and from Mars to 

Jupiter, planet Mars may be considered in our models as a dimensionless point of mass 

at which the spacecraft changes its velocity instantly due to this gravitational assistance. 

Knowing the arrival velocity v2,EM to planet Mars, it is possible to calculate the absolute 

value of the departing speed respect to Mars, after performing a gravitational assistance. 

Therefore the required thrust vM for leaving Mars at the proper velocity v1,MJ  can be 

obtained from (53), based on equation cc): 

 MbMJ vvv ,1  (53) 

where vb is the velocity of the probe respect to the heliocentric reference system. 

 

Solving the Gauss’ problem for the trajectory from Mars to Jupiter (given a time of 

flight tMJ) leads to the calculation of velocities at the beginning and at the end of this 

trajectory, v1,MJ and v2,MJ respectively. A final delta-V vJ (54) is necessary if an orbit 

around Jupiter is required. This is not necessary if the probe visits Jupiter and then goes 

away. 

 JupiterMJJ vvv  ,2  (54) 
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The tuning parameters for the swarm algorithms are the date of departure tE, the Earth-

to-Mars time of flight tEM, and the Mars-to-Jupiter time of flight tMJ. The purpose of the 

PSO is to minimize the total delta-V vTotal (55) spent in the whole interplanetary 

mission. 

 JMETotal vvvv   (55) 

In the case of the MOPSO, both the total fuel budget vTotal (55) and the total time of 

flight of the mission, tTotal (56), are considered when building a Pareto-front of possible 

solutions. 

 MJEMTotal ttt   (56) 

Also note that, due to the extremely slow variation of all the planetary orbital elements 

(except obviously the mean longitude), the effect of the variations in the velocity of the 

planet can be ignored [40][96]. For a complete description of the problem, see [8] and 

section 5.1 of this PhD thesis. 

 

5.2.5 PSO and MOPSO Results for Interplanetary Trajectory 

 

The final optimum trajectory obtained by the GA in section 5.1.4 [8] is shown in Figure 

42 (dashed line), where the orbits of the planets Earth, Mars and Jupiter have also been 

represented for the possible range of times (solid line). The positions of Earth, Mars and 

Jupiter are shown at departure, gravitational assistance and arrival, respectively. The 

total delta-V is 9.32 km/s. When arriving to Jupiter, an alternative to orbiting around 

this planet is to continue the journey without applying the last thrust, in which case the 

total delta-V would be 4.97 km/s. 

 

The final optimum trajectory obtained by the PSO is shown in Figure 45 (dashed line), 

where the orbits of the planets Earth, Mars and Jupiter have also been represented for 

the possible range of times (solid line). Again, the positions of Earth, Mars and Jupiter 

are shown at departure, gravitational assistance and arrival, respectively. The total delta-

V is in this case 9.43 km/s. When arriving to Jupiter, if the probe goes away, the last 

thrust is not necessary and then the total delta-V is reduced to 5.01 km/s. 
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Figure 45: Optimum interplanetary trajectory from Earth to Jupiter, with 

gravitational assistance in Mars, obtained by PSO 

 
The set of non-dominated solutions (Pareto-front) provided by the application of the 

MOPSO algorithm to the interplanetary trajectory defines the evolution and 

organization of the individuals (swarm particles), as clearly appreciated in Figure 46, 

where obtaining the actual Pareto-front is trivial. Many individuals are grouped around 

the coordinates of delta-V 10 km/s and mission duration 5000 days, quite in line with 

the results obtained by PSO and GA. However, in spite of the high number of 

individuals, no one has reached the optimum delta-V and mission duration solution 

provided by the single optimisation PSO and GA algorithms, due to the much larger 

area of the space of output variables covered by the multiobjective analysis (two output 

variables, rather than one), hence the less intensive exploration of possible solutions. 

Therefore, whereas the Pareto-front provides a useful view of possible non-dominated 

solutions, some further optimisation may be required once the user has chosen one of 

those solutions. 

 

Figure 46 is a quite useful plot for mission design and can be used as an initial step to 

further optimise the interplanetary trajectories with single or multi objective algorithms. 

For instance, the mission design team may choose some adequate combination of delta-

V and mission duration that fits some requirements, and then continue and develop their 

work from that area of the space of output variables using other optimisation 
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techniques. Ideally, the Pareto-front should be a set of all the non-dominated solutions 

of the optimisation problem, so the MOPSO algorithm provides a Pareto-front further 

down and left in Figure 46 and with a better and smoother distribution. While this is not 

always possible due to the strong discontinuities of the analysed interplanetary problem, 

some future work is planned in order to improve the behaviour of the MOPSO and to 

tailor its design and adapt its parameters to interplanetary mission design. 

 

 

Figure 46: Whole population of MOPSO algorithm, representing possible 

trajectories from Earth to Jupiter with gravitational assistance in Mars 

 

Figure 47 shows the trajectory for one of the MOPSO solutions in the range of delta-V 

around 10 km/s and mission duration 5000 days. This particular solution gives a total 

delta-V of 9.61 km/s. When arriving to Jupiter, an alternative to orbiting around this 

planet is to continue the journey without applying the last thrust, in which case the total 

delta-V is 5.22 km/s. This interplanetary trajectory is only one of the many calculated 

by the MOPSO. 
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Figure 47: Interplanetary trajectory from Earth to Jupiter, with gravitational 

assistance in Mars, associated to one of the many swarm particles in the population 

generated by the MOPSO algorithm 

 

Table 10 summarizes the results obtained by the application of the GA, PSO and the 

trajectory from MOPSO, and includes the values computed with the Hohmann transfer 

[40]. The Hohmann transfer is a two-impulses transfer between two different coplanar 

circular orbits, and it is an optimum impulsive transfer manoeuvre if the radius of the 

final orbit is less than 15.6 times the radius of the initial orbit (Jupiter fulfils this 

condition). Although the orbits of the Earth and Jupiter have different inclinations and 

are not perfectly circular, the calculation of the total delta-V of a Hohmann transfer 

provides a quite realistic approximation of the delta-V required for such an 

interplanetary mission, in case an optimum direct transfer is performed without fly-by in 

Mars. In Table 10, the values of delta-V at departure from the Earth, after the 

gravitational assistance in Mars, and at arrival to Jupiter are also presented. 

 

In all cases the gravitational assistance in Mars is useful to significantly reduce the fuel 

budget. Each of the delta-Vs at departure and arrival are lower in case of a gravitational 

assistance in Mars, while the delta-V after the gravitational assistance is also relatively 

small. This means that smaller engines will be required for the probe, which is an 

additional and important advantage respect to applying a Hohmann transfer, as pointed 

out in [8]. Moreover, the multiobjective analysis and Pareto-front approach is very 
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useful to provide a wider view of all the possible solutions, so the optimum can be 

chosen by the mission design team without any constrain such as past experience or 

single objective decision. 

 

 
v at the Earth 

(km/s) 

v after fly-by in 

Mars (km/s) 

v after arrival to 

Jupiter (km/s) 

Total v 

(km/s) 

Hohmann 

transfer 
8.51 - 5.57 14.08 

GA 2.82 2.15 4.34 9.32 

PSO 2.72 2.29 4.42 9.43 

MOPSO 2.64 2.58 4.38 9.61 

Table 10: Comparison of Delta-Vs for an optimum Hohmann transfer and the fly-

by trajectory obtained by the GA, PSO and MOPSO algorithms (EMJ mission) 

 

The total propellant shown in Table 10 refers to the case when the spacecraft remains 

orbiting around Jupiter. In case it continues the journey without applying the last thrust, 

the total delta-V would be smaller in all the cases, but the conclusions are the same. 

 

Regarding the mission duration, Table 11 presents the results obtained by each 

optimization technique for the interplanetary trajectory. The departing date is calculated 

as number of days after J2000 [14]. 

 

 Departing date (after J2000) Mission time (days) 

Hohmann 

transfer 
 941 

GA 93,225 3,836 

PSO 19,131 3,687 

MOPSO 1,958 6,351 

Table 11: Comparison of results (departing date and mission duration) for an 

optimum Hohmann transfer and the fly-by trajectory obtained by the GA, PSO 

and MOPSO algorithms (Earth-Jupiter trajectory optimisation) 
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The first conclusion that can be drawn from Table 11 is that the mission duration and 

launch epoch may strongly vary. Quite a different launch epoch is reasonable due to the 

periodical nature of this input parameter. This departing date is expected to be 

periodical as the relative positions of Earth, Mars and Jupiter are repeated over time. 

Therefore, even very different launch epochs are reasonable and expected. 

 

The time of flight (TOF) for GA, PSO and MOPSO is quite big in comparison to the 

Hohmann transfer. This is reasonable and expected as the interplanetary trajectory 

involves a gravity assistance in Mars, thus the date is strongly constrained and the 

launch window is less flexible than in the case of a Hohmann trajectory. Nevertheless, a 

lower TOF could be achieved at a higher consumption of fuel (higher delta-V) as 

appreciated in the Pareto-front in Figure 46. 

 

The fact that similar results were obtained by GA and PSO for such different initial 

epochs suggest that, whereas single optimisation problems can be useful under some 

circumstances, Pareto-front analysis provides a much wider view. Indeed, GA and PSO 

provide one possible solution, but the mission designer has no opportunity to analyse 

other possible solutions, i.e., at different launch epochs. This analysis could be 

performed by running GA, PSO or any other single optimisation algorithm several times 

with different constrains for launch epochs, based on the experience of the mission 

design team. However, a more structured and highly automatic approach is provided by 

MOPSO, as the Pareto-front is useful to support decisions for such open problems with 

many different possible solutions. 

 

The high potential of a powerful tool based on Pareto-fronts is quite interesting so the 

experience of the mission design team is not the limiting factor in interplanetary 

analysis and planning. The trajectory obtained by the MOPSO algorithm must be 

compared bearing in mind that this is just one of the many trajectories provided by the 

Pareto-front, chosen for comparison as it is in the same range of output values than the 

other solutions from GA and PSO. 
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5.3 Swarm Algorithms applied to Optimisation of a Trajectory 

from Earth to Saturn (EMVVJS) 

 

5.3.1 Introduction 

 

A very interesting state-of-the-art problem in aeronautical engineering nowadays is the 

optimisation of interplanetary trajectories implying gravitational fly-bys, which reduce 

total delta-V and duration of the mission. The lack of analytical solutions for such a 

complex problem, where exhaustive search of solutions is unaffordable, justifies the 

usage of artificial intelligence and modern optimisation techniques. Some examples of 

PSO and MOPSO applied to such problems can be found in sections 5.2 and 5.4 of this 

thesis, as well as in [6] and [11]. 

 

In addition to the EMJ mission [6] already presented in section 5.2, in [11] the results of 

a EMVVJS mission were also discussed. A EMVVJS mission consists on departure 

from Earth and fly-bys in Venus, Venus again, and Jupiter; the mission ends once in 

orbit around Saturn. Mission Cassini from NASA followed this route [42]. This mission 

is more ambitious and realistic than an Earth to Jupiter mission with a fly-by in Mars. 

The solution of a EMVVJS mission is complex due to the higher number of input 

variables. As in section 5.2, the variables to optimise are the date of departure from the 

Earth and the times of flight between planets, thus the dimension of this new 

optimisation problem is higher than when only one fly-by is performed. In spite of such 

a complexity, this optimisation problem is useful in real missions, due to the fact that 

better results in terms of fuel consumption can be achieved when sending a probe to the 

outer Solar System, if one or several fly-bys are made around Venus and Earth (also the 

case of mission Galileo from NASA). The usefulness of this kind of routes to Venus 

before reaching the outer Solar System has been confirmed in [11]. For details on the 

implemented PSO and MOPSO algorithm, please refer to sections 5.2.2 and 5.2.3 of 

this thesis. The results have been compared to [42]. 
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5.3.2 PSO and MOPSO Results for Interplanetary Trajectory to 

Saturn 

 

A complex mission has been analysed, based in Cassini [42]. This mission leaves the 

Earth, performs two fly-bys in Venus, one in the Earth, one in Jupiter and finally 

reaches Saturn. The delta-V has been computed as if a final LEO were achieved in 

Saturn. The PSO has been run 250 times in order to achieve statistically significant 

results. 

 

First, the PSO included 1,000 individuals. Figure 48 shows the optimised delta-V 

against the number of iterations. The worse optimised value of delta-V is 6.85 km/s, and 

the best one 6.42 km/s. The mean value of these maximum and minimum optimised 

values is 6.66 km/s, while the mean value of all the optimised values is 6.58 km/s, and 

the standard deviation is merely 0.13 km/s. The best solution trajectory is represented in 

Figure 49, which duration is 5501 days. 

 

Figure 48: Optimised delta-V and number of iterations, for all the runs of the PSO 

algorithm applied to the EVVEJS mission (1,000 individuals) 
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Figure 49: Interplanetary trajectory from Earth to Jupiter, with gravitational 

assistance in Mars, associated to one of the many swarm particles in the population 

generated by the MOPSO algorithm 

 

A second batch of runs was performed with 10,000 individuals. Figure 50 shows the 

optimised delta-V against the number of iterations. The worse optimised value of delta-

V is 7.70 km/s, and the best one 5.43 km/s. The mean value of these maximum and 

minimum optimised values is 6.57 km/s, while the mean value of all the optimised 

values is 6.67 km/s, and the standard deviation is 0.43 km/s. Figure 51 shows the best 

trajectory obtained with PSO, which duration is 6446 days. 
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Figure 50: Optimised delta-V and number of iterations, for all the runs of the PSO 

algorithm applied to the EVVEJS mission (10,000 individuals) 

 

 

Figure 51: Trajectory obtained with a PSO algorithm (10,000 individuals) 

 

An exhaustive analysis has been performed of the MOPSO algorithm applied to a 

EVVEJS mission, varying number of individuals in the whole population (20, 50, 75, 

100, 200, 400) and size of the Pareto-front archive (20, 50, 75). The results are shown in 

Figure 52. Colours represent total number of individuals in the population: light 
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blue=20, green=50, magenta=75, dark blue=100, red=200, black=400. Symbols 

represent total number of individuals in the Pareto-front archive: * for 20, + for 50, x for 

75. Please note that in some cases the Pareto-front archive became stable (a defined 

number of 100 iterations without changes), however not all of the solutions in that 

archive were part of a real Pareto-front, i.e., not all of them were non-dominated. 

Populations of 50, 75, 200 and 400 have obtained good results, specially if the Pareto-

front archive had a size of 50 or 75 individuals. Poorer results were obtained with only 

50 individuals in the Pareto-front. 

 

Single-objective solutions are normally not possible in multi-objective analysis, thus the 

single-objective solutions obtained in section 5.3.2 (or similar) do not appear in Figure 

52. Indeed, in spite of the high number of individuals, no one has reached the optimum 

delta-V and mission duration solution provided by the single optimisation PSO, due to 

the much larger area of the space of output variables covered by the multiobjective 

analysis (two output variables, rather than one), hence the less intensive exploration of 

possible solutions. Therefore, whereas the Pareto-front provides a useful view of 

possible non-dominated solutions, some further optimisation may be required once the 

user has chosen one of those solutions. In particular, populating the edges of the Pareto-

front for single-objective analysis is not trivial and lead normally to poor results [92]. If 

the Pareto-front is extended left and up, this single-objective solutions would appear in 

the edge of such a front. If a single-objective solution is desired, then a single-objective 

technique should be used. The multi-objective techniques are appropriate to design a 

mission when there are concerns about the total time mission, and not only the total 

delta-V (for instance, human flight missions). While the criteria to define convergence 

may result arbitrary and be a study in its own, to the best of our knowledge there are not 

such a study and the situation has not changed respect to that reported in [92]. 
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Figure 52: Multiple Pareto fronts obtained with MOPSO for EVVEJS mission. 

 

For completeness, an arbitrary solution has been chosen from the Pareto front, near the 

lower-left “corner”, obtained with 400 individuals, and a Pareto-front archive of size 50. 

For this solution, the delta-V is 7.88 km/s and the mission duration is 1361 days. The 

trajectory of that solution is shown in Figure 53. 

 

 

Figure 53: Interplanetary trajectory EVVEJS, associated to one of the many 

swarm particles in the population generated by the MOPSO algorithm 
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Table 12 summarizes the best results obtained by the application of the PSO algorithm 

to the EVVEJS mission, with 1,000 and 10,000 individuals. Table 12 also include the 

values computed with a Hohmann transfer. For completeness, information on the 

arbitrary trajectory chosen from the Pareto-front generated by MOPSO is also included 

in the table. 

 

 

First v 

Earth 

(km/s) 

First v 

Venus 

(km/s) 

Second 

v Venus

(km/s) 

Second 

v Earth 

(km/s) 

v Jupiter 

(km/s) 

v Saturn 

(km/s) 

Total v 

(Km/s) 

Hohmann 

transfer 
10.29 - - - - 5.44 14.08 

PSO 

(1,000 

indiv.) 

3.09 1.85 0.90 0.11 0.013 0.44 6.41 

PSO 

(10,000 

indiv.) 

3.62 0.96 0.19 0.13 0.078 0.46 5.44 

MOPSO 3.61 1.88 0.71 0.52 0.24 0.91 7.88 

 

Table 12: Comparison of Delta-Vs for an optimal Earth-Saturn Hohmann transfer 

and the fly-by trajectory obtained by the GA, PSO and MOPSO (EVVEJS 

mission) 

 

In all cases the gravitational assistances in several planets are useful to significantly 

reduce the fuel budget. Analogously to the EMJ mission, each of the delta-Vs at 

departure and arrival in Earth and Saturn are lower in case of gravitational assistances in 

Venus, Earth and Jupiter, while the delta-V after each gravitational assistances are also 

relatively small, allowing smaller engines for the probe as an added value respect to a 

Hohmann transfer [8]. Once again, the multiobjective analysis and Pareto-front 

approach is very useful to provide a wider view of all the possible solutions, but 

comparisons between single-objective and multi-objective optimisation results are not 

strictly relevant beyond mere curiosity. 
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The total delta-V shown in Table 12 refers to the case when the spacecraft remains 

orbiting around Saturn. In case it continues the journey without applying the last thrust, 

the total delta-V would be smaller in all the cases, but the conclusions are the same. 

 

Table 13 presents the results obtained by each optimization technique for the 

interplanetary trajectory. The departing date is calculated as number of days after J2000 

[14]. Results from the arbitrary trajectory chosen from the Pareto-front obtained with 

MOPSO are also included in Table 13 for completeness, however, as explained above, 

comparisons between single-objective and multi-objective optimisations are misleading. 

 

 Departing date (after J2000) Mission time (days) 

Hohmann transfer - 2,223 

PSO (1,000 ind.) -777.1 5,501 

PSO (10,000 ind.) -776.1 6,446 

MOPSO -761.7 5,929 

 

Table 13: Comparison of results (departing date and mission duration) for an 

optimum Hohmann transfer and the fly-by trajectory obtained by the PSO and 

MOPSO algorithms (EVVEJS mission) 

 

Unlike the case of an EMJ mission, the higher number of involved planets strongly 

decreases  the periodicity of the system, so in this case all the launch dates are similar. 

This similarity would disappear, if the launch date range scanned by the PSO and 

MOPSO algorithms were broader enough. Like in the EMJ mission, the Hohmann 

transfer yields to shorter mission durations. Once again, the structured and highly 

automatic approach provided by MOPSO is an asset when analyzing multiple 

constraints in mission design, providing a tool that eases the vision of several possible 

solutions at one glance. 
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5.4 MOPSO applied to Optimisation of Interplanetary 

Trajectories with Low Thrust 

 

5.4.1 Introduction 

 

One of the most fascinating aerospace problems today is the automatic, self-evolving 

optimisation of interplanetary trajectories. The computation of optimal interplanetary 

trajectories has raised a lot of interest in space agencies around the world, particularly in 

last decade as more interplanetary missions have been planned and analysed. In our 

article [6], we presented results of the optimisation, with a Multi-Objective Particle 

Swarm Optimisation (MOPSO) algorithm, of a mission from the Earth to the Kuiper 

belt, using gravitational assistances as necessary, minimizing mission duration and fuel 

consumption. 

 

When optimising complex multi-output problems, the lack of analytical solutions yields 

to models requiring numerical simulations, whereas fully mathematical formulations are 

not possible and exhaustive exploration of the space of variables is unaffordable. The 

existence of numerous local minima, the weak “attraction” of the global solution in its 

surroundings (small attraction basin) or the presence of strong discontinuities are only 

some of the many difficulties that increase the complexity of optimisation problems. 

Indeed, the usage of some algorithm based on intelligent exploration of the space of 

variables is mandatory, such as genetic algorithms or swarm algorithms (see 

[52][38][39][61] and section 2.3.2 of this thesis). 

 

Traditionally, a multi-input, single-output target function is optimised, combining all the 

outputs (fuel and duration in this case) into just one formula. However, it is not always 

easy to choose the right single-output formula, i.e., how important is the fuel respect to 

the duration of the mission. Whereas this conservative approach is useful in many 

contexts, sometimes the mission design engineer would rather prefer a global view of 

all the different (and sometimes spread) dominant solutions instead. A whole set of 

Pareto-front solutions is particularly necessary when analyzing if slightly worsening 

some outputs leads to much better improvements in other outputs, or if small changes in 

inputs may lead to catastrophic results. Whereas it is possible to carry out these kinds of 
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analysis from single-output solutions (i.e., applying gradient methods), some difficulties 

may arise whenever there are many variables, local solutions and discontinuities. 

Swarm algorithms avoid this trouble and support an innovative paradigm based on a 

muti-input, multi-output analysis, providing Pareto-front of dominant solutions of the 

problem, rather than just one single-output solution. 

 

As in genetic algorithms, swarm optimization begins at a randomly generated 

population, however individuals are not mixed: for each particle, a velocity vector is 

defined, which represents the change in the position of the particle between two 

consecutive steps. Each velocity vector depends on the best historical position of that 

particle, the best global position in the whole population, and the best local position of a 

nearby group of individuals. The objective of the optimisation is to obtain the set of 

dominant solutions (Pareto-front) for a mission from the Earth to the Kuiper belt (which 

is assumed as located at 40 AU from the Sun). The launcher leaves the spacecraft on a 

escape trajectory from the Earth at 3.0 km/s in any desired direction (adjustable by the 

optimisation algorithm). The propulsion system of the spacecraft achieves an specific 

impulse of 2500 s and a maximum thrust of 0.05 N. The payload weights 500 kg. 

Gravitational assistances are considered in the algorithm. The outputs (Pareto-front 

variables) are the mission duration and the fuel consumption: the first is important to 

reduce the number of years of such a long mission, whereas the last defines the initial 

total weight of the spacecraft. Obviously, the higher the fuel consumption, the shorter 

the mission, and vice-versa; thus, the simultaneous optimisation of both variables is 

complex and compromising. 

 

Rather than combining these outputs into a single formula, the objective of the swarm 

algorithm is to obtain a set of dominant solutions, i.e., solutions that are not surpassed in 

both outputs simultaneously by any other solution. Hence, rather than combining these 

output variables into a single criteria function to be optimised, a set of Pareto-fronts is 

reported, where each solution is non-dominated. The swarm algorithm designs the 

dominant trajectories, adjusting the sequence of impulses, thrusts directions and chosen 

planets for gravitational assistances during the mission. Hence, the swarm algorithm 

tunes the input parameters to generate such Pareto-fronts, providing a global view of the 

best possible solutions and selecting the most appropriate combinations of delta-V and 



Optimisation of Interplanetary Trajectories  156 of 186 

mission duration. Based on the obtained Pareto-front of dominant solutions, the user is 

able to choose the best optimal trajectory. 

 

Multiobjective optimisation problems are quite common in every area of knowledge 

[47]. Some works are presented in section 5.1 of this thesis. In such problems, the 

objectives to be optimised are normally in conflict with respect to each other, which 

means that there is not a single solution for these problems. Following some previous 

work on Genetic Algorithms (GA) [3][5] in aerospace applications, two articles were 

subsequently published [7][8] and a third one was presented in a congress [9], the three 

of them with a direct relation to interplanetary missions. In these papers, genetic 

optimisation of single-criteria functions was applied for delta-V minimization, applying 

impulsive manoeuvres and planetary gravitational assistances. Whereas the approach in 

those two papers has some continuity in [6], two important differences should be 

noticed. First, a swarm algorithm instead of a GA has been implemented in [6] in order 

to achieve a Pareto-front of dominant solutions (rather than a single solution. Besides, 

two output variables total mission duration and delta-V, are simultaneously optimised. 

Second, the computation of the interplanetary trajectories is based on low thrust arcs, 

rather than on impulsive manoeuvres. With this purpose, first the desired trajectory is 

designed as if impulsive manoeuvres were possible. Then the impulsive manoeuvres are 

converted into low thrust ones, using a specific algorithm based on some hypothesis. 

 

5.4.2 Implementation of MOPSO for Interplanetary Trajectory 

Optimisation with Low Thrust 

 

Many different techniques can be applied when implementing MOPSO (see section 

2.3.2.3). Regardless the implemented technique, PSO is a population-based, swarm 

intelligent, search algorithm based on the simulation of the social behaviour of birds 

within a flock [38], or any other swarm organism, using physical movements of the 

individuals within the swarm. This mechanism adapts to the global and local 

exploration of the search space area. Whereas other evolutionary algorithms are based 

on parent representation and selection of individuals, PSO and Multi-Objective PSO 

(MOPSO) relies on leaders to guide the whole population. PSO refers to single-output 

analysis, while MOPSO refers to PSO when more than one output is available [90]. 
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One of the first works on swarm algorithms is reported in [69]. A survey of the state-of-

the-art of particle swarm optimization is summarized in [92]. A comparison of 

multiobjective evolutionary algorithms is presented in [108], while in [71] some 

suggestions are explained for improving both spread and convergence in swarm 

algorithms and Pareto-fronts. 

 

The aim of the MOPSO is to find a set of non-dominated solutions (Pareto-front), which 

have to be saved in some data structure during the execution of the algorithm. The size 

of this structure may grow in size very quickly, as more non-dominated solutions are 

found in every step. After each step, the new position of the individuals in the 

population must be compared to every solution in the Pareto-front, to perform some 

substitution if necessary. This increases the complexity and the computational time 

every step, as the Pareto-front becomes bigger. In order to ensure the variety of 

solutions, some mechanism must be used so the distribution of the decision vectors in 

the Pareto-front is smooth and uniform. 

 

Dealing with these three issues leads to establish a limit of the number of solutions in 

the Pareto-front, up to 50 in the work presented in this section [6]. New positions of the 

individuals become candidates if they are non-dominated respect to any other Pareto-

front solution. Before they finally join the Pareto-front (discarding some other solution 

already in the Pareto-front), a comparison is performed between the candidate to join 

and the candidate to be dismissed, in terms of distances to other solutions in the Pareto-

front. The substitution is performed by considering only the highest distance, so the 

density in the Pareto-front is kept as low as possible. This ensures that variety of the 

solutions. Sometimes the Pareto-front is not as broad as expected, due to isolated 

solutions and strong discontinuities in global, single-output optima. 

 

The tuning input parameters of the swarm algorithm are: 

 the departure date from the Earth; 

 the times of flight between planets; 

 the final anomaly of the spacecraft when arriving at the Kuiper belt; 

 the final time of flight from the visited planet (last gravitational assistance). 
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As a result, the swarm algorithm provides an useful Pareto-front of dominant solutions, 

from which the user may decide which solution or set of solutions are the most 

appropriate to design the Earth-to-Kuiper mission. That decision is based on the 

obtained delta-V and total time of flight of the mission. 

 

Therefore, in this application the decision variables are, 

x1 = times of flight  

x2 = final anomaly 

The output vector is, 

y1 = delta-V 

y2 = total time of flight. 

 

The consideration of non-dominated solutions is used to take into account the trade-off 

between the two output variables. For example, some optimum solutions may provide 

the lowest delta-V but at the expense of higher total time of flight, while some other 

solution may reduce the time of flight but increasing delta-V. The set of non-dominant 

solutions provides a Pareto-front. 

 

Two leading vectors are considered for each individual: the best personal solution, and 

the best global solution. The best personal solution is particular for each individual and 

matches the last achieved solution that is non-dominated by any other historical 

decision vector of that individual. The best global leader is clearly defined in PSOs but 

not in MOPSOs. In our algorithm, the global leader role has been substituted by a 

Pareto-front leader, tailored to each individual in the population as the nearest element 

in the Pareto-front. Both leaders (best personal leader, and best Pareto-front leader) are 

combined to define a certain “velocity” (i.e. a change in the decision vector) of each 

individual, according to (*). In the next step, the new individual “position”, i.e. decision 

vector, will be updated as in (*). Up to 1000 steps have been considered in the 

simulation. The algorithm is interrupted if there are not changes in the Pareto-front of 

non-dominated solutions after 50 consecutive steps. 

 

We may assume that the MOPSO performs a reasonable wide analysis of all possible 

combinations of times of flight, times of departure, etc, based on the intelligent 

modification of the decision input vector x . If a given time of flight is feasible for 
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impulsive manoeuvres, but it is not for low thrust and therefore a different time of flight 

is necessary, this should be calculated by the MOPSO under a different decision vector 

x . Then, when approximating an impulsive manoeuvre by a set of low thrust 

manoeuvres, the time of flight must remain fixed for that given x . Subsequently, the 

total delta-V for that decision vector will increase as impulsive manoeuvres are 

substituted by low thrust manoeuvres. That is, shorter time after the whole delta-V is 

applied for nearly the same distance implies accelerating the probe further to achieve 

the specified time of flight. In some cases the low thrust requires a higher time of flight 

than that specified on x . Then the mission becomes unfeasible and the MOPSO 

penalizes it with an arbitrary high delta-V and total time of flight, so this solution is not 

taken into account in next steps of the optimization algorithm. 

 

5.4.3 Description of the Optimisation Problem 

 

A model of the solar system has been implemented, based on the ephemeris of the 

planets as obtained from tables and formulae provided by [96]. As a first approach, we 

may assume impulsive manoeuvres at departure from the Earth and during fly-bys in 

each planet. Under this assumption, the trajectory from Earth to any other planet, after a 

given time, may be calculated by solving the Lambert´s problem [20]. This trajectory 

consists on an arc of an orbit around the Sun that is defined by heliocentric velocities at 

departure from Earth and at arrival in Mars. This planet has been chosen as the first 

planet for a fly-by after departure from Earth; however, any other combination of 

planets could be chosen to perform fly-bys (of particular interest are the fly-bys in 

Venus and Earth to reach outer planets). From the velocities at departure and arrival, the 

required delta-V for the impulsive manoeuvre at departure (provided by the launcher) 

may be calculated. The process is repeated for the second to the third planet trajectory 

and so on, calculating the appropriate delta-V during the fly-by to achieve the specified 

trajectory in the given time of flight. In this way, given a set of variables (decision 

vector x , containing time of departure, times of flight between planets and final 

anomaly in the Kuiper belt), it is possible to calculate the total delta-V and total time of 

flight of the mission. The tuning of x is performed by the MOPSO, in order to obtain an 

interesting Pareto-front of non-dominated solutions. The sequence of planets is at the 

moment specified by the user. However, it would be interesting to make this list 
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automatic, for instance, using evolutionary programming on top of the MOPSO, which 

would analyse the convenience of certain combinations of planets in comparison to 

others. 

 

In order to simplify this complex numerical problem, we may consider that the probe 

departs from a given LEO around the Earth, being the initial speed of the spacecraft 

respect to the Earth almost negligible in comparison to the velocity of the Earth around 

the Sun (designing an optimal launch is also possible [3][5][1], as explained in Chapter 

4 of this thesis). Therefore, we may assume that the probe moves respect to the Sun at 

the same speed than the Earth. At arrival in a certain planet, the gravitational assistance 

trajectory consists on accelerating the probe, taking advantage of the gravity field of the 

planet and its heliocentric speed, respect to the heliocentric speed of the launcher. Each 

planet is considered a dimensionless point of mass at which the spacecraft changes 

magnitude and direction of its velocity instantaneously. 

 

The instantaneous delta-V (impulsive manoeuvres) approach is interesting and has been 

depicted in papers such as [7][8][9]. But the implementation of low-thrust manoeuvres 

in this particular application would lead to some different results that require numerical 

simulations and not only the solution of the Lambert´s problem. In particular, since the 

low-thrust engines of the probe cannot provide the high demanding levels of thrust, an 

algorithm has been implemented in order to convert the impulsive manoeuvres into 

continuous. Although the following hypothesis may not be always true [6], they may be 

considered reasonable in most cases, justified by experience, and valid to find a first 

guess when implementing the MOPSO with low-thrust manoeuvres. Given an impulsive 

manoeuvre, its effects are maximized if it is performed at departure from Earth, or at the 

periapsis of a fly-by trajectory in any planet. Therefore, Deep Space Manoeuvres 

(DSMs) are in principle discarded except for trajectory corrections if necessary (out of 

the scope of this section). 

 

Let it be a certain time of flight between planets, for which we may calculate a 

trajectory that fulfils such a time of flight. An impulsive manoeuvre shall be required at 

departure (after launching or after a fly-by), in order to achieve such a trajectory for the 

given time of flight. Let it be that, for any reason, the manoeuvre is not applied at 

departure, but after a certain time, and still the total time of flight must be fulfilled. If 
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so, the probe shall cover the same required distance, but now the time available after the 

manoeuvre shall not be the whole specified time of flight as before, but shorter, as the 

manoeuvre was applied not at departure, but some time later. This leads to the 

conclusion that the impulsive manoeuvre is greater if delayed than if applied at 

departure, as the same distance must be covered in less time. This reason seems to 

support the early application of delta-Vs, rather than DSMs. Said that, it is important to 

remark once again that celestial mechanics are too complex to assume that this 

hypothesis is always valid, however this is valid as a first approach for our intelligent 

algorithm. 

 

Given a certain big impulsive manoeuvre, which value is too high for the actual 

engines, a less powerful manoeuvre can be performed in the same direction as the 

closest and most reliable approximation of the desired manoeuvre. After the feasible 

manoeuvre is performed, a new impulsive manoeuvre may be calculated, which (if 

necessary) could be once again substituted by a less demanding manoeuvre. This 

process can be repeated until the last computed impulsive manoeuvre is feasible for the 

low thrust engines. If the process does not end for the given time of flight, the 

conclusion is that the desired effects of the original high-impulsive manoeuvre are not 

possible with a set of lower impulsive manoeuvres, and such high-impulsive manoeuvre 

is therefore discarded. A set of many low impulsive manoeuvres is the approximation of 

a sustained low thrust, continuous manoeuvre. In the process described above, this 

continuous thrust would saturate the engines until the appropriate trajectory is achieved 

(i.e., arrival at destination in a given time). 

 

When an impulsive manoeuvre is required to correct the trajectory (if necessary) during 

a fly-by, this is usually applied at periapsis, with the purpose of maximizing its effects 

(Orbeth principle [20][21][40]). This is not possible when applying low thrust, as the 

continuous manoeuvre may last days or even months, whereas the fly-by lasts just a few 

hours. Therefore, when using low-thrust, the desired impulsive manoeuvre is calculated 

as if it were applied after the fly-by at the planet, before it is converted into a low-thrust 

manoeuvre. 
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According to the hypothesis presented before, the following algorithm has been 

implemented in order to convert an impulse manoeuvre into a low thrust manoeuvre 

(Figure 54): 

 

1) Given a certain planet (originally, this could be planet Earth at departure), 

compute the trajectory to the next planet, using some Lambert’s solver. Such 

trajectory demands some initial impulsive manoeuvre, which is the required 

delta-V at departure from Earth, or when leaving any other planet after a fly-by. 

 

2) The required delta-V for the impulsive manoeuvre is calculated as the difference 

between the actual speed of the probe (due to the speed of the Earth, or due to 

the fly-by at any planet) and the speed that is required by the Lambert solver in 

the step above. If the delta-V calculated is feasible for the low thrust engines, 

then this delta-V is applied accordingly during the given delta time (1000 

seconds in this case). 

 

Otherwise, if this delta-V is too high, the thrusters will saturate during a given delta 

time, according to (4). The trajectory of the probe is then simulated using a Runge-

Kutta integration method during that time. After that, a new position is achieved and the 

two steps above are repeated. 

 V
V

V
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


 max  (57) 

where: 

actualV is the applied delta V in the considered time step 

V is the desired delta V 

maxV is the maximum feasible delta V provided by the continuous low thrust engines in 

each time step, as defined by (58): 
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where: 

maxV is the maximum low-thrust delta-V provided by the engines during the given delta 

time t  
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Isp is the specific impulse of the propulsion system 

g is the acceleration of the Earth´s gravity field in the surface of the planet 

m is the mass of the probe, and m  is the flux of mass due to the propulsion system 

 

3) Once the desired trajectory is achieved (free drift in some heliocentric arc of 

Keplerian orbit), the whole process is repeated after the fly-by at destination. 

 

4) The final position in the Kuiper belt is calculated as for any planet. Once this 

position is achieved, the algorithm stops. 

 

This algorithm is repeated for every trajectory between any two planets, or between the 

last planet and the Kuiper belt. 

 

Figure 54: Scheme of the algorithm that calculates the low thrust trajectory 

between two planets. 

5.4.4 MOPSO Results for Interplanetary Trajectory with Low Thrust 

 

Attending to the possible fly-bys in the solar system, the following cases have been 

considered: 

 fly-by in Mars 

 fly-bys in Mars and Jupiter 

 fly-bys in Mars and Saturn 

 fly-bys in Mars, Jupiter and Saturn. 
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Figure 55 shows several Pareto-fronts for the Earth-Kuiper mission for the different 

gravitational assistances in different sets of planets. The Pareto-front in black represents 

the non-dominated solutions for the Earth-Kuiper mission when a fly-by in Mars is 

performed. The obtained delta-Vs are quite high, while the times of flights (TOFs) are 

quite low, but not lower than with other gravitational assistances in Jupiter and Saturn. 

 

Indeed, the black front is dominated by the blue (Mars and Jupiter) and green (Mars and 

Saturn) fronts. The red Pareto-front represents the solutions for fly-bys in Mars, Jupiter 

and Saturn, which seems to provide a worse solution than with a fly in Mars and in only 

one more planet. Red and black fronts could be part of the same Pareto-front, as none of 

them dominate each other. 

 

Some conclusions may be drawn in this case. The fly-by only in Mars is not a good 

solution, as it provides higher delta-Vs than other options, even if the total time of flight 

is quite reasonable. Fly-bys in Mars, Jupiter in Saturn lead to inappropriate spatial 

configurations that are not useful. Perhaps in different periods of time the positions of 

these three planets were more adequate to provide a good trajectory, but in the analysed 

period the imposition of a third fly-by prevents the MOPSO from finding good optimum 

solutions. However, it is important to note that the best delta-V is achieved by this 

Mars-Jupiter-Saturn trajectory (upper-left end of the red Pareto-front). The trajectory for 

this minimum delta-V solution is shown in Figure 55, where most of the planets and 

also the Kuiper belt are reached after a nearly 180 degree orbit from the previous 

planets (Hohmann-alike transfers). Especially notable is the extremely short low-thrust 

period after Saturn, as the fly-by seems to be enough to reach the proper trajectory to 

the Kuiper belt. 
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Figure 55: Pareto-fronts of solutions (TOF vs. delta-V) for a mission from the 

Earth to any position in the Kuiper belt, with fly-bys in Mars (black); Mars and 

Jupiter (blue); Mars and Saturn (green); and Mars, Jupiter and Saturn (red). 

 

 

Figure 56: Trajectory for an Earth-Kuiper belt mission with fly-bys in Mars, 

Jupiter and Saturn. Low-thrust segments are represented by green non-keplerian 

arcs. 

 

In spite of the few solutions that minimize the delta-V for the triple gravitational 

assistance, most of the Pareto-front solutions come from two fly-bys, in Mars and then 

Jupiter or Saturn. In general, Saturn provides the best results, as the green Pareto-front 

dominates nearly all the other Pareto-front solutions. However, it is important to remark 

that, if the launch epoch (i.e. departure from the Earth) is appropriate, Jupiter may be 

better for fly-bys (due to its greater gravitational field [64]), and that there may exist 
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some other combinations of planets (involving fly-bys Venus and also the Earth [89], 

quite sophisticated and out of our scope, to reach Jupiter or any other outer planet. 

 

Pareto-front diagrams like the one shown in Figure 55 are necessary to have a global 

view of the different solutions obtained for the mission. For instance, it is possible to 

see how a fly-by in Mars, Jupiter and Saturn provides the best delta-V solution but the 

TOF is higher. With just a bit higher delta-V, TOFs could be drastically reduced if the 

fly-by in Jupiter is skipped. At a quite greater consumption of delta-V, an even slightly 

lower TOF can be obtained, and at some point a fly-by in Jupiter instead of Saturn may 

also be convenient. Depending on the period considered, a Mars-Jupiter-Kuiper belt 

mission may require a longer total TOF at the same delta-V that a Mars-Saturn-Kuiper 

belt mission. 

 

5.5 Conclusions 

 

A genetic algorithm has been used in section 5.1 to optimise the manoeuvres involved 

in an interplanetary trajectory, from a LEO around the Earth to planets Jupiter and 

Saturn, with a fly-by in Mars [7]. Remarkable results have been achieved in comparison 

with the optimum Hohmann transfer, saving simultaneously delta-V in all the different 

stages of the mission, whereas the duration of the mission has also been shortened. The 

relatively low delta-V at each stage (departure, fly-by and arrival) is useful to reduce the 

size of the spacecraft’s engines respect to those required if a Hohmann transfer were 

applied. Since some assumptions were made in the models (valid from the point of view 

of mission analysis), the obtained solution could be refined using more accurate 

numerical simulations (considering, for example, precise orbital perturbations and 

corrections). Since such a simulation would be extremely time-consuming, the solution 

provided by the genetic algorithm in this article would not only be useful, but also a 

must, when designing such an Earth-to-Jupiter or Earth-to-Saturn interplanetary 

mission. As an added value to traditional GAs, a variable mutation rate has been 

implemented in section 5.1, with satisfactory results. Raising the dynamic mutation rate 

when the population becomes homogeneous broadens the exploration area in the space 

of potential solutions, avoiding local maximums, and improving the successful and 

efficient search for an optimum solution. Other approaches to the optimisation problem 
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described in section 5.1 are also possible, such as Pareto-based methods [52], which 

have also been proved as efficient multi-objective optimizer methods [47][65][108]. 

The application of this and other techniques [6], and the subsequent comparison with 

the results obtained by the GA in this article, was the interesting target of works to 

come, and already presented in this thesis (see sections 5.2, 5.3 and 5.4), where both 

mission time and delta-V could be optimised simultaneously, obtaining sets of dominant 

solutions rather than a single optimum solution. 

 

Two swarm particle optimisation algorithms, one single objective (PSO) and one 

multiobjective (MOPSO) were analysed and applied to optimise the manoeuvres 

involved in interplanetary trajectories in sections 5.2 and 5.3. Two missions have been 

studied: EMJ, and EVVEJS. Satisfactory results have been achieved in comparison to 

the optimum Hohmann transfer. The relatively low thrust at each stage (departure, 

gravitational assistance and arrival) is useful to reduce the size of the spacecraft’s 

engines. The two swarm algorithms have provided interesting results in the case of a 

EMJ mission. While the PSO provides similar results than GA, the MOPSO algorithm 

increases the searched area in the space of output variables and provides a better view 

that may be used for further optimisation with single or multi objective algorithms. The 

two swarm algorithm also provided interesting results in the case of a EVVEJS mission. 

Variable limits were implemented in the single-objective case for each of the decision 

variables, approaching the best solution while scanning its surroundings more 

accurately as the algorithms goes on. In the case of multi-objective, several Pareto-

fronts has been provided, based on different sizes of population and Pareto archive. The 

results for all the cases has been presented and analyzed with plots and numerical data.  

 

A MOPSO algorithm has been implemented in section 5.4 to solve the problem of 

designing a mission from the Earth to the Kuiper belt, using low thrust. A first approach 

was made using impulsive manoeuvres, which are subsequently converted into low-

thrust manoeuvres. Different decision vectors are tried by the MOPSO, using some 

techniques to obtain better, non-dominated solutions after each step. Fly-bys in Mars, 

Jupiter and Saturn have been considered and proved to be quite useful to reduce the 

total delta-V of the mission (otherwise very expensive in terms of delta-V and TOF). 

Fly-by only in Mars has been discarded, as it implies a higher delta-V for the same TOF 

that can be achieved with a second fly-by in Jupiter or in Saturn with less effort. Fly-bys 
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in Mars, Jupiter and Saturn have also been discarded, as the result is dominated by other 

Pareto-fronts; however, the optimum delta-V solution belongs to this triple fly-by 

mission. Most of the solutions of the Mars-Jupiter missions are dominated by the Mars-

Saturn missions, as Saturn seems the best option to optimise the problem in most of the 

cases. The presented low-thrust algorithm always gives good results if the hypothesis of 

the starting point are fulfilled, which could be not necessarily the case. Some other low-

thrust approaches may be interesting, in combination with Pareto-fronts and MOPSOs. 

In particular, exponential sinusoids, or non-tangential low-thrust. Whereas the solutions 

provided by MOPSO are highly interesting, a second objective is fulfilled: to show the 

powerful combination of Pareto-fronts and the optimization MOPSO algorithm in order 

to obtain non-dominated solutions, in an approach quite different from the traditional 

single-output optimisation. Indeed, the Pareto-front approach provides a global view 

that the user would not achieve with a single-criteria optimum. The results are both 

satisfactory and promising, providing a guiding path of new innovative techniques to 

solve the proposed low-thrust optimisation problem. The shown technique could be 

easily applied to other kinds of missions, like visiting the outer planets for instance. The 

Pareto-front MOPSO approach provides solutions that could be extended for more than 

two-outputs criteria functions, as it has been presented. 

 

Future works are recommendable in order to improve the behaviour of the PSO and the 

MOPSO. Whereas the results from PSO were satisfactory, some tailoring of the 

algorithm to interplanetary missions may be an interesting improvement both in 

computing time and results. Similarly, whereas the results from MOPSO were also 

interesting when obtaining the Pareto front of non-dominated solutions, some 

modifications and tailoring to interplanetary missions is worth in order to improve the 

computation of the Pareto-front towards further optima non-dominated solutions and to 

smooth the density of the Pareto-front. Indeed, the results presented in this article were 

quite interesting and open branches to several lines of investigations for optimisation of 

interplanetary trajectories based in PSO and MOPSO algorithms. Future works also 

require some improvement on the extremely time-consuming algorithms. This is a 

necessary step to obtain more Pareto-fronts optimization for other combinations of fly-

bys. Particularly interesting are the fly-bys in the inner planets (specially Venus, as in 

section 5.3), as well as fly-bys in Earth after departure, that altogether prove useful to 

reach Jupiter and Saturn with lower delta-V, but probably with a higher total TOF. A 
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robust, quick Lambert solver is required for MOPSO, as otherwise the task to populate a 

Pareto-front diagram with trajectories visiting many planets may become unaffordable 

for more intensive analysis. Eventually, evolutive programming on top of the MOPSO 

could be interesting, to automatically define the best sequence of planets to visit during 

the mission. 

 

 





 

 

Chapter 6 

Conclusions and Future Work 
 

The goal of this PhD thesis was to describe the research drawn on the application of 

artificial intelligence to aeronautical problems. Following subjects were covered by this 

thesis: modelling, simulation and fuzzy control of satellites in Lagrange points; 

optimisation of launchers with genetic algorithms; and optimisation of interplanetary 

trajectories with particle swarm algorithms. The conclusions of this research is 

presented and discussed in this chapter. Also, some guidelines for future works, based 

on the research of this thesis, are analyzed. 
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6.1 Conclusions 

 

6.1.1 Control of satellites in Lagrange points 

 

In Chapter 3 the modelling, simulation and control of satellites in Lagrange points were 

analyzed. 

 

The research focused on the implementation of PD controllers, both conventional and 

fuzzy, for five satellites, each one placed in the surroundings of the five Earth-Moon 

Lagrange points. The models include the simulation of effects such as: solar wind, non-

spherical gravitational fields and the drift of the orbital parameters of the Moon. 

 

The models were developed in Modelica and Dymola, containing some intrinsic 

advantages: 

 

- Object oriented models: This feature is useful to create basic elements that may 

be combined to implement more complex entities or whole scenarios. The 

objects may be modified or increased in a simple way, without the need of 

changing the implementation of the simulation. 

 

- Simulation of dynamic systems: Nowadays, many engineering fields require the 

implementation of complex models whose parameters vary in time. Dymola 

provides a good environment to develop models under Modelica, supporting the 

implementation of such complexity. 

 

- Equation-oriented language: Modelica is a modelling language that supports the 

implementation of equations directly, this is, the equations are written and coded 

in Modelica and later solved by Dymola. This approach is desirable, rather than 

implementing the solution of the equations of the models, as with any 

conventional programming language. In particular, when coding the positions of 

the Lagrange points, the programmer does not need to solve the equations, but 
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just to write the equations in Modelica so later Dymola finds the solution during 

the simulation. 

 

Results of the fuzzy controllers were presented and compared to those from classic 

controllers. In total, four different controllers were implemented: P and PD, classic and 

fuzzy. 

 

Under free drift conditions, only two of the five Lagrange points are stable, in case of 

perfectly circular orbits of the two central bodies around each other, and in absence of 

other perturbations. In the real Earth-Moon system, none of the Lagrange points are 

stable, however the drift around two of the five Lagrange points is quite low. 

Nevertheless, it is possible to keep the position of the satellites in any of the five 

Lagrange points at quite low thrust if, in general, any of the studied controllers (P and 

PD, classic and fuzzy) is applied. The low consumption ensure position keeping for 

long periods of time, aiming longer missions. 

 

The best results were obtained when the derivative control was included and thus the 

initial transitory smoothed. Fuzzy logic is also an added value to conventional P and PD 

controllers, due to the presence of a threshold in thrust activation, reducing the thrust 

demand and permitting fuel saving and even longer missions. 

 

6.1.2 Genetic Algorithms and Launchers Trajectory Optimisation 

 

Three different launch problems were analyzed in Chapter 4. 

 

First, a vertical launch was studied (section 4.1), in which the target function was the 

final momentum of the spacecraft. Second (section 4.2), a launch trajectory was studied, 

combining several manoeuvres into a whole launch, and performing manoeuvres in each 

segment such as the pitch-push over manoeuvre, gravity turn and the tangential bilinear 

manoeuvre. The purpose of this launch trajectory was to place a satellite into a circular 

orbit around the Earth. Finally (section 4.3), based on similar models and manoeuvres 

than in the second case, a third case was considered with the purpose of placing a 

satellite into an hyperbolical trajectory, maximizing the final speed. 
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A variable mutation rate was introduced in the execution of the GAs, in order to ensure 

variety in new individuals whenever the population became homogeneous and tend to 

gather in the same area of the space of input variables; and to encourage crossing, 

whenever the population is spread and become heterogeneous. Indeed, raising the 

dynamic mutation rate when the population becomes homogeneous broadens the 

exploration area in the space of potential solutions, avoiding local maximums, and 

improving the successful and efficient search for an optimum solution. 

 

For the first case (section 4.1), a quite simple model was implemented, based on a two-

stages launcher and including atmospheric models so the air drag was taken into 

account. The tuning parameters of the model were the fuel masses available in each of 

those stages. Whereas the GA found the optimum solution, this was not enough to 

achieve the escape velocity, given a purely vertical launch trajectory. Indeed, a purely 

vertical launch is normally avoided in real scenarios, as confirmed by this analysis. 

 

For the second case (section 4.2), a more complex model was in place, also simulating 

manoeuvres such as gravity turn, pitch-push over and bilinear tangential manoeuvre. 

The purpose of the optimisation was to achieve a circular orbit maximizing final height. 

The model of the rockets of the launcher was based on a real launcher. The payload of 

the launcher was fixed, whereas the tuning parameters were the duration of the vertical 

ascent, the duration of the pitch-push over and the final pitch-push over angle. The 

evolution of some relevant figures was shown for the optimal solution: altitude in time, 

altitude profile, launcher speed and launcher acceleration, as well as the launcher flight 

path angle and the evolution of the mass of the launcher. The shape and values shown 

on those plots were commented. 

 

The third case (section 4.3) is an extension of the second case in section 4.2. Realistic 

manoeuvres were once again simulated: gravity turn, pitch-push over and bilinear 

tangential manoeuvre. Whereas the problem and models were similar to those in the 

second case, this time a different criteria function was implemented, as the goal of the 

GA was to maximize final speed in a hyperbolical escape trajectory. The tuning 

parameters were the duration of the vertical ascent, the duration of the pitch-push over 

and the final pitch-push over angle. Like in the second case, the evolution of some 
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relevant figures was shown and commented for the optimal solution: altitude, speed, 

acceleration, flight path angle and mass of the launcher. 

 

As shown for all of the different cases analyzed and studied in this PhD thesis, GAs are 

a useful methodology to optimise the trajectory of launchers, leading to successful 

results. The solutions obtained by GA can be used directly, or taken as an initial guess 

for further refining and finding a more accurate solution based in complex tables and 

models from industry. 

 

6.1.3 Optimisation of Interplanetary Trajectories 

 

Evolutive algorithms have been proposed in Chapter 5 to solve the problem of 

optimising interplanetary orbits, based on GA, PSO and MOPSO. The probe leaves the 

Earth and arrives in some other planet in the Solar System, after performing 

gravitational fly-bys whose aim is to accelerate the probe at low or no fuel cost. 

Lowering the fuel cost is useful to increase mission durations, to increase the available 

weight for payload, and to design lighter launchers when leaving the Earth. 

 

Whereas the evolutive algorithms implemented in Chapter 5 were used independently 

and their solutions could be used directly, those algorithms may be combined between 

them or with other optimisation techniques in order to further improve the obtained 

solutions, which therefore could be used as an initial step for more sophisticated 

optimisations based on detailed aerospace models for particular missions and 

spacecrafts from industry. 

 

GA algorithms (section 5.1) were used to optimise two trajectories: Earth-to-Jupiter and 

Earth-to-Saturn. In both cases, a fly-by in Mars was performed. The goal of the GA is to 

minimize the total delta-V spent during the interplanetary mission. The propulsion 

system is able to perform impulsive manoeuvres. The tuning parameters were the 

launch epoch and the time of flight of each of the two arcs of the interplanetary 

trajectory (from Earth to Mars, and from Mars to the destination). Each arc is solved 

using the methodology of the Lambert problem: based on the position of the planets and 

the tuning time of flight, the required speeds at the extreme of the arc are computed. 



Conclusions and Future Work  176 of 186 

 

A PSO algorithm (section 5.2) was used to optimise a trajectory from the Earth to 

Jupiter, using impulsive manoeuvres and a fly-by in Mars. The goal was to minimize 

the total delta-V during the interplanetary mission. The tuning parameters were the 

launch epoch and the time of flight of each of the two arcs of the interplanetary 

trajectory (from Earth to Mars, and from Mars to Jupiter). Each arc was solved with the 

Lambert methodology. The results were compared to those obtained with a GA applied 

to the same problem. 

 

In section 5.2 as well, a MOPSO algorithm was implemented to solve again the Earth-

to-Jupiter trajectory, obtaining an interesting Pareto-front that minimizes two 

conflicting outputs such as total mission duration and total mission delta-V. One of the 

individual MOPSO solutions was compared to the ones obtained with PSO and GA. 

 

Similar approach than in section 5.2 was applied to a more complex mission in section 

5.3, where the trajectory consisted on a departure from Earth, two fly-bys in Venus, one 

in Earth and one in Jupiter, before finally arriving in Saturn. This optimisation problem 

was analysised with PSO and MOPSO, and the results were compared. These results 

proved useful and confirm that, in order to reach the outer planets, fly-bys around 

Venus and Earth may yield to lower fuel consumption, thus increasing mission duration 

and payload. 

 

A different approach was followed in section 5.4, where a MOPSO was implemented to 

optimise interplanetary trajectories. In that case, both the mission duration and the total 

delta-V were minimized, obtaining interesting Pareto-fronts for several missions. The 

common goal of all the studied missions was to reach the Kuiper belt, performing fly-

bys in one or several planets. The available fly-bys for each of the four missions were: 

only Mars; Mars and Jupiter; Mars and Saturn; Mars, Jupiter and Saturn. The propulsion 

system provided low, continuous thrust, rather than impulsive manoeuvres. The design 

of the low thrust segments of the trajectory was based on impulsive manoeuvres 

(computed with the Gauss algorithm) that then were replaced by continuous low-thrust 

manoeuvres with approximately the same delta-V. The Pareto-front results were 

presented and discussed. 
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6.2 Future Work 

 

The successful results presented in [4] and [10] regarding the modelling and simulation 

of satellites in Lagrange points can be further researched, considering different tunings 

of the P and PD controllers, both classic and fuzzy. Other types of controllers should 

also be interesting, such as non-linear controllers. An approach combining impulsive 

manoeuvres and continuous thrust would be remarkable, if the advantages of both 

techniques are successfully mixed. Regarding the development of models in Modelica, 

some of the objects developed in [4] and [10] could become part of some aerospace 

library, perhaps covering the current gap in the Modelica Standard Library, where not 

too many aerospace and astrophysics objects could be found. 

 

In [3][5][1] some interesting results were presented in the field of launch design and 

trajectories optimisation. Whereas the possibilities are endless, guidelines for future 

work are the research of other launch manoeuvres and strategies, including models 

based on actual launchers and different payloads. More complex modelling is also 

possible, regarding the launch direction and the orientation of the final orbit or 

trajectory. 

 

Concerning the optimisation of interplanetary trajectories with gravitational assistances, 

some research should be done for more complex trajectories involving inner planets or 

fly-bys in the same planet during a single mission. Particularly well-known is the option 

to perform a fly-by in Venus and Earth in order to reach outer planets, as shown in [11]. 

Whereas the works presented in [7][8][9][11] focus on impulsive manoeuvres, a quite 

interesting approach based in low-thrust was shown in [6]. Continuous low-thrust 

optimisation is a highly complex subject currently researched around the world in 

universities and space agencies, and some advances in that subject would be definitely 

an asset in future missions. Due to the complexity of the time-consuming models, and 

considering the high number of calls to these models when running evolutive 

algorithms, some improvements would lead to reducing computing time and increasing 

the number of analyzed solutions, as well as raising the density of the Pareto-fronts 

provided by multi-output algorithms. 
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