Portal de Congresos y Conferencias de la UNED, II Congreso Internacional. Innovación, globalización e impacto.

Tamaño de fuente: 
Adoption of ICTs by Communication Researchers for Scientific Diffusion and Data Analysis
Carlos Arcila Calderón

Última modificación: 2015-07-24


Contemporary science has increased the use of computers for knowledge discovery, but also for scientific diffusion and collaboration (Hey & Trefethen, 2005; Nielsen, 2012; Hey, Tansley & Tolle, 2009; Borgman, 2007; Dutton, 2010). There is an increasing interest in studying the adoption and use of ICTs by researchers in different disciplines (Pearce, 2010; Procter & al., 2010; Ponte & Simon, 2011; Dutton & Meyer, 2008; Briceño, Arcila & Said, 2012; Arcila, Piñuel & Calderin, 2013), given the consensus about the impact of these technologies on scientific methods and practices (Dutton, 2010; Hey & Trefethen, 2005; Borgman, 2007; Nielsen, 2012). To the best of our knowledge, there is not previous research that describes the way in which international community of researchers in the area of communication and media studies adopts ICTs for their scientific work.

This study examines the actual use of ICTs by communication and media researchers for scientific diffusion and data analysis. Specifically, we wonder: to what extent does the international community of Communication Researchers adopt ICTs for scientific diffusion and data analysis? (RQ1).  In line with the Unified Theory of Acceptance and Use of Technology (UTAUT and UTAUT2) (Venkatesh, Morris, Davis & Davis, 2003; Venkatesh, Thong, & Xu, 2012) we posit that performance expectancy (the degree to which an individual believes that using the system will help him or her to attain gains in job performance) has a significant influence on actual use of ICTs (H1). Given the importance of variables gender and age we propose that the effect of performance expectancy on actual use of ICTs is moderated by age, such that the effect will be stronger for younger researchers (H2.1) and that this effect is also moderated by gender, such that the effect will be stronger for male researchers (H2.2). Additionally, based on previous studies (Procter et al., 2010; Arcila, 2013; Bargak et al., 2010) we posit that in academic contexts Scientific collaboration has a significant influence on actual use of ICTs (H3).

Survey data were collected from members of the International Communication Association (ICA) (n=295).  Before the application of the questionnaire, we conducted a panel of experts in order to assure content validity and we estimated test-retest reliability. Once the data were collected, we assessed the validity of the constructs through an exploratory factorial analysis (EFA) and their internal consistency reliability.  To address RQ1 we conducted descriptive analysis of data. In the case of H1 and H3, Multiple Linear Regression analysis estimated by Ordinary Least Squares (OLS) was carried out. To address H2.1 and H2.2, we ran a moderation analysis with SPSS macro PROCESS (Model 2), developed by Hayes (2013).

According to the findings, adoption rate averages of most of the tools were close to the median, except for Twitter, Grids and Simulation Software. Consistent with past research and the UTAUT, we found that performance expectancy is a predictor of adoption, though this relation was not moderated by age and gender. In the case of scholarly environments, we found that scientific collaboration is a stronger predictor of actual use.

This study provides empirical evidence to support performance expectancy as an important predictor in ICT adoption but proposes to include scientific collaboration as a determinant in scientific and scholarly environments. Future research may replicate this survey in other disciplines and contexts with larger samples.  In terms of practical implications, our study suggests that sensitization campaigns might be appropriated to increase performance expectancies among researchers, informing the benefits of ICT use in research. Campaigns can be accompanied by direct education to local experts and leaders in computed-based discovery, thus they can promote ICT use within the particular field. In addition, funding programs and scholarly accreditations might promote scientific collaboration through international calls and co-authorship recognition, respectively. As earlier discussed, this kind of collaboration significantly increases ICT use for scientific discovery and diffusion.


Arcila, C. (2013). e-Investigación en ciencias sociales [Report]. Buenos Aires: Clacso.

Arcila, C. Piñuel, J. & Calderín, M. (2013). e-Research on Media and Communication Studies. Comunicar: Revista Científica de Comunicación y Educación, 40, pp. 11-118, DOI: http://dx.doi.org/10.3916/C40-2013-03-01.

Arcila, C.; Calderín, M.; Nuñez, L. & Briceño, Y. (2013). E-Research: the new paradigm of science in Latin America. In Arcila, Calderín, & Castro (eds.). An Overview to Digital Media in Latin America (pp. 38-51). London: University of West London.

Arcila, C. & Said, E. (2012). Retos de la e-Investigación en Ciencias Sociales y Humanas.  e-Colabora "Revista de ciencia, educación, innovación y cultura apoyadas por redes de tecnología avanzada", 2(4), 79-85.

Arcila, C. & Said, E. (2012). Factores que inciden en la variación de seguidores en los usuarios TOP20 más vistos en Twitter en América Latina y Medio Oriente. Interciencia, 37(12), pp. 875-882.

Barjak, F.; Lane, J.; Poschen, M.; Procter, R.; Robinson, S. & Wiegand, G. (2010). e-Infrastructure Adoption in the Social Sciences and Humanities. Information, Communication & Society, 13(5), pp. 635-651, DOI: 10.1080/13691180903095849.

Borgman, C. (2007). Data: Input and Output of Scholarship. In: Scholarship in the digital age. Information, Infrastructure, and the Internet (pp. 115-148). Cambridge, Massachusetts: MIT Press.

Briceño, Y., Arcila, C. & Said, E.  (2012). Colaboración y comunicación científica en la comunidad latinoamericana de físicos de altas energías.  e-Colabora "Revista de ciencia, educación, innovación y cultura apoyadas por redes de tecnología avanzada", 2(4), 106-117.

Briceño, Y. (2014). El modo emergente de la comunicación de la ciencia: incidencias y gestión distribuida en América Latina (Unpublished doctoral dissertation). Universidad de los Andes, Mérida, Venezuela.

Castro, H. et al. (2009). EELA: una infraestructura para e-ciencia en Latinoamérica. Revista de Ingeniería, 29, pp. 26-32.

Chanson, H. (2007). Research quality, publications, and impact in civil engineering into the 21st century. Publish or perish, commercial versus open access, Internet versus libraries? Canadian Journal of Civil Engineering, 34, pp. 946-951, DOI: 10.1139/L07-027.

Cohen, J., Cohen, P., West, S. G. & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (3rd ed.). Mahwah, NJ: Erlbaum.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Cummings, J. N. & Kiesler, S. (2005). Collaborative research across disciplinary and organizational boundaries. Social Studies of Science, 35(5), pp. 703-722, DOI: 10.1177/0306312705055535.

Davis, F.D., Bagozzi, R.P, & Warshaw, P.R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), pp. 1111-1132, DOI: 10.1111/j.1559-1816.1992.tb00945.x.

Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), pp. 319-339, DOI: 10.2307/249008.

Faul, F., Erdfelder, E., Buchner, A. & Lang, A. (2009). Statistical power analysis using G*Power 3.1: Tests for correlation and regression analysis. Behavior Research Methods, 41(4), pp. 1149-1160, DOI: 10.3758/BRM.41.4.1149.

Faul, F., Erdfelder, E., Lang, A. & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), pp. 175-191, DOI: 10.3758/BF03193146.

Hair, J.; Anderson, R.; Tatham, R. & Black, W. (1999).  Análisis Multivariante (5h Ed). Madrid: Prentice Hall International.

Hara, N.; Solomon, P.; Kim, S. L.; & Sonnenwald, D. H. (2003). An emerging view of scientific collaboration: Scientists' perspectives on collaboration and factors that impact collaboration. Journal of the American Society for Information Science and Technology, 54(10), pp. 952-965, DOI: 10.1002/asi.10291.

Hayes, A. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.

Hayes, A. (2005). Statistical Methods for Communication Science. Mahwah, NJ: Lawrence Erlbaum Associates.

Hey, T. & Trefethen, A. (2005). Cyberinfrastructure for e-Science. Science, 308(5723), pp. 817-821, DOI: 10.1126/science.1110410.

Hey, T., Tansley, S. & Tolle, K. (2009). Jim Gray on eScience: A Transformed Scientific Method. In: Hey, T., Tansley, S. & Tolle, K. (Eds.). The fourth paradigm. Data-intensive scientific discovery (pp. xvii-xxxi). Redmond, Washington: Microsoft Research.

Dutton, W. (2010). Reconfiguring Access in Research: Information, Expertise, and Experience. In: W. Dutton & P. Jeffreys (eds.). World Wide Research. Reshaping the Sciences and Humanities (pp. 1-19). Cambridge, Massachusetts: MIT Press.

Dutton, W.H. & Meyer, E.T. (2008). e-Social Science as an Experience Technology: Distance From, and Attitudes Toward, e-Research. 4th International Conference on e-Social Science, Manchester (UK), 18-06-2008. Available at: www.ncess.ac.uk/events/conference/programme/thurs/1bMeyerb.pdf

García, G.; Yezers’ka, Y.; Rost, A.; Calderín, M.; Edo, C.; Rojano, M.; Said, E.; Jerónimo, P.; Arcila, C. Serrano, A.; Sánchez, J. & Corredoira, L. (2011). Uso de Twitter y Facebook por los medios Iberoamericanos. El Profesional de la Información, 20(6), DOI: http://dx.doi.org/10.3145/epi.2011.nov.02

Gentil-Beccot, A. (2009). Information Resources in High-Energy Physics: Surveying the Present Landscape and Charting the Future Course. Journal of the American Society for Information Science and Technology, 60, 1, pp. 150-160, DOI:10.1002/asi.20944.

Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P. & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Thounsand Oaks; New Dehli: Sage.

Giunta, A. & Trivieri, F. (2007). Understanding the determinants of information technology adoption: evidence from Italian manufacturing firms. Applied Economics, 39(10-12), pp. 1325-1334, DOI: 10.1080/00036840600567678.

Gobble, M. (2013). Big Data: The next big thing in innovation. Research-Technology Management, 56(1), pp. 64-66, DOI: 10.5437/08956308X5601005.

Igartua, J. (2006). Métodos cuantitativos de investigación en comunicación. Barcelona: Bosch.

Kaba, B. & Osei-Bryson, K. (2013). Examining influence of national culture on individuals' attitude and use of information and communication technology: Assessment of moderating effect of culture through cross countries study. International Journal of Information Management, 33(3), pp. 441-452, DOI: 10.1016/j.ijinfomgt.2013.01.010.

Mayer-Schonberger, V., & Cukier, K. (2013). Big data: A revolution that will change how we live, work and think. London: John Murray.

Meyer, K. & Xu, Y. J. (2007). A Bayesian analysis of the institutional and individual factors influencing faculty technology use. Internet and Higher Education, 10, pp. 184-195, DOI: 10.1016/j.iheduc.2007.06.001.

Nielsen, M. (2012). Reinventing Discover. In Reinventing Discovery: The New Era of Networked Science. New Jersey: Princeton University Press.

Dutton, W. & Jeffeys, P. (Eds.) (2010). World Wide Research. Reshaping the Sciences and Humanities. Cambridge, Massachusetts: MIT Press.

Education for Change (2012). Researchers of Tomorrow. The research behavior of Generation Y doctoral students [Report]. Available at http://www.jisc.ac.uk/publications/reports/2012/researchers-of-tomorrow

Kosciejew, M. (2013). The Era of Big Data. Feliciter, 59(4), pp. 52-55.

Lal, K. (2008). Information and Communication Technology Adoption in Malaysian SMEs. Asian Journal of Technology Innovation, 16(1), pp. 161-186, DOI:10.1080/19761597.2008.9668652.

Leetaru, K. (2011). Data mining methods for the content analyst: An introduction to the computational analysis of informational center. New York: Routledge.

Lewis, S., Zamith, R. & Hermida, A. (2013). Content analysis in an era of Big Data: A hybrid approach to computational and manual methods. Journal of Broadcasting & Electronic Media, 57(1), pp. 34-52, DOI:10.1080/08838151.2012.761702.

Liao, C. (2010). How to Improve Research Quality? Examining the Impacts of Collaboration Intensity and Member Diversity in Collaboration Networks. Scientometrics, 86, pp. 747-761, DOI: 10.1007/s11192-010-0309-2.

Macía, F. (2010). Validez de los Tests y el Análisis Factorial: Nociones Generales. Ciencia y Trabajo, 12(35), pp. 276-280.

Nentwich, M. (2003). Cyberscience: Research in the Age of the Internet. Vienna: Austrian Academy of Sciences.

Neylon, C. & Wu, S. (2009). Open Science: Tools, Approaches, and Implications. XIV Pacific Symposium on Biocomputing. Hawaii (USA), 09-01-2009. Available at: http://psb.stanford.edu/psb-online/ proceedings/psb09/workshop-opensci.pdf

O’Reilly, T. (2005). What is Web 2.0? Design patterns and business models for the next generation of software. Available at: http://oreilly.com/web2/archive/what-is-web-20.html

Pang, B. & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations             and Trends in Information Retrieval, 2(1-2), pp. 1–135, DOI: 10.1561/1500000011.

Pearce, N. (2010). A Study of Technology Adoption by Researchers. Web and e-Science Infrastructures to Enhance Research. Information, Communication & Society, 13(8), pp. 1191-1206, DOI: 10.1080/13691181003663601.

Pérez-Gil, J., Chacón, S. & Moreno, R. (2000). Validez de constructo: el uso de análisis factorial exploratorio-confirmatorio para obtener evidencias de validez. Psicothema, 12(2), pp. 442-446.

Ponte, D. & Simon, J. (2011). Scholarly Communication 2.0: Exploring Researchers' Opinions on Web 2.0 for Scientific Knowledge Creation, Evaluation and Dissemination. Serials Review, 37(3), pp. 149-156, DOI:10.1080/00987913.2011.10765376.

Prensky, M. (2001). Digital natives, digital immigrants. On the Horizon, 9(5), pp. 1–6,  DOI:10.1108/10748120110424816.

Procter, R. et al. (2010). Adoption and Use of Web 2.0 in Scholarly Communications. Philosophical Transactions of the Royal Society A-Mathematical Physical, 368, pp. 4.029-4.056, DOI: 10.1098/rsta.2010.0155.

RedCLARA (2013). RedCLARA: Nombre, voz e instrumento de la colaboración en América Latina. ALICE2, diciembre 2008 – enero 2013 [Report]. Available at: http://www.redclara.net/doc/libro_alice2_interior_es.pdf

Rigby, J. & Edler, J. (2005). Peering inside research networks: Some observation on the effect of the intensity of collaboration on the variability of research quality. Research Policy, 34, pp. 784-794, DOI: 10.1016/j.respol.2005.02.004.

Robinson, J.P., Shaver, P.R. & Wrightsman, L.S. (1991). Criteria for Scale selection and evaluation. En J. Robinson, P. Shaver & L. Wrightsman (Eds.) Measures of personality and social psychological attitudes (pp. 1-16). San Diego: Academic Press.

Rogers, E. M. (2003). Diffusion of innovations. New York: Free Press.

Sánchez, E. & Romero, M. (Eds.) (2014). Ciencias Sociales y Humanidades Digitales: técnicas, herramientas y herramientas de e-Research e investigación en colaboración. La Laguna: Cuadernos Artesanos de Latina, 61.

Shapiro, M. (2002). Generalizability in Communication Research. Human Communication Research, 28(4), pp. 491-500, DOI: 10.1111/j.1468-2958.2002.tb00819.x.

Stewart, J. (2007). Local Experts in the Domestication of Information and Communication Technologies. Information, Communication & Society, 10(4), pp. 547-569, DOI:10.1080/13691180701560093.

Venkatesh, V.; Thong, J. & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quaterly, 36(1), pp. 157-178.

Venkatesh, V.; Morris, M.; Davis, G. & Davis, F. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quaterly, 27(3), pp. 425-478, DOI: 10.2307/30036540.

Verbeke, M. et al. (2014). When two disciplines meet, Data Mining for Communication Science. Paper presented at the 64th Annual ICA Conference. Seattle, USA.

Waldrop, M. (2008). Science 2.0. Is Open Access Science the Future? Is Posting Raw Results Online, for all to See, a Great Tool or a Great Risk? Scientific American Magazine, April 21. Available at www.sciamdigital.com/index.cfm?fa=products.viewissuepreview&articleid_char=3e5a5fd7-3048-8a5e-106a58838caf9bf7

Weber, D. & Kauffman, R. (2011). What drives global ICT adoption? Analysis and research directions. Electronic Commerce Research and Applications, 10(6), pp. 683-701, DOI: 10.1016/j.elerap.2011.01.001.

Williams, M.;  Dwivedi, Y.; Lal, B. & Schwarz, A. (2009). Contemporary trends and issues in IT adoption and diffusion research. Journal of Information Technology, 24, pp. 1-10, DOI:10.1057/jit.2008.30.

Zhang, P. & Sun, H. (2009). The Complexity of Different Types of Attitudes in Initial and Continued ICT Use. Journal of the American Society for Information Science and Technology, 60(10), pp. 2048-2063, DOI: 10.1002/asi.21116.

Zhang, P., Aikman, S. & Sun, H. (2008). Two Types of Attitudes in ICT Acceptance and Use. International Journal of Human-Computer Interaction, 24(7), pp. 628-648, DOI:10.1080/10447310802335482.

Zikopoulous, P. et al. (2013). Harness the Power of Big Data. New York: McGraw-Hill.

Palabras clave

ICT, Adoption of Technology, Communication and Media, Researchers, Performance Expectancy, Scientific Collaboration.